Palaeoecological evidence of changes in vegetation and climate during the Holocene in the pre-Polar Urals, northeast European Russia

SEIJA KULTTI,1* MINNA VÄLIRANTA,1 KAARINA SARMAJA-KORJONEN,1 NADIA SOLOVIEVA,2 TARMO VIRTANEN,3 TOMMI KAUPPILA4 and MATTI ERONEN1

1 University of Helsinki, Department of Geology, P.O. Box 64, FIN-00014, Helsinki, Finland
2 ECRC, University College London, Department of Geography, 26 Bedford Way, London WC1H OAP, UK
3 Finnish Forest Research Institute, Rovaniemi Research Station, Eteläranta 55, FIN-96301, Rovaniemi, Finland
4 Geological Survey of Finland, P.O. Box 96, FIN-02151, Espoo, Finland

Received 30 September 2002; Revised 12 February 2003; Accepted 12 March 2003

ABSTRACT: This study investigated Holocene tree-line history and climatic change in the pre-Polar Urals, northeast European Russia. A sediment core from Mezhgornoe Lake situated at the present-day alpine tree-line was studied for pollen, plant macrofossils, Cladocera and diatoms. A peat section from Vangyr Mire in the nearby mixed mountain taiga zone was analysed for pollen. The results suggest that the study area experienced a climatic optimum in the early Holocene and that summer temperatures were at least 2°C warmer than today. Tree birch immigrated to the Mezhgornoe Lake area at the onset of the Holocene. Mixed spruce forests followed at ca. 9500–9000 14C yr BP. Climate was moist and the water level of Mezhgornoe Lake rose rapidly. The hypsithermal phase lasted until ca. 5500–4500 14C yr BP, after which the mixed forest withdrew from the Mezhgornoe catchment as a result of the climate cooling. The gradual altitudinal downward shift of vegetation zones resulted in the present situation, with larch forming the tree-line. Copyright © 2003 John Wiley & Sons, Ltd.

KEYWORDS: Holocene; northern Russia; tree-line; lake-level changes; palaeoclimate.

Introduction

It is commonly believed that the anthropogenically increased concentrations of atmospheric greenhouse gases will increase temperatures, especially in continental high-latitude regions (IPCC, 2001). As a result, it is likely that forest vegetation will advance northwards (arctic tree-line) and upwards (alpine tree-line). These shifts in the forest line can have significant feedbacks to climate, i.e. changes in the albedo and carbon storage (Betts, 2000). The Holocene records of environmental changes in vegetation and lacustrine systems can be used to validate biome models and to provide possible analogues for future changes in the environment.

Holocene environmental changes in the northeast of European Russia have been studied mainly using tree macrofossils (e.g. Kremenetski et al., 1998; MacDonald et al., 2000) and palaeobotanical analyses of peat deposits (e.g. Kaakinen and Eronen, 2000; Oksanen et al., 2001), and have been concentrated on lowland environments. Climatic conditions have varied throughout the Holocene, and changing temperatures and humidity have strongly affected the arctic tree-line, vegetation cover and distribution of permafrost around the forest-tundra ecotone. Forest establishment in northern Russia took place at the beginning of the Holocene; between 9000 and 7000 14C yr BP the forest line had advanced to the Barents Sea coastline (Kremenetski et al., 1998; MacDonald et al., 2000). Based on tree macrofossils the withdrawal of the forest line to its present position took place between 4000 and 3000 14C yr BP (Kremenetski et al., 1998; MacDonald et al., 2000). Permafrost aggradation in peatlands commenced ca. 3000 14C yr BP (Oksanen et al., 2001).

No detailed palaeoenvironmental studies from the alpine tree-line zone in the northern Ural Mountains have been published in English. An advantage of studying climate change in alpine ecosystems is the short migration lags of trees owing to the steep ecozonal gradient (e.g. Kullman and Kjällgren, 2000). This paper focuses on the tree-line dynamics and changes in climate and aquatic ecosystems during the Holocene in the pre-Polar Urals region, northeast European Russia. Pollen, plant macrofossil, cladoceran and diatom analyses have been applied to extract palaeoecological and palaeoclimatic information from lake sediments from a site located at the
present-day alpine tree-line (Lake Mezhgornoe). To provide
vegetation history on the regional scale, these studies were
supplemented by the pollen record from a peat section from
a nearby site in the mixed mountain taiga (Vangyr Mire).

Study area

The study area is situated on the western slopes of the Ural
Mountains, Komi Republic, in the northeast of European Russia
(Fig. 1A and B). The Pechora region west of the mountain area
is characterised by extensive lowlands (< 200 m a.s.l.). Typically,
the mountain tops in the area vary from 1000 to 1600 m a.s.l. with the highest at 1894 m a.s.l. Bedrock in the
area consists of Early and Middle Ordovician sedimentary
rocks. Thick Quaternary sediments cover the bedrock in low-
land areas. The Kara and Barents ice-sheets did not reach the
study area during the Weichselian (Mangerud et al., 1999;
Svendsen et al., 1999; Gataullin et al. 2001). However, traces
of small alpine glaciers have been found in the Urals south of
the ice-sheet limit (Valery Astakhov, personal communication,
2001). Many U-shaped valleys characterise the area, and scattered till deposits have been observed during fieldwork.
The study area is practically free of permafrost at lower elevations, but discontinuous and then continuous permafrost
occur towards higher altitudes (Oberman and Borozinetsh,
1988).

In the Pechora lowlands the arctic tree-line runs in a largely
east–west direction along 67–68°N latitude, corresponding to
the zone of discontinuous permafrost. Spruce (Picea abies sl.)
is the dominant tree species at tree-line in the lowland areas.
The alpine tree-line is formed by larch (Larix sibirica) (Fig. 1C)
 at ca. 550–600 m a.s.l. Mixed mountain taiga with spruce and
white birch (Betula pubescens) prevails in the lower valleys of
the study area and Siberian fir (Abies sibirica) is often dominant
at higher altitudes. Some peatland areas are present in flat
valley bottoms and also on slopes at the tree-line. The modern
climate in the area is characterized by cold winters and cool
summers (Table 1).

The central Mezhgornoe Lake (65°15‘28”N; 59°39‘59”E;
550 m a.s.l.) lies on the western slope of the Ural Mountains
(Fig. 1B), in a mountain saddle between two other lakes
(Figs 1C and 2). The alpine tree-line occurred only 20 m higher
(ca. 570 m a.s.l.) than the lake (Figs 2 and 4A, and Table 2). At

Figure 1 (A) Location of the study area in the pre-Polar Urals, north European Russia. The area indicated by the white rectangle in Fig. 1A, is shown
enlarged in Fig. 1B. (B) Location of the study sites and meteorological stations. (C) Detailed view of the surroundings of Lake Mezhgornoe. The location
of the lake is marked by an arrow. The broken line indicates the transect in Fig. 4A. (D) Detailed view of the surroundings of Vangyr Mire. The location
of the mire is marked by an arrow. The broken line indicates the transect in Fig. 4B

present, larch is the dominant tree species in the catchment area of the lake, with two specimens of Siberian fir also observed during fieldwork. Fir in particular, as well as spruce, mountain birch (Betula pubescens ssp. czerepanovii) and white birch are common at lower elevations. This mixed mountain taiga appears ca. 100 m lower than the study site. Scots pine (Pinus sylvestris) is absent in the study area. The nearest pines can be found 10–20 km away from the study area in lowland bogs, and the nearest upland pine forests grow on sandy areas near the Usa and Pechora rivers, approximately 100 km from the Mezhgornoe site. Areas above the tree-line are characterised by patchy alpine meadows and shrub–lichen-dominated tundra vegetation. The steep and rocky slopes and the highest altitudes are almost bare. Peatlands cover ca. 15% of the study area.

Vangyr Mire (unofficial name) (65°00' N; 59°15'E; 300 m a.s.l.) is situated in the Vangyr River valley, west of the Ural Mountains (Figs 1B, 1D and 3). The present vegetation in the area is mainly mixed mountain taiga with spruce, birch and Siberian fir (Fig. 4B, Table 2). Pine occurs farther away to the west in lowland bogs. At higher altitudes the proportion of Siberian fir increases, and at the tree-line larch and in some locations mountain birch form a narrow belt below the alpine meadow and shrub–lichen-dominated tundra vegetation. Steep slopes and areas at high elevations are bare. Peatlands also cover ca. 15% of the area.

Table 1 Climate averages (1961–1990) of the study area. The precipitation record from Verhni Sugor is very incomplete, consisting only of 11 out of the 30 yr. The locations of the weather stations are shown in Fig. 1B.

<table>
<thead>
<tr>
<th>Station</th>
<th>Mean July temperature (°C)</th>
<th>Mean January temperature (°C)</th>
<th>Annual precipitation (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pechora station</td>
<td>16.1</td>
<td>−20.3</td>
<td>555</td>
</tr>
<tr>
<td>Verhni Sugor</td>
<td>14.9</td>
<td>−20.6</td>
<td>830</td>
</tr>
<tr>
<td>Mezhgornoe Lakes</td>
<td>12.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vangyr Mire</td>
<td>14.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Estimated on the basis of altitudinal and latitudinal gradients.

Table 2 Description of the main vegetation types in different elevation zones. Lowland taiga measurements are from the area near Kosyu river (see Fig. 1B). The others are from Mezhgornoe and Vangyr. All were measured during summer 1998. Elevation zones are approximate. *n* is the number of measured sites. From every site, three 10-m radius circles were measured. Tree species percentages are crown cover percentages of total vegetation cover. Birch cover also includes some other less common deciduous leaved trees (species in genera Sorbus, Alnus and Prunus). The 'other' category consists of the field-layer vegetation, stones, etc.

<table>
<thead>
<tr>
<th>Vegetation, zone</th>
<th>Elevation (m a.s.l.)</th>
<th>Tree, volume (m³ ha⁻¹)</th>
<th>n</th>
<th>Spruce (%)</th>
<th>Fir (%)</th>
<th>Birch (%)</th>
<th>Larch (%)</th>
<th>Other (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowland mixed and spruce dominated taiga</td>
<td>< 220</td>
<td>132.5</td>
<td>7</td>
<td>34.0</td>
<td>0.0</td>
<td>19.8</td>
<td>0.4</td>
<td>47.2</td>
</tr>
<tr>
<td>Alpine mixed and spruce dominated forest</td>
<td>220–320</td>
<td>96.8</td>
<td>5</td>
<td>16.3</td>
<td>7.7</td>
<td>23.3</td>
<td>3.0</td>
<td>49.7</td>
</tr>
<tr>
<td>Fir dominated forest</td>
<td>320–470</td>
<td>92.8</td>
<td>10</td>
<td>8.0</td>
<td>18.7</td>
<td>16.0</td>
<td>2.7</td>
<td>54.6</td>
</tr>
<tr>
<td>Larch forest</td>
<td>470–600</td>
<td>63.7</td>
<td>6</td>
<td>0.1</td>
<td>0.1</td>
<td>7.5</td>
<td>27.8</td>
<td>65.5</td>
</tr>
<tr>
<td>Lower alpine meadow and heath</td>
<td>500–800</td>
<td>—</td>
<td>8</td>
<td>0.0</td>
<td>0.1</td>
<td>0.8</td>
<td>1.1</td>
<td>98.0</td>
</tr>
</tbody>
</table>
Material and methods

Sampling and dating

Fieldwork was carried out in spring and summer 1998. The 50-cm cores from Mezhgornoe Lake were collected with a Russian corer of 5 cm diameter, and the uppermost sediment was obtained using a Glew corer. The peat deposits from Vangyr Mire were collected with a Russian corer. The middle part of Mezhgornoe Lake was too deep (17 m) for successful coring so material was retrieved ca. 20 m from the western shore in a water depth of 2.0 m. The sediment was packed in plastic and stored in a cold room. Sediments were described according to the visual characteristics (Table 3) and loss-on-ignition analysis was carried out at 10-cm intervals.

Chronological control was provided by a series of conventional (Hel-xx) and AMS (Hela-xx) 14C datings (Stuiver and Polach, 1977) from bulk sediment and terrestrial macrofossils in the Dating Laboratory of the University of Helsinki (Table 4). The dates were calibrated using the CALIB 4.1 program (Stuiver and Reimer, 1993).

In the text calibrated dates are denoted as ‘cal. yr BP’ and uncalibrated ages as ‘yr BP’. Most dates from Mezhgornoe Lake were obtained from bulk sediment because of the lack of suitable macrofossils. Only one date (Hela-495) is based on terrestrial macrofossil material. To estimate the accuracy of the bulk sediment dates a surface sample (0–0.5 cm, Hela-485) was also dated. This sample was collected with the Glew corer. Dates from Vangyr Mire are from bulk peat. Roots were removed as completely as possible.

Pollen analysis

From the cores, 0.5 cm3 of fresh sediment was sampled at 5–10 cm intervals. The laboratory treatment followed standard KOH, HF and acetolysis methods (Fægri and Iversen, 1989). Two Lycopodium tablets (Stockmarr, 1971) were added for
estimation of pollen concentrations and accumulation rates. The samples were mounted in glycerol and stained with safranin. A minimum of 300 terrestrial pollen grains was counted. The total pollen sum of terrestrial plants is the basic sum for the percentage calculations. The percentages for taxa within spores and aquatics are estimated from the basic sum added with the total sum of spores or the total sum of aquatic pollen. The sample age between dated intervals was calculated by linear interpolation. Pollen accumulation rates were calculated using calibrated \(^{14} \text{C} \) ages. Conifer stomata found in the pollen slides were differentiated to genus level with the help of reference slides. Pollen nomenclature follows Moore et al. (1992) for Compositae liguliflorae.

Macrofossil analysis

For plant macrofossil analysis, volumetric samples (20–30 cm\(^3\)) at 5-cm intervals were taken. In a few cases very little sediment was available and the subsamples were small, less than 10 cm\(^3\). The sediment was soaked overnight, or longer if needed, in sodium pyrophosphate (\(\text{Na}_4\text{P}_2\text{O}_7 \)). The sediment was then sieved through a 125 \(\mu \text{m} \) mesh and analysed for plant macrofossils. The remains of trees, particularly of conifers, were studied in order to obtain a more precise picture of past shifts of the tree-line. Birch seeds were divided into three groups: tree birch, dwarf birch and birch when reliable identification was not possible. The identification of small pieces of conifer needles was based on the stomata. Mosses were identified only from the lowermost 40 cm where reliable identification was not possible. The identification of small pieces of conifer needles was based on the stomata. The samples were mounted in glycerol and stained with safranin. About 250–300 clado-
ceran remains were counted from each sample where possible.

As there were large variations between the quantities of planktonic and littoral Cladocera, representing different habitats, the percentages for littoral forms were calculated based on the basic sum of total littoral Cladocera. Thus a more reliable general picture of their succession within the littoral zone was obtained. The proportions for planktonic forms were calculated based on the basic sum of total Cladocera remains.

Cladocera analysis

As the cladoceran concentration was low, large subsamples (ca. 2 cm\(^3\)) were used. Subsamples were heated in 10% KOH for 30 min using a magnetic stirrer. The sediment samples contained organic matter, which did not penetrate the ca. 40 \(\mu \text{m} \) mesh recommended by Frey (1986). Therefore the samples had to be sieved through a 100 \(\mu \text{m} \) mesh with a very strong pressure of tap water and unfortunately many smaller remains, such as postabdomens, must have been lost because they were rare in the samples analysed. The samples were mounted with glycerol jelly stained with safranin. About 250–300 cladoceran remains were counted from each sample where possible.

Diatom analysis

Diatom slide preparation followed standard procedure (Battarbee, 1986) using the water-bath method (Renberg, 1990). Diatom concentration was determined using microsphere markers (Battarbee and Kneen, 1982). Between 300 and 400 valves were counted for most levels. The diatom abundance was low at the three lowermost levels, and only 100–150 valves were counted between 320 and 300 cm. Diatom nomenclature follows Krammer and Lange-Bertalot (1986–1991) and AL:PE guidelines (Cameron et al., 1999). The taxon is called *Eury
doros* carapaces and headshields could be distinguished (not calculated separately) and are called here *Cyclotorus* s.l. (cf. Frey, 1982). Numerous unidentified medium-size *Alona* type carapaces and headshields were found (*Alona* sp.).

Results and interpretation

Lithology and dating

The organic content of the 3.25 m thick sediment sequence of Mezhgornoe Lake (Table 3) is low through the entire core. The

Table 4 Radiocarbon dates from Lake Mezhgornoe and Vangyr Mire. For the uncertainty range of the reassessed age estimates, see Fig. 5

<table>
<thead>
<tr>
<th>Laboratory code</th>
<th>Dated material</th>
<th>Sample</th>
<th>(^{13} \text{C})</th>
<th>Age BP</th>
<th>Reassessed age BP</th>
<th>Calibrated age BP</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hela-485</td>
<td>Bulk</td>
<td>Mezhgornoe 0–0.5</td>
<td>980 ± 65</td>
<td>−50</td>
<td>4740 ± 65</td>
<td>2940</td>
<td>3130</td>
</tr>
<tr>
<td>Hela-375</td>
<td>Bulk</td>
<td>Mezhgornoe 65–67</td>
<td>−25.9</td>
<td>4740 ± 65</td>
<td>2940</td>
<td>3130</td>
<td>−1800 (^{14} \text{C}) yr</td>
</tr>
<tr>
<td>Hela-374</td>
<td>Bulk</td>
<td>Mezhgornoe 152–154</td>
<td>−27.9</td>
<td>8795 ± 115</td>
<td>7000</td>
<td>7810</td>
<td>−1800 (^{14} \text{C}) yr</td>
</tr>
<tr>
<td>Hela-373</td>
<td>Bulk</td>
<td>Mezhgornoe 233–235</td>
<td>−29.3</td>
<td>11050 ± 100</td>
<td>9250</td>
<td>10450</td>
<td>−1800 (^{14} \text{C}) yr</td>
</tr>
<tr>
<td>Hela-4163</td>
<td>Bulk</td>
<td>Mezhgornoe 310–325</td>
<td>−27.8</td>
<td>11250 ± 140</td>
<td>9800</td>
<td>11440</td>
<td>−14 Cy r</td>
</tr>
<tr>
<td>Hela-495</td>
<td>Plant macrofossil</td>
<td>Mezhgornoe 315–320</td>
<td>10035 ± 115</td>
<td>11440</td>
<td>11440</td>
<td>−14 Cy r</td>
<td></td>
</tr>
<tr>
<td>Hela-4351</td>
<td>Peat</td>
<td>Vangyr mire 65–75</td>
<td>−28.5</td>
<td>1530 ± 80</td>
<td>1410</td>
<td>1410</td>
<td>−14 Cy r</td>
</tr>
<tr>
<td>Hela-4352</td>
<td>Peat</td>
<td>Vangyr mire 225–235</td>
<td>−28.1</td>
<td>4930 ± 80</td>
<td>5650</td>
<td>5650</td>
<td>−14 Cy r</td>
</tr>
<tr>
<td>Hela-4353</td>
<td>Peat</td>
<td>Vangyr mire 340–350</td>
<td>−26.2</td>
<td>7250 ± 90</td>
<td>8090</td>
<td>8090</td>
<td>−14 Cy r</td>
</tr>
<tr>
<td>Hela-4244</td>
<td>Peat</td>
<td>Vangyr mire 380–400</td>
<td>−27.1</td>
<td>7870 ± 160</td>
<td>8620</td>
<td>8620</td>
<td>−14 Cy r</td>
</tr>
</tbody>
</table>

The hardwater effect in Mezhgornoe Lake apparently has not been constant through its sedimentation history (cf. Barnekow et al., 1998; Paus, 2000). The hardwater effect appears less pronounced at the beginning of the Holocene (ca. 1200 yr) than it is at present (ca. 1800 yr). This is probably due to a larger proportion of terrestrial macrofossils in the lowermost part of the core, as well as the fact that the coring point was shallow during the early Holocene (see text below) and therefore the exchange with atmospheric CO₂ was probably more effective.

No terrestrial macrofossils were available for supplementary dating. In the age–depth model (Fig. 5) it is assumed that after the early Holocene, the hardwater effect has been the same as in the surface sample, even if this is unlikely. Dates Hel-375, Hela-374 and Hela-373 from bulk sediment were corrected by 1800 ¹⁴C yr and the dates were then calibrated (Table 4). The uncertainty of the dates has to be taken into account when estimating the reliability of the results or the interpretation.

According to the age–depth model used the sedimentation rate of Mezhgornoe was highest (0.8 mm yr⁻¹) in the lowermost part of the record. The reason for a decreased sedimentation rate afterwards could be afforestation of the catchment area, hence decreased erosion and input of allochthonous material, and also increasing distance to the shoreline because of the rising lake-level.

The main components of the 4 m thick Vangyr peat section are Carex, Sphagnum and nanolignine. Carex dominates the lowermost 3.5 m, whereas the uppermost 50 cm is dominated by Sphagnum.

Dates from Vangyr Mire were determined from bulk peat samples. These also probably contain many sources of error, e.g., deep penetration of roots, decomposition of old peat and vertically redistributed dissolved organic carbon (Nilsson et al., 2001). The dates from Vangyr Mire, however, appear logical and we have no reason to doubt the reliability of the dating results. In Vangyr Mire the peat accumulation rates were 0.9 mm yr⁻¹ between 350 and 400 cm and subsequently 0.4–0.5 mm yr⁻¹.

Pollen and macrofossils from Mezhgornoe Lake

The pollen stratigraphy (Fig. 6a and B) of Mezhgornoe Lake has been divided into four local pollen assemblage zones (PoM I to PoM IV). Pollen accumulation rates of selected taxa and total pollen accumulation rate and concentration are shown in Fig. 7. The same zonation was used for both pollen and macrofossils (MaM I to MaM IV, Fig. 8) stratigraphy. The dates in parentheses (in the zone descriptions) are derived from the age–depth model. For the uncertainty range of the model see Fig. 5.

PoM I (325–275 cm; 10 000–9600 yr BP; 11 500–10 900 cal yr BP). Cyperaceae and other herb pollen are dominant. The proportion of Betula pollen gradually increases from 20% to 40%. Conifer pollen, i.e., Picea, Pinus and Abies is present only in small quantities. Rosaceae and Epilobium peaks follow the peak of Artemisia in the lowermost part of the zone. The upper boundary of the zone is defined by the onset of the Cyperaceae decrease. Pollen concentrations are relatively low. The accumulation rates of Cyperaceae are highest (1500–2900 grains cm⁻² yr⁻¹) in the lowermost part of the zone. Conifer pollen is present but the accumulation rates are still low, e.g., the pollen accumulation rate of Picea is less than 150 grains cm⁻² yr⁻¹. Pollen accumulation rate for Betula varies between 500 and 2000 grains cm⁻² yr⁻¹. Juniperus and Salix have maximum pollen accumulation rates in this zone.
Figure 6: Relative pollen and conifer stomata diagrams from Lake Mezhgornoe, northeast European Russia. (A) Stomata and pollen curves for trees and shrubs. (B) Non-arboreal pollen (NAP), aquatic pollen and spores.
Figure 6 Continued

MaM I. Fragments of mosses, leaves and stems dominate the lowermost 40 cm. Frequent Betula seeds were found, and they represent both tree and dwarf birch types. Seeds of Carex are quite abundant in this zone. Tissues of Cyperaceae, Equisetum and Eriophorum were found. In addition some seeds of herbs, such as Potentilla palustris, Primula stricta type, Rorippa cf. palustris and Ranunculus acris type were found.

The pollen and macrofossil flora indicates light-demanding vegetation containing birch (including tree birch), juniper, willow and herbs such as Artemisia, Primula, Rosaceae and grasses. Conifers were probably absent from the area, as pollen accumulation rates of conifers are low and conifer stomata and needles are absent (Clayden et al., 1996, 1997; Hansen et al., 1996). The high abundance of Carex and Betula seeds suggests a proximal source for the seeds. Probably the coring point was near to the shoreline at the beginning of the Holocene. The moss and herb species indicate nutrient rich (meso/eutrophic) and moist growing conditions (Eurola et al., 1992).

PoM II (275–225 cm; 9600–9000 yr BP; 10 900–10 000 cal. yr BP). Betula and Gramineae reach percentage maxima. The first Larix stomata appear at the lower boundary of the zone. Conifer pollen occurs at relatively low proportions. The upper boundary of the zone is defined by an increase in Picea. The record indicates immigration of the conifer forest to the catchment area during this zone. The presence of Larix stomata indicates that larch was growing in the catchment area, probably as the first conifer species. The needles of Siberian fir and spruce indicate the presence of these species in the upper part of the zone. However, if the PoM II percentages and accumulation rates of Picea and Abies are compared with those of the uppermost pollen sample (reflecting the modern tree-line vegetation where Siberian fir is rare and spruce absent) where these values are rather high, it is possible that only sporadic spruce and Siberian fir trees grew in the catchment. The main components of the vegetation were birch and larch. The field and ground layers were most likely composed of willow, juniper, grasses and herbs, such as Filipendula. The substantial proportion of aquatic plants in the macrofossil record suggests that the lake-level had risen compared with the previous zone and suitable habitats were available for aquatic plants near the coring site.

PoM III (225–100 cm; 9000–4500 yr BP; 10 000–5000 cal. yr BP). The zone is characterised by high percentages of Betula and Picea and maximum total pollen concentrations and accumulation rates. Conifer stomata are present in most of the samples. At the lower boundary of the zone Filipendula reaches a maximum. The proportion of Picea rises to ca. 20% at 200 cm, and its pollen accumulation rate remains between 300 and 700 grains cm$^{-3}$ to 60 000 grains cm$^{-3}$.

MaM II. Aquatic plants, such as Potamogeton, Callitriche and Nuphar, dominate the zone. Characeae oospores appear in the sediment. Carex seeds are still present throughout the zone. At the end of the zone, conifer needles (first Abies and then Picea) appear.

The record indicates immigration of the conifer forest to the catchment area during this zone. The presence of Larix stomata indicates that larch was growing in the catchment area, probably as the first conifer species. The needles of Siberian fir and spruce indicate the presence of these species in the upper part of the zone. However, if the PoM II percentages and accumulation rates of Picea and Abies are compared with those of the uppermost pollen sample (reflecting the modern tree-line vegetation where Siberian fir is rare and spruce absent) where these values are rather high, it is possible that only sporadic spruce and Siberian fir trees grew in the catchment. The main components of the vegetation were birch and larch. The field and ground layers were most likely composed of willow, juniper, grasses and herbs, such as Filipendula. The substantial proportion of aquatic plants in the macrofossil record suggests that the lake-level had risen compared with the previous zone and suitable habitats were available for aquatic plants near the coring site.
Figure 8 Plant macrofossils from Lake Mezhgornoe, northeast European Russia. The results are shown as concentrations per 20 cm3 sediment. Bars indicate exact number of finds. Relative abundance is signified as + rare, ++ occasional and +++ abundant. Sediment symbols as in Fig. 6A.
grains cm\(^{-2}\) yr\(^{-1}\) until the end of this zone. Abies stomata start to appear in the upper part of the zone and they are subsequent present throughout the core.

MaM III. Most of the conifer remains were found within this zone. Remains of conifer bark, needles and stomata of Picea (lower part) and Abies (upper part). Some Betula seeds were also found. Remains of aquatic plants, except Characeae, were absent. Juncus and Characeae become more abundant towards the end of the zone.

The zone apparently represents the time of maximum forest density and tree species diversity. Pollen and macrofossil evidence indicate mixed spruce forest in the catchment area. Although macrofossil remains of Picea disappear from the record at 170 cm, some stomata were still observed in pollen slides until the end of the zone. Pollen percentages and accumulation rates, together with stomata evidence, indicate that the local mixed mountain taiga prevailed in the area until the end of the zone. Forest was composed of spruce, birch, Siberian fir, larch, and probably some alder in the last half of the zone, resembling most likely the modern mixed mountain taiga vegetation in the Vangyr Mire area. The ground vegetation consisted predominantly of Filipendula, Polypodiaceae, Cyperaceae and Gramineae. Light-demanding shrubs no longer played an important role. According to pollen accumulation rates the amount of spruce in the catchment area was at its maximum between 200 and 100 cm (ca. 8300–4500 yr BP). The accumulation rates are twice or even four times higher than in sections below and above, so uncertainty in the age–depth model does not have any significant effect on this interpretation. The occurrence of Picea needles suggests that spruce already grew abundantly in the vicinity of the lake between 9000 and 7000 yr BP. Based on finds of stomata and macrofossils, the proportion of Siberian fir and larch was probably higher between 7000 and 4500 yr BP than during the early Holocene. The total absence of aquatic plants in the lower part of the zone suggests higher lake-levels than in the previous zone, but Juncus in the upper part of the zone suggests a subsequent slight decrease in the lake-level.

PoM IV (100–0 cm; 4500 yr BP to present; 5000 cal. yr BP to present). Betula, Picea and Pinus pollen dominate. The relative proportion of Pinus rises at the lower boundary of the zone. Stomata of Larix are abundant throughout the zone. The last stomata of Picea are found at 40 cm. The total concentration decreases at the lower boundary of the zone. The pollen accumulation rates of Picea decrease gradually, reaching ca. 60 grains cm\(^{-2}\) yr\(^{-1}\) in the middle and upper part of the zone. Betula pollen accumulation rates also decrease at the lower boundary of the zone to between 200 and 300 grains cm\(^{-2}\) yr\(^{-1}\).

MaM IV. Macrofossils are very scarce in this zone. Remains of conifers, Larix and unidentified conifer bark are found in only one sample. The most characteristic plant remains in this zone are Juncus and some Characeae.

The higher Pinus pollen percentages are probably a result of the decreased amount of birch and spruce pollen in this zone. The accumulation rates of Pinus remain relatively constant, suggesting long-distance transport of its pollen and the absence of Scots pine in the catchment area. The fact that spruce stomata were still present despite the decrease in pollen accumulation rates suggests that the withdrawal of the spruce forest was gradual rather than abrupt. The Picea pollen accumulation rates reach the present values at ca. 70 cm, ca. 3200–3100 yr BP, and the last stomata of spruce were found at 40 cm (ca. 1800 yr BP). Spruce was probably present only as individual trees. Today, spruce is found only at lower altitudes. The last stomata of Abies were found at 10 cm. Presently, only a few individuals of Siberian fir are growing in the catchment area. The abundant stomata of Larix indicate larch-dominated forest in the study site. The concentrations of Juncus seeds decrease towards the uppermost sediment, suggesting a slightly higher water-level.

Cladocera

The three lowermost samples (Fig. 9) (322.5–302.5 cm) contained so few cladoceran remains that it was not possible to produce reliable percentage calculations. Four faunal assemblage zones were determined for the rest of the sequence on the basis of analytical interpretation.

ClM I (292.5–242.5 cm; 9800–9300 yr BP; 11 100–10 500 cal. yr BP). At the beginning of the zone a littoral fauna (mainly Chydorus sphaericus s.l.) dominates. Bosmina longirostris rises to a prominent maximum and Daphnia increases. Bosmina (Eubosmina) appears.

The very low concentration of cladoceran remains in the lowermost samples (322.5–302.5 cm) indicates that the conditions at the coring site were not favourable for Cladocera. When conditions altered, Chydorus sphaericus s.l., a common pioneer species, became dominant. According to the dominance of littoral species the water-level was very low at first (cf. Alhonen, 1970; Sarmaja-Korjonen and Alhonen, 1999; Sarmaja-Korjonen and Hyvärinen, 1999; Sarmaja-Korjonen, 2001) and then slowly rose, indicated by the appearance of planktonic Daphnia and Bosmina (Eubosmina). Bosmina longirostris and Chydorus sphaericus are also indicators of eutrophy (Szeroczyńska, 1998), suggesting that the trophic state was relatively high.

ClM II (242.5–182.5 cm; 9300–7800 yr BP; 10 500–8700 cal. yr BP). Bosmina (Eubosmina) rises to a prominent maximum and replaces B. longirostris, which disappears. Daphnia decreases and subsequently occurs only sporadically. At the lower boundary of the zone Leydigia leydigi and Alona affinis increase. Alona sp. and Chydorus sphaericus s.l. are still the dominant chydorids.

The increase in Eubosmina suggests that the open water body increased and the lake-level rose. It is possible that the disappearance of Bosmina longirostris and the decrease in Daphnia reflect a change in the predation relationships in the new lake. The presence of Leydigia leydigi, according to Mäemets (1961), indicates meso- or eutrophic conditions. It is a profundal form (Mäemets, 1961), which is in agreement with the rising water-level.

ClM III (182.5–32.5 cm; 7800–1400 yr BP; 8700–1500 cal. yr BP). At the lower boundary Alona affinis suddenly becomes dominant. Chydorus sphaericus s.l. decreases and Leydigia leydigi disappears. Alonella excisa appears. Bosmina (Eubosmina) is the dominant planktonic taxon and has a minimum at 165–75 cm, increasing again towards the upper boundary.

The decrease in Eubosmina and its minimum possibly reflects a lower water level but, more likely, an increase in littoral forms, e.g. Alona affinis, in the basic sum of percentage calculations. There is no direct evidence of the cause of the considerable change in the littoral cladoceran assemblages. However, the almost contemporaneous shift in the diatom abundances (see below) suggests that there was a change in water chemistry. This change may have been caused by the lowering water-level, which also changed the feeding habitats of littoral Cladocera, i.e. the macrophytic composition, demonstrated by, for instance, the secceeding increase in Jun cus seeds and the Characeae maximum (Fig. 8). It is also possible that the decrease in diatom-inferred pH (see below) was involved in the disappearance of Leydigia leydigi and the appearance of Alonella excisa.
Figure 9 Relative Cladoceran diagram from Lake Mezhgornoe, northeast European Russia. As there were large variations between the quantities of planktonic and littoral Cladocera, representing these two different habitats, the percentages for littoral forms were calculated as the basic sum of total littoral Cladocera. Thus a more reliable general picture of their succession within the littoral zone was obtained. Sediment symbols as in Fig. 6A.
CLM IV (32.5–2.5 cm; 1400 yr BP to present; 1500 yr BP to present). *Acrorops harpae* increases and *Alnus alniflora* decreases at the lower boundary of the zone. The chydrorid assemblage (*Acrorops harpae, Alnus alniflora, Chydorus sphaericus l.*.) is typical for cold climates at high altitudes (Lotter et al., 1997; Hofmann, 2000).

Diatoms

A total of 108 diatom species were identified. Three diatom assemblage zones (DiM) were distinguished based on the observed changes in species assemblages (Fig. 10). The diatom assemblages in the entire core are totally dominated by small benthic alkaliphilous *Fragilaria* and *Navicula* taxa. These species are common in alkaline tundra lakes from the Ural region (e.g. Steinen, 1972; Getsen et al., 1994). *Fragilaria* taxa also often occur in the cold-climate 'disturbed' conditions characteristic of Arctic and early post-glacial environments (e.g. Smol, 1988; Laing et al., 1999).

DiM I (320–290 cm; 10 000–9800 yr BP; 11 400–11 100 cal yr BP). This zone features the lowest diatom concentration (not plotted) and the presence of several taxa that may be of terrestrial origin (e.g. *Pinnularia ignobilis, Diatoma vulgarare*). The sediment contains many broken diatom frustules. *Fragilaria* taxa (e.g. *F. pinnata, F. brevistriata, F. elliptica*) are the most abundant species. The relative abundance of diatom taxa that prefer higher nutrient concentrations increases by the end of the zone, resulting in an increase of the inferred total phosphorus (TP). Inferred pH also gradually increases to 7.8.

The occurrence of several terrestrial diatom taxa and the low diatom concentration (not plotted) implies that the lake was shallow. The section between 320 and 290 cm is minerogenic, suggesting high erosion and input from the catchment. It is, therefore, possible that *Eunotia* and *Pinnularia* taxa entered the lake sediment with the run-off from the shores. The increase in reconstructed TP is mainly signalled by the increased abundance of *F. pinnata*.

DiM II (290–170 cm; 9800–7400 yr BP; 11 100–8300 cal yr BP). Within this zone, terrestrial taxa largely disappear. The diatom assemblage is dominated by several *Fragilaria* taxa. *Navicula submuralis* occurs at its highest abundance for the whole core. The species changes suggest that pH decreased but no trend is seen in diatom abundances regarding TP requirements. The disappearance of terrestrial diatoms and the increased organic sediment content suggest increased lake production and possible water-level rise. The gradual increase in diatoms with low pH optima between 290 and 170 cm can be related to the leaching of basic cations from the catchment soils and base cation depletion owing to the soil and vegetation development (e.g. Jones et al., 1989). The decline in diatom-inferred TP also suggests progressive leaching of nutrients from the catchment.

DiM III (170–0 cm; 7400 yr BP to present; 8300 cal yr BP to present). The sharp increase in the relative abundance of *F. elliptica* and *F. pseudonconstruens* and the decline in *F. pinnata* and *F. brevistriata* are the main features of the zone. *Navicula minima, N. seminulum* and *N. radiosa* increase. The diatom-inferred lake-water characteristics remain stable throughout the zone.

Supplementary pollen record from Vangyr Mire

The pollen stratigraphy (Fig. 11) of Vangyr Mire is divided into three local pollen assemblage zones. The pollen zonation is based on the changes in conifer pollen proportions. Only percentages of selected taxa are presented here.

VM I (400–262.5 cm; 8000–5600 yr BP; 8700–6300 cal yr BP). The zone is characterised by high percentages of *Picea* pollen, typically ca. 30–50%. At the beginning of peat accumulation, *Cyperaceae, Menyanthes, Rosaceae* and *Potentilla* are also abundant. *Betula* pollen has an average percentage of 50% throughout the peat section.

At the bottom of the mire high proportions of *Cyperaceae, Menyanthes* and *Potentilla* probably reflect a local succession during the onset of mire development. Pollen evidence indicates mixed spruce–birch forest in the area.

VM II (262.5–117.5 cm; 5600–2600 yr BP; 6300–2700 cal yr BP). Percentages of *Picea* (average ca. 25%) are slightly lower than in the previous zone. *Abies* is present in most of the samples in small quantities. Pollen of *Larix* is found in six samples.

The reduced proportion of spruce, increased percentages of Siberian fir and the first finds of larch suggest that the forest zones (Fig. 4) moved downwards on the nearby mountain slopes, with subalpine forest growing nearer to the Vangyr site than in the previous zone.

VM III (0–117.5 cm; 2600 yr BP to present; 2700 cal yr BP to present). The lower boundary of this zone is defined by an increase in *Pinus* and *Abies*. The proportion of *Picea* within the zone is ca. 20%. *Larix* is present in most of the samples.

The raised proportion of Siberian fir and larch indicates further downward movement of the forest zones. Probably some individuals of both genera were mixed within spruce and birch forest in the valley bottom, as today.

It has to be pointed out that *Abies* and *Larix* pollen grains are rare (see also Clayden et al., 1996) even when these species are abundant in the forest vegetation (Table 2), as the results from uppermost samples from both Mezhgornoe and Vangyr sites show.

General discussion and conclusions

Vegetation history at the alpine tree-line

At the very beginning of the Holocene, ca. 10 000 yr BP, climate was already warm enough for tree birch to grow in the vicinity of Mezhgornoe Lake, probably forming the upper forest belt. Today, in some locations in the study area, mountain birch also grows at the tree-line formed by larch forests, and birch even replaces larch on some steep slopes or on rocky ground. The oldest date for birch megafossils from Pechora lowland is 9440 yr BP (Kremenetskii et al., 1998). In the early Holocene, birch is also the earliest tree to reach Fennoscandia and north European Russian lowland areas (Hyvärinen, 1975; Seppä, 1996; Barnekow, 1999; Snyder et al., 2000).

The expansion of spruce to the current tree-line took place ca. 9500 yr BP. The stomata and needle records suggest that larch was the first conifer to immigrate, followed by Siberian fir and spruce. At present, these species grow in the same order along the altitudinal gradient (Fig. 4). According to Surova et al. (1975) spruce was already growing in the polar Urals ca. 200 km northeast of Mezhgornoe Lake at the beginning of the Holocene and it reached the Barents Sea coastline at ca. 8500 yr BP, at the latest (Kremenetskii et al., 1998). This evidence suggests that expansion of spruce occurred very rapidly and contemporaneously in large areas of the Ural Mountains. In the Pechora lowland, at Ortino, spruce expanded north of its present position as early as 9000 yr BP (Kaakinen and Eronen, 2003).
Figure 10 Relative diatom diagram from Lake Mezhgornoe, northeast European Russia, with taxa at abundance > 3%. Sediment symbols as in Fig. 6A
Figure 11 Relative pollen diagram of selected taxa from Vangyr Mire, northeast European Russia
The present results suggest that spruce reached the present alpine conifer tree-line at least 500 yr earlier than the present arctic tree-line. However, even though spruce is able to immigrate rapidly following a climatic warming, there was a time lag between the first scattered immigrants and the development of dense spruce forest.

At Mezhgornoe Lake the phase of mixed conifer forest lasted until ca. 5500–4500 yr BP. The highest density of dated tree megafossils in northern Russia occurs between 9000 and 75000 yr BP (Kremenetski et al., 1998; MacDonald et al., 2000), at the same time as the Picea needles were found in the Mezhgornoe Lake sediment. A maximum in spruce forest density occurred in the polar Ural Mountains between 8000 and 4500 yr BP (Surova et al., 1975), which corresponds well with the present results. The increased proportion of Abies pollen between 160 and 100 cm (7000–4500 yr BP) suggests that the forest was composed mainly of Siberian fir mixed with spruce. This implies lowering of the altitudinal vegetation belts (Fig. 4). The larch tree-line forest was established in the Mezhgornoe Lake area during the late Holocene. Increasing proportions of Abies and Larix pollen in the the Vangyr Mire record also corroborates a gradual altitudinal lowering of the forest belts after ca. 5500 yr BP.

Lake-level changes in Lake Mezhgornoe

The results suggest a low water-level or even a limnotelnic contact at the coring point in the beginning of the Holocene. The sediment is minerogenic (loss-on-ignition is 6%) and the organic matter consists mainly of remains of terrestrial mosses, Betula and Carex seeds, together with Equisetum and herbs of moist environments. The low concentration of Cladocera and diatoms, as well as the occurrence of many broken diatom frustules and the presence of terrestrial diatom taxa also point to a low water-level or even temporarily dry conditions. Probably the trophic state was relatively high, as indicated by the moss and herb species found in the samples and by the rising inferred TP.

Apparently, the water-level started to rise ca. 9500 yr BP. Aquatic macrofossils and Cladocera thriving in eutrophic lakes (Bosmina longirostris and Chydorus sphaericus) suggest a littoral environment at the coring point. The relatively high trophic state is also shown by the inferred TP.

The disappearance of aquatic plant remains, together with an increase in planktonic Bosmina (Eubosmina) at 230 cm (ca. 9000 yr BP) suggest a further rise in the water-level at the coring point. The data therefore show a typical succession from a telmatic/shore environment, through a low-water littoral area towards pelagic conditions. The Bosmina (Eubosmina) maximum lasts until 170 cm (ca. 7500 yr BP), but on the basis of the present results it remains unclear if a drier period followed.

Inferred climate

As tree birch had already established in the Mezhgornoe lake area at the onset of the Holocene at higher altitudes than today, the climate was at least as warm as today. Mixed mountain taiga was established locally at ca. 9500–9000 yr BP. On the basis of the modern climate and forest limits, this indicates that summer temperatures at that time must have been at least 2°C higher than today, but probably even higher, because the middle Holocene vegetation suggests a slight cooling to temperatures at least 2°C warmer than today (see below).

These results support earlier studies that suggest an early Holocene summer thermal maximum in northern Russia. The finds of Typha latifolia in the western Pechora basin indicate a regional thermal optimum before 8200 cal. yr BP (Paus, 2000). The same is shown by the maximum density of tree birch megafossils ca. 9000–8000 yr BP, found in the Barents Sea coast (Kremenetski et al., 1998; MacDonald et al., 2000). Pollen studies in Novaya Zemlya (Serebryanny et al., 1998) indicate amelioration of climate at the onset of the Holocene. A chironomid record from the Lena River area suggests warmer temperatures than today between 10 000 and 6000 yr BP (Porinchu and Cwynar, 2002). According to MacDonald et al. (2000) summer temperatures in the Pechora region were ca. 4°C warmer than today between ca. 9000 and 4000 yr BP.

Evidence of the early Holocene climatic optimum in the Arctic regions has also been found in Canada (Ritchie et al., 1983; Pellatt et al., 1998) and in the Scandes Mountains (Kullman and Kjällgren, 2000). However, most of the results from northern Fennoscandia and the Kola peninsula suggest a relatively cool early Holocene (Korhola et al., 2000; MacDonald et al., 2000; Seppä and Birks, 2001; Gervais et al., 2002). This may be explained by the North Atlantic ocean–atmosphere circulation system that influenced the climate prevailing in Fennoscandia and Kola Peninsula.

The early Holocene thermal maximum in northern Russia probably can be explained as follows. According to Milankovitch theory summer insolation was at its highest at the onset of the Holocene (COHMAP Members, 1988). Glacio-eustatic sea-level rise enabled warm North Atlantic and Pacific waters to penetrate the Arctic at the beginning of the Holocene. In addition, the decreased albedo as a result of the reduced sea-ice cover (Korhola et al., 1993; deVernal and Hillaire-Marcel, 2000; Lubinski et al., 2001; Ivanova et al., 2002), as well as the expansion of evergreen forests over the former tundra, had a positive feedback on the warming climate.

The vegetation at Mezhgornoe Lake (550 m a.s.l.) during the middle Holocene (7000–4500 yr BP) resembles the present vegetation at Vangyr Mire (300 m a.s.l.). This suggests summer temperatures at least 2°C warmer than today during the middle Holocene. Siberian fir and larch became prominent in the mixed mountain taiga, suggesting a slight cooling compared with the previous period. Kremenetski et al. (1998) and MacDonald et al. (2000) reached similar conclusions from studies of tree megafossils on the Barents Sea coast.

The withdrawal of the mixed mountain taiga starting at ca. 5500–4500 yr BP reflects gradually cooling conditions towards the late Holocene when the establishment of larch forest took place at the alpine tree-line at Mezhgornoe Lake. It is difficult to establish an exact chronology for this period owing to uncertainties in the dates (see above). The data show no indication of the medieval warm period or the Little Ice Age in the area. The low temporal resolution of the study may be responsible for this.

The biostratigraphy of Mezhgornoe Lake suggests that soon after the Pleistocene–Holocene transition moisture increased and lake development began. At first, the rise of lake-level was rather slow, but between 9500 and 7500 yr BP the region experienced high effective moisture conditions when precipitation must have exceeded evaporation.

To conclude, our results from the pre-Polar Urals show an early Holocene warming, as is the case in many other studies from Arctic regions. Trees seem to appear earlier at the alpine tree-line than at the arctic tree-line in the lowlands. The hypothesis phase lasted until ca. 5500–4500 yr BP. Lake-level changes suggest a moist early Holocene until ca. 7500 yr BP.

Acknowledgements This study is a part of the TUNDRA (TUNdra Degradation in the Russian Arctic) project, which was funded by the European Commission 4th Framework ‘Environment and Climate’
Deevey ES Jr, Gross MS, Hutchinson GE, Kraybill HL. 1954. The natural

Davis MB, Moeller RE, Ford J. 1984. Sediment focusing and pollen

COHMAP Members. 1988. Climatic changes of the last 18,000 years:

Clayden SL, Cwynar LC, MacDonald GM, Velichko AA. 1997. Holo-

Clayden SL, Cwynar LC, MacDonald GM. 1996. Stomate and pollen

improving the manuscript. We are also most grateful to two anonymous referees for valuable comments improving the manuscript.

Abbott MB, Stafford Jr TW. 1996. Radiocarbon geochemistry of modern

and ancient arctic lake systems, Baffin Island, Canada. Quaternary

Research 45: 300–311.

Alhonen P. 1970. On the significance of the planktonic/littoral ratio in

the cladoceran stratigraphy of lake sediments. Societas Scientiarum

Barnekow L. 1999. Holocene tree-line dynamics and inferred climatic

changes in the Abisko area, northern Sweden, based on macrofossil

Barnekow L, Possnert G, Sandgren P. 1998. AMS 14 C chronologies of

Holocene lake sediments in the Abisko area, northern Sweden—a

comparison between dated bulk sediment and macrofossil samples.

Palaeoecology and Palaeohydrology, Berglund BE (ed.). Wiley: Chi-

chester; 527–570.

Battarbee RW, Kneen M. 1982. The use of electronically counted

microspheres in absolute diatom analysis. Limnology and Oceanogra-

phy 27: 182–188.

Bets RA. 2000. Offset of the potential carbon sink from boreal forest-

Birks HJB. 1981. Late Wisconsin vegetational and climatic history at

Kylen Lake, northeastern Minnesota. Quaternary Research 16:

322–335.

Cameron NG, Birks HJB, Jones VJ, Berge F, Catalan J, Flower RJ, Garcia

JB, Kawecka JR, Koinig KA, Marchetto A, Sanchez-Castillo P,

Surface-sediment and epilimthic diatom calibration set for remote

European mountain lakes (ALPE Project) and their comparison with

the Surface Waters Acidification Programme (SWAP) calibration set.

Clayden SL, Cwynar LC, MacDonald GM. 1996. Stomate and pollen

content of lake surface sediments from across the tree line on the

Taimyr Peninsula, Siberia. Canadian Journal of Botany 74:

1009–1015.

Clayden SL, Cwynar LC, MacDonald GM, Velichko AA. 1997. Holoc-

ene pollen and stomates from a forest-tundra site on the Taimyr

COHMAP Members. 1988. Climatic changes of the last 18,000 years:

Davis MB, Moeller RE, Ford J. 1984. Sediment focusing and pollen

influx. In Lake Sediments and Environmental History, Haworth EY,

Deevey ES Jr, Gross MS, Hutchinson GE, Krabill WH. 1954. The natural

C14 contents of materials from hard-water lakes. Proceedings of the

DeVernal A, Hillaire-Marcel C. 2000. Sea-ice cover, sea-surface sali-

nity and halosthermocline structure of the northwest North Atlantic:

modern versus full glacial conditions. Quaternary Science Reviews

Donner J, Jungner H, Ljung B. 1991. The hard-water effect on radio-
carbon measurements of samples from Saynajallampi, north-east

Finland. Societas Scientiarum Fennica. Commentationes Physico-

Mathematicae 41: 307–310.

ster; 382 pp.

Flössner D. 1972. Krebstiere, Crustacea. Kiemen- und Blattläufer, Bran-

chipoidea Fischlause, Branchiura. Die Tiendbt Deutschlands 60.

Gustav Fischer Verlag: Jena; 499 pp.

Palaeoecology and Palaeohydrology, Berglund BE (ed.). Wiley:

Chichester; 667–692.

Gataullin V, Mangerud J, Svendsen JI. 2001. The extent of the Late

Weichselian ice sheet in the southeastern Barents Sea. Global and

Gervais BR, MacDonald GM, Snyder JA, Kremenetski CV. 2002. Pinus

sylvestris treeline development and movement on the Kola Peninsula

of Russia; pollen and stomata evidence. Journal of Ecology 90:

627–638.

Getson MV, Senina AS, Patova EN. 1994. Algal flora of the Bol’she-

zem’-skaya tundra under anthropogenic influence. Nauka: Ekaterin-

burg; 183 pp. (In Russian).

kassio (Excursion flora). Yliopistonapaino: Helsinki; 656 pp. (In

Finnish).

Hansen BCS, MacDonald GM, Meser KA. 1996. Identifying the tundra-

forest border in stamot records: an analysis of lake surface samples

from the Yellowknife area, Northwest Territories, Canada. Canadian

Journal of Botany 74: 796–800.

Hofmann W. 2000. Response of the chyodorid faunas to rapid climatic

changes in four alpine lakes at different altitudes. Palaeogeography,

Hyvärinen H. 1975. Absolute and relative pollen diagrams from north-

IPCC. 2001. Climate change 2001: the scientific basis. In Intergovern-

mental Panel on Climate Change, Houghton JT, Ding Y, Griggs DJ,

Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds).

Ivanova EV, Murdmaa IO, Duplessy J-C, Paterne M. 2002. Late Weich-

selian to Holocene paleoenvironments in the Barents Sea. Global

Jones VJ, Stevenson AC, Battarbee RW. 1989. Acidification of lakes in

Galloway, south West Scotland: a diatom and pollen study of the

post-glacial history of the Round Loch of Glenhead. Journal of Ecol-

ogy 77: 1–23.

Kaakinen A, Eronen M. 2000. Holocene pollen stratigraphy indicating

climatic and tree line changes derived from a peat section at Ortino,

in the Pechora lowland, northern Russia. The Holocene 10: 611–

620.

Kauppila T, Moisio T, Salonen V-P. 2002. A diatom-based inference

of modern versus full glacial conditions. Quaternary Research

Kremenetski CV, Sulerzhitsky LD, Hantemirov R. 1998. Holocene his-

tory of the pre-Polar Urals: 519–547.

Kremenetski CV, Sulerzhitsky LD, Hantemirov R. 1998. Holocene his-

tory of the pre-Polar Urals: 519–547.