Heavy metal concentrations in males and females of three pine diprionids (Hymenoptera)

Kari Heliövaara, Rauno Väisänen, Eero Kemppi & Martin Lodenius


Heavy metal concentrations (Cu, Fe, Ni, Cd) in the cocoons of three gregarious pine diprionids, Gilpinia socia, Diprion pini and Neodiprion sertifer, were compared between the species and sexes. The sawflies were reared in the laboratory in colonies from the first instar larvae, being fed on Scots pine (Pinus sylvestris) needles collected from a heavily polluted or a relatively unpolluted site. The levels of copper, iron and nickel were two to three times as high in N. sertifer as in the two other species. Cadmium showed bioaccumulation in all three species. In N. sertifer and G. socia reared on polluted needles, the metal concentrations were higher in males than in females.

Kari Heliövaara and Eero Kemppi, Finnish Forest Research Institute, P.O. Box 18, SF-01301 Vantaa, Finland

Rauno Väisänen, Water and Environment Research Institute (Nature Conservation), P.O. Box 250, SF-00101, Helsinki, Finland

Martin Lodenius, Department of Environmental Conservation, University of Helsinki, SF-00710 Helsinki, Finland

1. Introduction

High levels of heavy metals have been reported for various invertebrates near smelters and other pollutant sources (e.g. Bengtsson & Rundgren 1984, Beyer et al. 1985, Hopkin et al. 1986, Heliövaara et al. 1987). Recent studies on species in the same trophic level show that the concentrations of heavy metals may be connected with a specific physiology (van Straalen & van Wensem 1986, Heliövaara et al. 1987). Metal concentrations have not been compared previously between the two sexes of the same pterygote species, though differences observed between individuals in size and developmental time suggest that heavy metals absorbed in larval food could later show different levels in the two sexes.

The objective of the present article is to compare concentrations of copper, iron, nickel and cadmium in cocoons between three gregarious pine diprionid species and between males and females within the species. The species investigated are Neodiprion sertifer (Geoffroy), Diprion pini (Linnaeus) and Gilpinia socia (Klug). All three feed on Scots pine (Pinus sylvestris L.) needles. G. socia and D. pini overwinter as cocoons in the soil, while N. sertifer overwinters at the egg stage on pine needles. Their larval time is about six weeks but the timing of the larval period and the age of the needles preferred by the larvae depend on the species (Table 1). In diprionids, the females are usually larger than the males. There are also differences in the number of larval instars between the species and sexes.
Table 1. Life history characteristics of the three gregarious diprionid species studied (according to Pschorn-Walcher 1982 and Viltasaari & Varama 1987).

<table>
<thead>
<tr>
<th></th>
<th>Number of instars</th>
<th>Larval period</th>
<th>Age of needles preferred</th>
<th>Adult length, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Males</td>
<td>Females</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpinia socia</td>
<td>4</td>
<td>5</td>
<td>VII–VIII</td>
<td>old</td>
</tr>
<tr>
<td>Diprion pini</td>
<td>5</td>
<td>6</td>
<td>VII–VIII</td>
<td>old + new</td>
</tr>
<tr>
<td>Neodiprion sertifer</td>
<td>4</td>
<td>5</td>
<td>VI–VII</td>
<td>old</td>
</tr>
</tbody>
</table>

2. Material and methods

The concentrations of copper, iron, nickel and cadmium were determined separately on male and female cocoons of the diprionids. The cocoons resulted from two simultaneous laboratory rearings, each containing a colony of 60 first instar larvae of *N. sertifer* (in June–July), 55 larvae of *D. pini* (in July–August) and 24 larvae of *G. socia* (in July) in four replicates. One set of the larvae was fed with polluted, and the other set with clean needles. The polluted needles originated from western Finland near a metallurgical plant, and the unpolluted ones from north of Helsinki with no industry in the close vicinity. Pine shoots were collected from four pines on both the polluted and unpolluted sites. Each larval colony always received its food from one and the same pine. Larvae of *N. sertifer* were fed with the needles of the previous year, while those of the two other species were able to feed on needles of the current year as well. The rearing arrangement is described in more detail in Heliövaara et al. (1989).

The heavy metal (Cu, Fe, Ni, Cd) concentrations were determined individually on four male and four female cocoons from both rearings. Before analysis, the samples were dried in 105°C. The pupae were digested in concentrated HNO₃ (Suprapur or Aristar) (1 ml/100 mg of sample) in an aluminium block. The temperature was kept at 50°C for two hours and at 110°C for 16–18 hours. One millilitre of H₂O₂ was added and the temperature was kept at 110°C for six hours. The digested samples were filtered and diluted with distilled water to 5 or 10 ml.

The same heavy metals were determined on the previous year’s pine needles sampled in June. Approximately 1 g of needles was dry-ashed in 460°C for four hours. The ash was diluted in 10 ml concentrated HCl (p.a.). The volume was adjusted to 5 ml by evaporation, whereafter the samples were filtered and diluted to 25 ml by adding distilled water. The metal contents were measured using flame and graphite furnace atomic absorption spectrometry (Varian SpectrAA 40 and Perkin Elmer 360).

3. Results

The heavy metal levels were much higher in the needles collected near the industrial plants (Table 2). The heavy metal concentrations in the two sexes and the two rearings are given for the three sawfly species in Fig. 1. In *N. sertifer*, the levels of copper were more than ten times as high and those of iron five times as high in the cocoons reared on polluted needles. In *D. pini*, the levels of copper were six times as high and those of iron three times as high in the insects reared on polluted needles. The difference between the rearings in the levels of these metals was smallest in *G. socia*, the concentrations being only two to three times as high in the rearings on polluted needles. In all
Fig 1. Concentrations of copper, iron, nickel and cadmium (mean, halved standard deviations) in male and female cocoons of the three pine diprionids fed on polluted (A) and unpolluted (B) needles.

three species, the levels of nickel were about ten times as high in the insects fed on polluted needles. The concentrations of cadmium differed rather little between the two rearings.

The concentrations of copper, iron and nickel were two to three times as high in _N. sertifer_ as in the other two species. The level of cadmium was highest in _G. socia_ and lowest in _D. pini_. In contrast to the other elements studied, the level of cadmium was higher in the cocoons of each species than in the needles (Table 2), indicating bioaccumulation.

In _N. sertifer_, all the heavy metals were at a higher level in the male cocoons, but the difference was not statistically significant. The same trend was observed in _G. socia_ fed on polluted needles, but in the rearing on unpolluted needles the heavy metal levels were slightly higher in the female cocoons. No differences could be detected between the sexes in _D. pini_.

---

_N. sertifer_

_D. pini_

_G. socia_
4. Discussion

The differences in the heavy metal concentrations of the pine needles between the polluted and un-
polluted site were reflected in the levels in the insects. The between-species variation could not be
related to the number of larval instars, but the timing of the larval period or the utilization of
different needle age classes can apparently explain some of the results. The early summer feeder
*N. sertifer* (Kangas 1941, Juutinen 1967) had much higher concentrations of heavy metals than
the two late summer feeders. *N. sertifer* feeds only
on old needles, which are likely to have higher
metal concentrations than the needles of the current year. In the present study area, the concentra-
tion of cadmium was higher (mean 1.2 µg/g) in
two-year-old pine needles than in one-year-old
needles (mean 0.9 µg/g). This was also the case
with nickel, the corresponding values being 110
and 70 µg/g (Hynninen 1983). Although *D. pini*
feeds on needles of both the previous and the
current year (Eichhorn 1977, Geri et al. 1985), the
heavy metal levels in this species were not mark-
dedly lower than in *G. socia*, which prefers old
needles. The annual shoot growth of the pines in
the polluted area was only 3–4 cm (Heliovaara &
Vaaisanen 1989a), and only a small fraction of
the needles eaten by the two species was of the current
year. Thus, we consider that the utilization of
different needle age classes is not alone able to
explain the large between-species variation, but
that the species tend to concentrate different
amounts of heavy metals due to some unknown
physiological differences. The results obtained
with some related sawfly species feeding on
needles of the same age support this view. For
example, up to four-fold differences in iron levels
were observed between species with similar feeding
habits (Heliovaara & Vaaisanen 1989b).

Concentration of cadmium along the food chain has been reported, in the link between litter
and earthworms (Hartenstein et al. 1980, Hunter
& Johnson 1982), and other invertebrates (Hunter
et al. 1987). The cadmium concentrations of her-
bivorous insects have also been reported to be
higher than those recorded for plants (Lindqvist
1988, Bengtsson 1989). However, Pihlajamaki et
al. (1989) found that the level of cadmium in two
sphingid moths was lower than or the same as in
their larval food plants. This contradictory result
may be due to their sampling procedure. Con-
trolled laboratory rearings of one geometrid and
one noctuid moth and of four dipteronid sawflies
have shown that cadmium does accumulate in
several insects (Heliovaara & Vaaisanen 1989b,
1990). The copper and iron levels were high in the
sawflies, especially in *N. sertifer*, indicating that
they play a role in the transfer of these metals to
higher trophic levels. One possible pathway is
from dipteronids to shrews and other small mam-
mals feeding on sawfly cocoons (see Olofsson
1987), and further to birds of prey and predatory
mammals.

In natural conditions, there are only minor
differences in heavy metal concentrations be-
tween the sexes in sawflies. In the insects fed on
polluted needles, however, the concentrations were
considerably higher in males than in females in
both *N. sertifer* and *G. socia*. Since the material is
limited, this observation deserves further study.
Females moult one time more than males (Pschorn-
Walcher 1982), which possibly enables more
efficient secretion of heavy metals. They also
contain a large egg mass (Maeta et al. 1981). If
eggs have low metal concentrations, this mass
may have reduced the total concentration in fe-
male.

Acknowledgements. Miss Riitta Kojo, Mr. Esa Tulisalo and
Mr. Martti Varama are thanked for assistance. Dr. Bo
Langstrom is thanked for his comments on the manuscript.
This study received financial support from the Finnish
Acidification Research Project (HAPRO).

References

Mulhern, B. M. 1985: Metal contamination in wildlife
living near two zinc smelters. — Environ. Poll. Ser. A
38:63–86.

Bengtsson, G. & Rundgren, S. 1984: Ground-living in-
vertebrates in metal-polluted forest soils. — Ambio
13:29–33.

ron kring apollofjärilen i Sverige samt försök att förklara

Eichhorn, O. 1977: Autökologische Untersuchungen an
Populationen der gemeinen Kiefern-Buchhomblat-
twespe Dipronius pini (L.) (Hym.: Diprionidae) I.
Herkunftsbedingte Unterschiede im Schüpfverlauf und
Diapauseverhalten. — Zeitschr. Ang. Entomol. 82:
395–414.

Hartenstein, R., Neuhauer, E. F. & Collier, J. 1980: Accumulation of heavy metals in the earthworm Eisenia


Hynninen, V. 1983: Rahkasammalsiirrosten (sammalpallojen), männyn versojen ja seinäsmallien raskasme-


Received 29.VI.1989