Problems of Interoperability involving Knowledge Organization Systems (KOS)

Doug Tudhope
Hypermedia Research Unit
University of Glamorgan

Helsinki, November 29, 2007

Presentation

- NKOS overview
- Families of KOS and need to consider purpose of KOS
- Examples of interoperability problems
 - Subject gateway scenario showing need for mapping
 - Potential KOS service example showing need for standards
- Possible approaches to interoperability
 - Standards
 - Combination of KOS

NKOS: Networked Knowledge Organization Systems/Services

Informal network for enabling knowledge organization systems (KOS), such as classification systems, thesauri, gazetteers, ontologies and folksonomies as networked interactive information services to support the description and retrieval of diverse information resources through the Internet

- Two ongoing series of NKOS workshops
 - JCDL Conferences in the US
 - ECDL Conferences in Europe
 - DC NKOS workshop 2005
- KOS Special issues
 - NRHM 2006 12(1)
- Listserv hosted by OCLC
- See NKOS website http://nkos.slis.kent.edu/

NKOS Workshops

- US DL/JCDL
 - 1997 - Philadelphia
 - 1998 – Pittsburgh (1st)
 - 1999 – Berkeley
 - 2000 – San Antonio
 - 2001 – Roanoke
 - 2002 – Portland
 - 2003 – Houston
 - 2004 – no workshop
 - 2005 – Denver (7th)

- ECDL
 - 2000 – Lisbon
 - 2003 – Trondheim
 - 2004 – Bath
 - 2005 – Vienna
 - 2006 – Alicante
 - 2007 – Budapest, Sept 21

Dublin Core NKOS Session
2005 – Madrid, 2005

Terminology Services

Searching for concepts
- schemes in registries
- concepts/terms in taxonomy servers

Search support for queries
- collection finding
- cross-searching, cross-browsing, mapping services
- KOS browsing and user interface/visualisation
- query expansion, disambiguation
- automatic indexing and classification
- extraction/mining of terms
- translation support using vocabularies

For recent overview (and references) of knowledge organization systems and services, see JISC review on Terminology Services and Technologies
http://www.jisc.ac.uk/Terminology_Services_and_Technology_Review_Sep_06
Presentation

• NKOS network overview
• Families of KOS and need to consider purpose of KOS
• Examples of interoperability problems
 – Subject gateway scenario SHOWING need for mapping
 – Potential KOS service example showing need for standards
• Possible approaches to interoperability
 – Standards
 – Combination of KOS

Presentation

• NKOS network overview
• Families of KOS in addition to KOS structure need to consider purpose/use
• Examples of interoperability problems
 – Subject gateway scenario showing need for mapping
 – Potential KOS service example showing need for standards
• Possible approaches to interoperability
 – Standards
 – Combination of KOS

Dagobert Soergel
Characteristics for describing and evaluating KOS

• Purpose
 • Coverage of concepts and terms. Sources, quality of usage analysis
 • Conceptual analysis and conceptual structure. Terminological analysis
 • Use of precombination in the index language
 • Access and display. Format of presentation of the vocabulary
 • Updating

How are different types of KOS used?

• Important to consider intended purpose/application of a KOS
• How are KOS concepts applied to objects they refer to?
 – Distinction between classification and indexing
 • classification groups similar items together
 • indexing brings out differences to help distinguish in search
 – (AI) Ontologies Vs Search/Discovery oriented KOS
 different purposes and typical application of concepts

Semiotic Triangle (Ogden and Richards, 1923) reproduced in Campbell et al. 1998, Representing Thoughts, Words, and Things in the UMLS

THOUGHT OR REFERENCE

SYMBOL

Only indirect link via an interpreter (as an impinged relation)

REPRESENT

Instance of scientific concept

Fact in a ‘possible world’

AI Ontology tends to be …
Semiotic Triangle (Ogden and Richards, 1923) reproduced in Campbell et al. 1998, Representing Thoughts, Words, and Things in the UMLS

information retrieval (subject) KOS tends to be

![Semiotic Triangle Diagram]

KOS - Informal by design?

- KOS designed to assist perceived needs of information retrieval users rather than modelling a simplified reality of a domain
 - basis of (retrieval oriented) KOS construction is intended assistance in indexing, searching, browsing and generalised retrieval more than logical properties of attributes
 - implications:
 - levels of specialisation
 - granularity of relationships
- Many KOS by design informal structures
 - pragmatic compromises for different uses
 - semantic relationships often ‘fuzzy’
- Semantic organisation understood as conventional
 - could be otherwise, different viewpoints inevitable
 - users assisted to explore and appropriate

How to apply KOS?

- What is the purpose of a given KOS?
 - we need to specify/articulate more clearly
- Domain dependent level of precision in concept use
 - Important to take into account how applications will process concepts
 - Current KOS relationships at a useful level of generality for many retrieval-based applications (with some specialisation?)
- Cost/benefit issues for KOS applications
 - in granularity of relationships and degree of formalisation

Presentation

- NKOS network overview
- Families of KOS and need to consider purpose of KOS
- Examples of interoperability problems
 - Subject gateway scenario showing need for mapping
 - Potential KOS service example showing need for standards
- Possible approaches to interoperability
 - Standards
 - Combination of KOS

Extract of scenario showing need for mapping KOS for different gateways not mapped together

- Scenario is abridged from JISC Terminology Services Review which discusses a published case study of the RDN
 - now Intute — so some details have changed
- At present, the RDN case studies tend to be isolated within a single BIOME gateway. Mapping could link between the two vocabularies used inside AgriFor to the vocabularies used on other gateways.
- For example, the Natural Selection gateway also contains useful resources for the case study. Natural can be browsed by DDC headings and information items are indexed by free-standing keywords.
- A mapping between the DDC headings, AgriFor categories, CAB Thesaurus could underpin a variety of services and access routes. Cross browsing and cross-searching would be enabled across the two collections

Presentation

- NKOS network overview
- Families of KOS and need to consider purpose of KOS
- Examples of interoperability problems
 - Subject gateway scenario showing need for mapping
 - Potential KOS service example showing need for standards arising from outcomes of a previous project (FACET)
- Possible approaches to interoperability
 - Standards
 - Combination of KOS
FACET - Faceted Access to Cultural Heritage Terminology

FACET - a collaborative project investigating the potential of semantic expansion in retrieval

Aims:
• Integration of thesaurus into search process / interface
• Semantic query expansion
 taking advantage of facet structure

http://www.comp.glam.ac.uk/~FACET/

FACET Collaborators

• Research Council Funding: EPSRC 3 years
• National Museum of Science and Industry (NMSI):
 National Railway Museum and Science Museum Collections Database
• J. Paul Getty Trust
 Art and Architecture Thesaurus (AAT)
• Museum Documentation Association (MDA)
 Railway Thesaurus
• Canadian Heritage Information Network (CHIN)
 Advisors

Semantic Expansion for concept based search

Expanding over thesaurus semantic relationships allows the system to play an active role

• Ranking of matching results by semantic closeness
• Query Expansion (automatic/interactive)
• Augmented Browsing tools

Underpinning technologies:
• Measures of distance over the semantic index space
• Multi-concept Matching Function

Compound Descriptors and Queries

e.g. painted oak furniture

• Multi-concept subject headings allow highly specific descriptions and offer promise of precise queries

• However practical focus has tended to be on cataloguing rather than searching

• Poses problems for recall in retrieval and for browsing.
 Full potential yet to be exploited in retrieval

Faceted Knowledge Organisation Systems

Faceted classifications based on primary division into fundamental, high-level categories (facets)

Compound descriptors (multi-concept headings) are synthesised by combination of terms from limited number of fundamental facets

In constructing AAT, adjectival noun phrases very common:
 e.g. painted oak furniture

“Rather than enumerate the nearly infinite number of object and subject descriptions needed by thesaurus users, the AAT decided to pursue the building blocks of these descriptors in the form of a faceted vocabulary”

(Guide to Indexing and Cataloging with the Art & Architecture Thesaurus)

Matching Problem

“The major problem lies in developing a system whereby individual parts of subject headings containing multiple AAT terms are broken apart, individually exploded hierarchically, and then reintegrated to answer a query with relevance”

(Toni Petersen, AAT Director)

Query: mahogany, dark yellow, brocading, Edwardian, armchair
Descriptor: oak, light yellow, crests, ovals, brocade, Victorian, Carver chair

Potentially extra / missing / partially and non-matching terms
Matching Problem

“The major problem lies in developing a system whereby individual parts of subject headings containing multiple AAT terms are broken apart, individually exploded hierarchically, and then reintegrated to answer a query with relevance.”

(Toni Petersen, AAT Director)

Query: mahogany, dark yellow, brocading, Edwardian, armchair

Descriptor: oak, light yellow, create, ovals, brocade, Victorian, Carver chair

Potentially extra / missing / partially and non-matching terms

FACET standalone system

FACET Queries with Results

System Architecture

FACET Web Demonstrator

- Illustrates thesaurus based expansion and faceted search
- Intended as an exploration of FACET research outcomes via dynamically generated Web components rather than a complete final interface
- Based on custom API for thesaurus programmatic access
- Browser-based interface (ASP application), using a combination of server-side scripting and compiled components
- Demonstrator and paper available at http://www.comp.glam.ac.uk/~FACET/webdemo/
http://jodi.tamu.edu/Articles/v04/i04/Binding/
Semantic Query Expansion

- NMSI's different museums and collections held in a single collections database
- Easy to express connections between thesaurus hierarchies and DB fields

But what if search across different DBs and KOS?

- Eg English Heritage (EH) a single organisation but wide range unconnected DBs and vocabularies (see Nov 30 presentation)

Some lessons learned

- Results show potential of faceted KOS for
 - Concept-based query expansion with semantically ranked results
 - Realtime implementation multi-concept matching function
 - Semantic expansion as a browsing tool
 - Potential combine with statistical and linguistic techniques

How to generalise?

- Need for
 - Standard KOS representations and APIs
 - Terminology Registries

Presentation

- NKOS network overview
- Families of KOS and need to consider purpose of KOS
- Examples of interoperability problems
 - Subject gateway scenario showing need for mapping
 - Potential KOS service example showing need for standards
- Possible approaches to interoperability
 - Standards
 - Combination of KOS

Some standards activity

- Revised BSI and ANSI/NISO KOS standards (2005)
- Ongoing initiative for revised ISO standard see NKOS 2007 workshop presentation

Overview of ISO NP 25964

Stella G Dextre Clarke
Convenor, IDT/2/2 Working Group of BSI
and Project Leader for ISO NP 25964
Overview of BS 8723

BS 8723: Structured vocabularies for information retrieval - Guide
- Part 1: Definitions, symbols and abbreviations
- Part 2: Thesauri
- Part 3: Vocabularies other than thesauri
- Part 4: Interoperability between vocabularies
- Part 5: Exchange formats and protocols for interoperability

Motivation throughout is "interoperability"

BS 8723-4: Interoperability between vocabularies
- Covers mapping between vocabularies.
- Responds to demand for accessing information that has been indexed with another language and/or vocabulary. The Semantic Web is just one application.
- Includes multilingual thesauri as a special case of mapping between vocabularies

ISO NP 25964 (adoption of BS 8723 as an ISO standard)
- The proposal to revise ISO 2788 and ISO 5964, basing the work on BS 8723, was submitted to ISO TC 46/SC 9 members in April 2007
- Project now approved
- At least 9 countries participating: France, Germany, Canada, Finland, New Zealand, Sweden, UK, Ukraine, USA

Presentation
- NKOS network overview
- Families of KOS and need to consider purpose of KOS
- Examples of interoperability problems
 - Subject gateway scenario showing need for mapping
 - Potential KOS service example showing need for standards
- Possible approaches to interoperability
 - Standards
 - Combination of KOS (Nov 30 presentation)
 - mapping to core ontology
 - hybrid controlled KOS / folksonomy

Contact Information
Doug Tudhope
School of Computing
University of Glamorgan
Pontypridd CF37 1DL
Wales, UK

dstudhope@glam.ac.uk
http://hypermedia.research.glam.ac.uk/

References
SKOS Simple Knowledge Organisation Systems http://www.w3.org/2004/02/skos/