ACTA FORESTALIA FENNICA
233

VILLE OVASKAINEN

FOREST TAXATION; TIMBER SUPPLY, AND ECONOMIC EFFICIENCY

METSÄVEROTUS, PUUN TARJONTA JA TALOUSDELLINEN TEHOKKUUS

THE SOCIETY OF FORESTRY IN FINLAND
THE FINNISH FOREST RESEARCH INSTITUTE
FOREST TAXATION, TIMBER SUPPLY, AND ECONOMIC EFFICIENCY

Metsäverotus, puun tarjonta ja taloudellinen tehokkuus

Ville Ovaskainen

To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public criticism in Auditorium XIII, Main Building, Aleksanterinkatu 5, Helsinki, on 12 March 1993, at 12 noon.
The effects and relative efficiency of alternative forest taxes are analyzed theoretically. The Fisherian two-period model of consumption, savings and timber harvest- ing is extended by incorporating the management intensity decision and deriving the concept of long-run timber supply. The effects of lump-sum (site productivity), realized income (yield) and \textit{ad valorem} property taxes on short-run timber supply, management intensity, and long-run timber supply are established. As the core of the study, the alternative taxes are compared in order to determine the appropriate forest tax regime in terms of production efficiency. The efficiency criterion generally requires that the excess burden of taxation at any given tax revenue should be kept to a minimum. The study distinguishes between an initially undistorted economy and an economy with pre-existing distortions due to capital income taxation (interest charge deductions).

When the effects on forest management decisions of forest and capital income taxes are considered as a whole, a neutral forest taxation is no longer efficient. The non-timber benefits of a forest are incorporated to examine the robustness of the tax results with respect to the objective function. Finally, forest tax issues specific to Finland are considered, and administrative and equity aspects are discussed.

Keywords: forest taxation, timber supply, economic efficiency, two-period model, comparative static analysis.

FDC 95 + 72 + 64

Author's address: The Finnish Forest Research Institute, Department of Forest Resources, Unioninkatu 40 A, SF-00170 Helsinki, Finland.

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>7</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>7</td>
</tr>
<tr>
<td>1.2 Problem and purpose of the study</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Outline of the thesis</td>
<td>10</td>
</tr>
<tr>
<td>2 A REVIEW OF EARLIER STUDIES</td>
<td>10</td>
</tr>
<tr>
<td>2.1 Theoretical models of timber supply</td>
<td>10</td>
</tr>
<tr>
<td>2.1.1 The optimal rotation model</td>
<td>10</td>
</tr>
<tr>
<td>2.1.2 The two-period model</td>
<td>11</td>
</tr>
<tr>
<td>2.1.3 Modelling stochastic elements</td>
<td>12</td>
</tr>
<tr>
<td>2.2 Effects of forest taxation and non-timber objectives</td>
<td>13</td>
</tr>
<tr>
<td>2.2.1 Harvesting, management intensity, and taxation</td>
<td>13</td>
</tr>
<tr>
<td>2.2.2 Timber harvesting with non-timber benefits</td>
<td>16</td>
</tr>
<tr>
<td>2.3 Conclusion</td>
<td>17</td>
</tr>
<tr>
<td>3 A MODEL OF TIMBER SUPPLY</td>
<td>19</td>
</tr>
<tr>
<td>3.1 Formulation and assumptions</td>
<td>19</td>
</tr>
<tr>
<td>3.2 Short-run timber supply and management intensity</td>
<td>22</td>
</tr>
<tr>
<td>3.3 Long-run steady state timber supply</td>
<td>25</td>
</tr>
<tr>
<td>3.4 Conclusion</td>
<td>27</td>
</tr>
<tr>
<td>4 THE EFFECTS OF FOREST TAXES: A POSITIVE ANALYSIS</td>
<td>29</td>
</tr>
<tr>
<td>4.1 Definitions of forest tax systems</td>
<td>29</td>
</tr>
<tr>
<td>4.2 Effects on short-run timber supply and management intensity</td>
<td>29</td>
</tr>
<tr>
<td>4.2.1 Lump-sum and profit taxes</td>
<td>30</td>
</tr>
<tr>
<td>4.2.2 Gross yield tax</td>
<td>30</td>
</tr>
<tr>
<td>4.2.3 \textit{Ad valorem} property tax</td>
<td>32</td>
</tr>
<tr>
<td>4.3 Effects on long-run timber supply</td>
<td>34</td>
</tr>
<tr>
<td>5 THE RELATIVE EFFICIENCY OF FOREST TAXES: A NORMATIVE ANALYSIS</td>
<td>35</td>
</tr>
<tr>
<td>5.1 Excess burden and the efficiency of taxes</td>
<td>35</td>
</tr>
<tr>
<td>5.1.1 Conceptual remarks</td>
<td>35</td>
</tr>
<tr>
<td>5.1.2 Applying the measure</td>
<td>36</td>
</tr>
<tr>
<td>5.2 Efficient forest taxation in an initially undistorted economy</td>
<td>37</td>
</tr>
<tr>
<td>5.2.1 Long-run effects of compensated tax switches</td>
<td>37</td>
</tr>
<tr>
<td>5.2.2 Transitional effects</td>
<td>38</td>
</tr>
<tr>
<td>5.3 Efficient forest taxation with pre-existing tax distortions</td>
<td>39</td>
</tr>
<tr>
<td>5.3.1 Forest taxes and the efficiency of investment</td>
<td>40</td>
</tr>
<tr>
<td>5.3.2 Capital income taxation</td>
<td>41</td>
</tr>
<tr>
<td>5.3.3 Correcting initial tax distortions through forest taxation</td>
<td>42</td>
</tr>
<tr>
<td>5.3.4 A note on the accrual income tax</td>
<td>44</td>
</tr>
<tr>
<td>5.4 Conclusion</td>
<td>45</td>
</tr>
<tr>
<td>6 TAXATION AND TIMBER SUPPLY WITH NONTIMBER BENEFITS</td>
<td>46</td>
</tr>
<tr>
<td>6.1 Modelling approach</td>
<td>46</td>
</tr>
<tr>
<td>6.2 The harvesting decision with non-timber considerations</td>
<td>47</td>
</tr>
<tr>
<td>6.3 Effects of forest taxes: a positive analysis</td>
<td>50</td>
</tr>
<tr>
<td>6.4 Efficient forest taxation: a normative analysis</td>
<td>52</td>
</tr>
<tr>
<td>6.4.1 Identical private and social valuations</td>
<td>52</td>
</tr>
<tr>
<td>6.4.2 Asymmetric valuations</td>
<td>54</td>
</tr>
<tr>
<td>6.5 Conclusion</td>
<td>55</td>
</tr>
</tbody>
</table>

ISBN 951-40-1266-6
ISSN 0001-5636

Tampere 1992. Tammer-Paino Oy

Acta Forestalia Fennica 233
7 FOREST TAXATION IN FINLAND .. 57
 7.1 Recent tax issues and forestry 57
 7.2 The modified site productivity taxation 58
 7.2.1 Effects on timber supply and management intensity 59
 7.2.2 Efficiency under capital income taxation 61
 7.3 Realized income taxation 62
 7.4 Conclusion .. 63

8 TAX INCIDENCE, EQUITY, AND ADMINISTRATIONAL ASPECTS 64
 8.1 The incidence of forest taxes 65
 8.2 Equity issues ... 67
 8.2.1 Horizontal and vertical equity 67
 8.2.2 Realization possibilities for timber 68
 8.3 Administrational simplicity and costs 69

9 SUMMARY AND CONCLUSIONS 71

REFERENCES .. 73

SELOSTE .. 77

Appendix 1 Comparison of the results with the rotation model
Appendix 2 Conceptual remarks on the excess burden
Appendix 3 A switch between gross yield and ad valorem property taxes
Appendix 4 The expenditure tax
Appendix 5 Ad valorem property tax with inflation: solution and numerical examples
Appendix 6 Optimal management intensity with non-timber benefits
Appendix 7 The decomposition of comparative statics results with non-timber benefits
Appendix 8 Long-run steady state effects of the modified site productivity tax
Appendix 9 Management distortions from capital income taxation: numerical examples

List of frequently used symbols

Roman letters

C Carrying capacity of the site (saturation stock)
Ci Consumption in period i
D Determinant (of the Hessian matrix); demand curve in illustrations
E Management intensity (silvicultural effort)
F(K,E) Forest growth as a function of growing stock and management intensity
Ht Timber supply (harvest) in period i of the representative forest owner
H Short-run timber supply (current harvest)
ht Long-run steady state timber supply (sustainable harvest)
I Exogenous (non-forest) income
Kt Growing stock of timber, after the harvest in period i (Kt = Q – Ht)
L.H.S. Left-hand side of an equation
M Density of maximum sustained yield
MSY Maximum sustained yield
p Price of timber in period i
Q Initial stock of timber (exogenously given)
q Quantity traded in the timber market
R.H.S. Right-hand side of an equation
r Market rate of interest
S Net savings (S > 0 saving, S < 0 borrowing); supply curve in illustrations
T0 Tax revenue requirement
u(c,i) Utility function, as an additive separable function
V Utility function, as an additive separable function
V(C,i) of consumption and forest-related amenities
v(K,i) Subutility function for forest-related amenities (standing stock) in period i
W Unit cost of silvicultural inputs
x tax exemption for regeneration areas (unit harvest subsidy)

Greek letters

αi Ad valorem property tax in period i
β Rate of time preference (subjective discount) factor, β = (1 + ρ)−1
Γi Modified site productivity tax in period i
γi Gross yield tax in period i
δi Management subsidy (proportion of management cost)
k Accrual income tax in period i
Λi Lamp-sum tax (unmodified site productivity tax) in period i
π Tax in period i
ρ Subjective rate of time preference
τ Capital income tax (rate of interest charge deductions)
Preface

The present study on forest taxation, timber supply and economic efficiency was carried out in the Department of Forest Resources of the Finnish Forest Research Institute. I wish to thank the Institute and the Department for adopting the topic as part of its research program, and for providing me with excellent working conditions.

Throughout the work, the support, encouragement and experienced advice of my teacher and supervisor, Professor Päivi Lönninen, has been most important. Also, I am particularly indebted to Professor Erkki Koskela of the Department of Economics, University of Helsinki, and Jussi Uusivuori, Pellervo Economic Research Institute, all made valuable suggestions at the final stages of the manuscript. Besides those mentioned by the name, thanks are due to a number of anonymous reviewers and participants of various seminars for comments on papers that have directly or indirectly contributed to this work. Naturally, responsibility for any remaining errors or omissions is mine alone.

Acknowledgements are also extended to my colleague, Dr. Ashley Selby, for checking the language, to Anssi Karhinen for drawing the figures, to Pirjo-Riitta Lind for assistance in proof-reading, and especially to the Kyyösi Haataja Foundation of the OKO Bank Group for financially supporting this thesis.

Finally, my deepest gratitude goes to my wife Marja-Leena — who herself went through the same process — and to our children, Aino and Teppo, for their support and understanding.

Helsinki, December 1992

Ville Ovaskainen

1 Introduction

1.1 Background

The forest taxes most commonly employed can be classified into three broad categories. First, site productivity (site value) taxes are annual taxes based on the forest’s estimated average yield by site quality, irrespective of the actual harvest or timber stocking. Such taxes are used in Finland, several states in the U.S., France (by stand category), and on small properties in Australia (Boyd 1986, Leikas 1990). In Finland and France, seedling stands are tax exempted. Secondly, yield taxes are realized income taxes levied on the value of harvested timber at the time of harvest. Varied forms of yield taxation are applied in Sweden, Norway, Germany and several states in the U.S. (Boyd 1986), as well as on larger properties in Austria. In some countries, harvests in excess of the woodlot’s sustainable harvest are exempted (Sweden) or taxed at a reduced tax rate (Germany, Austria), which actually resembles the taxation of accrued income (realized income plus any change in the value of the standing stock). Third, ad valorem property taxes are levied annually based on the market value of the forest property, including the value of the standing timber and land or timber alone. The property tax is the traditional form of forest taxation in the U.S., and is a major source of timber revenue for local governments in most of the 50 states (Boyd 1986).

Most of the economic research on forest taxation originates from the U.S. Much of the early literature was based on Fairchild’s argument concerning the “deferred yield bias” of the property tax. According to this, any given property tax rate implies a higher tax burden when applied to forestry, with its long production period and periodic cash flow, than for properties with annual cash income. This supported a widely held belief that the property tax is inherently biased against forestry. It has been pointed out, however, that the argument no longer holds if forest value growth is viewed as accrued income reinvested in forestry, rather than deferred income (for references, see e.g. Klemperrer 1977, Boyd 1986). This is because, by the Haig-Simons comprehensive definition, a period’s income equals realized income (or consumption) plus any capital gain/loss.

Much attention has been paid to the effect of alternative forest taxes on the site value, i.e. discounted value of after-tax revenue. Klemperrer (1976, 1977, 1978, 1982) has introduced the term “site burden” to describe the relative tax-induced reduction in land value. These analyses have assumed forest management decisions to be independent of the form and level of taxation and taxes to be fully capitalized into lower site values (tax incidence is considered in Stier & Chang 1983).

An important line of research has established the effects of various forest taxes on the optimal rotation length and management intensity (e.g. Chang 1982, 1983). Thus, the effects of common taxes on management decisions are fairly well understood. However, conclusions concerning the economic efficiency of alternative forest tax regimes are limited or even misleading.

First, the concept of “site burden” fails to correctly measure the relative efficiency of the taxes. As tax-induced distortions in management decisions are not taken into account, the measure is just the present value of the tax revenue collected. While a well-known concept in the general tax literature, excess burden — the present value of lost income from tax-induced management distortions — was not established as the appropriate measure of the relative efficiency of forest taxes until introduced by Gomponia & Mendelsohn (1987).

Secondly, with the notable exceptions of Chisholm (1975), Kovenock and Rothschild (1983) and Kovenock (1986), the relative merits of forest taxes have been discussed under the implicit assumption that there are no other taxes that influence the forest owners’ management decisions (i.e., no “pre-existing distortions” are present). If the point of departure is assumed to be an initially undistorted, tax-free economy, neutral forest taxes naturally appear socially desirable. Nonetheless, neutrality is an appropriate goal of tax policy only when defined with respect to a complete tax system (Kovenock 1986). When tax distortions already exist, a nonneutral tax in a given sector may prove more efficient than a neutral one. In this case, the overall efficiency effects of forest and other taxes should be considered, rather than forest taxes alone.

Thirdly, the forest tax literature has usually assumed that only the income from timber harvesting matters to the forest owner. However, the non-timber benefits from the standing forest, such as scenic beauty and recreation, may also
influence management decisions.

Consequently, there is a need to re-examine the economics of forest taxation to clarify the theoretical results, in particular those concerning the economic efficiency of forest taxes. It also happens that the issues which have been central in the theoretical literature are directly relevant to recent debates on forest tax policy in Finland.

Since 1922, forest taxation in Finland has been based on site productivity. The main argument for site productivity taxation has been its lack of disincentive effects on intensive forest management, while the fact that the actual income-earning capacity of individual woodlots is not taken into account has been criticized. On the other hand, suggestions have been made that forest taxation be designed to encourage the use of forest resources. After several changes introduced in 1991, the forest tax system is no longer a simple “lump-sum” productivity tax. To encourage the reforestation of mature stands, the tax allowance for established seedling stands (applied since 1980) was extended, and tax incentives were introduced for reforestation as well as brush control and precommercial thinning (Metsäväestö, 1988, Lakmaistelaulu 1990). While the 1991 reform reallocates the tax burden to some extent, a more radical reallocation towards mature stands, to encourage final cuttings, was suggested in the early 1980’s. It was proposed that the “flat” productivity tax base per hectare be replaced by a tax base weighted by the age class structure of the forest property (Riihinen 1982, Puuhuuollon 1985). As the tax burden would increase with standing age (i.e., growing stock and silviculture), the regime would in fact resemble an ad valorem property tax levied on the market value of the standing stock.

On the other hand, a switch to the taxation of the realized income from timber actually sold has been discussed several times. While early suggestions (Metsäverkonkeskus 1978) involved a “forest account” to alleviate the effects of progressive taxation, it has recently focused on proportional forms of yield taxation. A realized income tax with immediate expensing was considered by a forest tax committee (Puukaupan 1989). A similar proportional tax, with a uniform tax rate on timber and other capital income, was proposed by a committee on capital income taxation (Pääomatulojen 1991, Puun myymätulojen 1992). The previous site productivity tax is to be replaced by the realized income tax in 1993.

It is common to the forest tax debate that it lacks a detailed analysis of the allocative effects of alternative taxes. The effects of the new instruments, introduced in 1991, have not been properly established (similarly, the efficiency of the proposed age dependent tax regime remained explicitly unexamined). Most importantly, the proposals concerning realized income taxation seem to ignore the issue of economic efficiency, or, at least, fail to consider the effects of the tax system as a whole. As an important example of pre-existing taxes that matter for forest owners’ decisions, it should be noted that the taxation of interest income and tax deductibility of interest charges will distort the effective opportunity cost of capital.

1.2 Problem and purpose of the study

This study will focus on the relative efficiency of common forest taxes. These include lump-sum taxes, such as the unmodified site productivity or site value tax; realized income taxes, such as the yield or profit tax; and the ad valorem property tax. Additionally, the accuracy of the realized income (realized income plus any change in the stock) is shown to be equivalent to property tax where efficiency is concerned.

The efficiency criterion has to do with the effects of taxation on resource allocation. The underlying simple idea is that, to allow a maximum production with given resources, raising tax revenue for public expenditure should distort economic decisions as little as possible. Standing age (i.e., growing stock and silviculture) is an efficient allowance at any given level of tax revenue should be kept to a minimum. The excess burden (deadweight loss) of a tax is the amount that is lost in excess of what the government collects (Auerbach 1985, p. 67), or the loss of welfare above and beyond the tax revenues collected (Rosen 1985, p. 276).

In the case of forestry, the major allocative issues are the investments of capital in the growing stock and silviculture. An efficient allocation requires that the growing stock is maintained and other inputs are consumed to the point where the marginal returns equal the social opportunity cost of capital (i.e., the pre-tax rate of return on investment in other sectors of the economy). The importance of the efficiency criterion should be intuitively obvious: the forest owners’ harvesting, or disinvestment, decisions determine the short-run timber supply, while the growing stock and management intensity determine forest growth over time, or the long-run timber supply. As an example of potential distortions, taxation may discourage timber harvesting. In this case, there is an inefficiency associated with the waste of short-run production possibilities. Even if a larger growing stock increases the sustainable harvest over time, the harvest at any given time is implied, as too much capital is tied to forestry relative to other sectors. On the other hand, some taxes might encourage harvesting beyond efficiency. While the potential distortions are of importance to the performance of economies, heavily dependent on the forestry sector, the efficiency of the tax should be considered when designing forest tax policies.

The approach of the study is theoretical, i.e., alternative forest tax regimes are compared by using an analytical model. The results of the analysis are of importance in two ways. First, they provide suggestive policy implications as such. Secondly, they provide a necessary basis for any related quantitative – numerical or empirical – analysis.

In this study, a theoretical approach is the natural choice by the very nature of the problem. For the efficiency of a tax, only its substitution (as opposed to income) effects matter, and a theoretical model allows these to be dealt with “in isolation”. Numerical simulation, for example, could be used for case studies. The results, however, would be tied to a specific set of data rather than being generally valid. Empirical results, on the other hand, would be rather complicated. The basic reason is that determining the efficiency of a tax is not equivalent to simply determining whether or not it has observed effects (Rosen 1985, p. 284). A lack of observed effects for a tax, does not imply the lack of efficiency losses, since the substitution effects of a tax represent a loss, even if they no more than offset its income effects (The Structure ... 1976), while possible (e.g. Hausman 1981), reliably demonstrating the observed effects would be difficult.

In accordance with the above discussion, the effects of forest taxes are analyzed using a model of short-run timber (short-run timber supply), management intensity and long-run timber supply. While evaluating the relative efficiency of forest taxes, the study distinguishes between an initially undistorted economy and one with pre-existing distortions due to other taxes or sectors. More specifically, the main contents and objectives of the study can be stated as follows.

1. For a more appropriate theoretical model of timber supply, the “fisherian” two-period model of consumption, savings and timber supply is extended by allowing for an endogenous management intensity and development of the resources is implied, as too much capital is tied to forestry relative to other sectors. On the other hand, some taxes might encourage harvesting beyond efficiency. While the potential distortions are of importance to the performance of economies, heavily dependent on the forestry sector, the efficiency of the tax should be considered when designing forest tax policies.

2. The effects of lump-sum, realized income, and ad valorem property taxation on forest management decisions are reconsidered. Unlike in earlier literature, their implications are explicitly considered in terms of timber supply and the analysis covers both short-run harvesting decisions, management intensity, and long-run timber supply.

3. As the core of the study, the relative efficiencies of lump-sum, realized income, and ad valorem property tax (or accrued income) taxes are examined. First, the efficiency of alternative forest taxes is considered in the absence of initial tax distortions. Secondly, a proportional capital income taxation is introduced, and the efficient forest tax regime is then re-solved in the presence of distortions therefrom. The non-timber benefits are subsequently included to consider the robustness of the tax results with respect to the forest owner’s and/or policy-maker’s objectives.

4. To evaluate the appropriateness of the forest taxation applied in Finland, given the deductibility of interest charges and taxation of income from assets other than timber, a site productivity tax with exemptions for regeneration areas is analyzed. The efficiency of realized income taxation, to be introduced in 1993, is also discussed.

The problem and contribution of the present study will be further elaborated in Chapter 2 while reviewing the earlier forest tax literature in more detail. At this juncture, it is useful to relate the present approach to the recent literature on the theory of optimal taxation (for reviews, see e.g. Auerbach 1985, Slemrod 1990). Following the typical problem of optimal taxation, it would amount to a general equilibrium analysis to determine the optimal structure of both capital income and forestry taxation, which minimizes their excess burden at any given tax revenue. While an interesting topic for further research, this is beyond the scope of the present work.

This study chooses to determine the efficient structure of forest taxation given the distortions
from capital income taxation. Thus, the solution will represent a partial equilibrium solution with respect to production efficiency in the forestry sector alone. The distortory effects on forest management decisions are corrected, while those on consumption-savings decisions remain. As regards policy implications, this seems to be the realistic approach, since capital income taxation is bound to be maintained. It should be noted that criteria other than economic efficiency also matter for the choice of a "good" tax base (e.g. The Structure ... 1978, Bowady & Wildasin 1984, Rosen 1985). Issues of horizontal and vertical equity, as well as administrative simplicity and costs, will therefore be briefly discussed.

1.3 Outline of the thesis
The report proceeds as follows. Chapter 2 first discusses the merits and drawbacks of earlier theoretical models of timber supply in order to choose an appropriate modelling approach. Earlier studies on the effects of forest taxation and nontimber values on the harvesting decision are then reviewed in some detail. In Chapter 3, tools are developed for the analysis of taxation and timber supply using a three-period version of

the consumption-savings and harvesting model with endogenous management intensity. The properties of the growth function are discussed to facilitate the interpretation of the results, and comparative statics are established for both short and long-run supply.

Chapter 4 contains the positive analysis, i.e., the ceteris paribus effects of forest taxes on the harvesting and management intensity decisions and long-run timber supply. In Chapter 5, the results of Chapter 4 are applied to a normative analysis which examines the relative efficiency of alternative forest tax bases. The efficient forest tax regime is first determined assuming an initially undistorted economy and next for one with pre-existing capital tax distortions. In Chapter 6, objectives other than timber production are introduced into the forest owner's and/or policy-maker's objective function. Chapter 7 examines the effects and efficiency of the modified site productivity taxation applied in Finland, as well as the realized income tax which is to replace it. Chapter 8 considers the equity issues and administrative aspects of forest taxation. Tax incidence is also discussed to note the aggregate distributional and price effects. Finally, the results and policy implications of the study are summarized in Chapter 9.

2 A review of earlier studies
In this chapter the earlier literature on timber supply and forest taxation is surveyed in detail. In line with the approach and scope of the present investigation, the review focuses on theoretical literature, while empirical or numerical studies are not systematically covered. The merits and shortcomings of alternative theoretical models of timber supply are initially discussed in section 2.1 in order to choose an appropriate modelling approach and outline the developments required (for an introduction to various types of models, see Binkley 1987). Next, earlier studies on the role of forest taxation, as well as non-timber benefits, are reviewed in section 2.2. Section 2.3 summarizes the survey in order to clarify the problem and orientate the present investigation against the background of earlier literature.

2.1 Theoretical models of timber supply
Most of the theoretical literature on the forest management decisions has used the optimization framework, where the timber volume (yield) of an even-aged forest stand is described as a function of stand age. The objective is to maximize the present value of an infinite chain of successive rotations by choosing the optimal harvest age (e.g. Clark 1976, Samuelson 1976, Johansson & Lofgren 1985) and, in more recent versions, management intensity (Hyde 1980, Chang 1983). This approach has also been most commonly used to analyze the role of forest taxation (Chang 1982, 1983, Kovenock & Rothschild 1983, Kovenock 1986, Gamponia & Mendelsohn 1987), as well as non-timber benefits (Hartman 1976, Strang 1983, Bowes & Krutilla 1985, Hite et al. 1988, Englin & Klan 1990). The "linear forest" model (Berce & Billy 1984, Johansson & Lofgren 1988, Johansson et al. 1989) is a linear programming formulation of the multiple age class management problem, an outgrowth of numerical harvest scheduling models (e.g. Johnson & Scheurmann 1977, Kent et al. 1988). Owing to a similar objective, it basically shares the properties of the optimal rotation model.

More recently, the two-period model has been used in several papers dealing with short-run timber harvesting decisions under varying harvest period and timber demand assumptions. The model is basically an outgrowth of the Fisherian model of consumption and savings (Fisher 1930), where the consumer is assumed to maximize the utility of consumption over a planning horizon collapsed to two periods (the present vs. the future). This type of models have been widely applied in several fields of research. In public economics, they have been used to analyze the impacts of taxation on consumption and savings, for example (e.g. Atkinson & Stiglitz 1980, Sandmo 1985). Other fields include the theory of optimal investment (Hirschleifer 1958, 1970), as well as agricultural economics (Jørgensen 1980).

To analyze timber harvesting decisions, the two-period model has been augmented by an exogenous initial stock of timber and a size or density dependent growth function. This approach has been used, for example by Lohman (1983), Koskela (1986, 1989a,b), Ollikainen (1987, 1990, 1991), Ovasainen (1987a) and Kuuluvainen (1989, 1990), to consider timber supply, timber market imperfections and/or price uncertainty. Forest taxation has been a central issue in the papers by Koskela and Ollikainen, as well as by Aronsson (1988, 1990a,b). Max & Lehman (1988) and Ovasainen (1989) incorporate the utility derived from the non-timber services of the forest.

It would therefore appear that there are two main modelling approaches to be compared. The first one is the present value maximizing optimal rotation model, a model with age and/or dependent growth. The second one is the utility maximizing, Fisherian two-period model with density dependent growth. The optimal control models (e.g. Vosskamp 1986, Owman 1988, Kuuluvainen 1989) fall in a sense, in between the two. While the problem is formulated as dynamic rather than static, and a different solution technique is employed, the continuous time formulation is common with the Faustmann model. On the other hand, optimal control models share a density dependent growth function with the discrete time two-period model.

2.1.1 The optimal rotation model
The basic Faustmann model involves choosing the rotation length which maximizes the land expectation value. According to the optimality condition, the forest is cut when the marginal value increment equals the opportunity cost, i.e., (the interest on the investment in harvest timing and timber harvesting (e.g. Johansson & Lofgren 1985). In other words, the relative rate of value growth equals the discount rate divided by a correction factor representing the land rent (i.e., the delay of receipts from subsequent stands when the current rotation of trees is grown for one more year). The objective of maximizing bare land value and averaging out of price fluctuations suggests that the model is basically a long-range management planning tool. Still, if stationary conditions are assumed, the intuition of the cutting rule also applies to currently existing mature stands so that the comparative statics results can be interpreted as supply responses (e.g. Clark 1976, Hyde 1980). For example, when the stumpage price increases, some stands become economically overmature and timber supply tends to increase during the adjustment period.

On the other hand, if the amount f(t*) per hectare is cut every t years from a single stand, the sustainable annual harvest from a fully regulated forest is f(t*)t. This quantity actually decreases with a price increase (Clark 1976), but the usual positive long-run reaction is obtained in most cases if management intensity is treated as endogenous (Hyde 1980, Chang 1983; also Williams & Nautiyal 1990).

The assumption of time-invariant stumpage prices, costs, interest and tax rates is restrictive. When, for example, a change in the stumpage price is observed, the new price level is assumed to prevail through the entire future. As changes in exogenous factors can only be treated as permanent, one-time changes, the short-run supply reactions to the short-term fluctuation in prices, tax rates, etc. cannot be considered. However, the assumption can be relaxed by distinguishing

Superscript numerals in the text are references to Notes at the end of the chapter.
between the initial standing timber and the subsequent rotations (Johansson & Löfgren 1985, Ovaskainen 1987b). Then, the current stumpage price can differ from the expected long-run price level, or vary continuously with time (Hyde 1980, Newman et al. 1985, Johansson & Löfgren 1985). In addition to the rotation length, the yield from subsequent stands can be made to depend on management intensity (Hyde 1980, Chang 1983). Maximizing the present value of the standing timber plus net receipts from the subsequent rotations provides the same basic intuition as before, with the relative rate of value increment not only physical growth but also the price change. Supposing the stumpage price follows a specific time path, the changes in the stumpage price can be broken down into two parameters (Hyde 1980, Newman et al. 1985), one of which captures shifts in its initial level, while the other represents the rate of a continuing price change (i.e., a long-term trend). Two drawbacks still remain. First, the model’s decision processes are handled by a two-step procedure (first solving for the optimal rotation length and management intensity for the future rotations). Even then, short or long-run supply responses are only indirectly determined (see Ovaskainen 1987b). Second, neither of the two parameters representing the stumpage price can appropriately capture short-run price fluctuations. A discrete change in the initial price level, similarly to the one-time changes in the basic model, has to be treated as permanent. On the other hand, a continuing price trend at a steady rate cannot possibly represent short-run fluctuations. The point with respect to the present investigation is that in the continuous time model, considering the timing effects of taxes would be more difficult and has not been done so far. As with short-run price responses, the timing effects refer to temporary changes in the current tax rate compared to its expected future value.

2.1.2 The two-period model

The discrete time two-period model has major advantages for the present purpose. First, it represents the nonindustrial private forest owner’s short-run decision problem in a conceptually sound and intuitively appealing manner. Short-run timber supply deals with the optimal harvest timing, given an arbitrary “inherited” stock of mature timber (cf. “stock supply” in Duerr 1960). Accordingly, short-run supply responses refer to the adjustment period before reaching the new optimum stock (Clark 1976, Hyde 1980). This is exactly what is considered in the two-period model, where the model starts to cut today and how much to leave for the future. As all future periods are lumped together, the approach represents adaptive decision-making: the decision is revisied every period in the light of the most recent information on stumpage prices, costs, interest rates, and timber inventory. Fourth, the two-period model explicitly deals with timber supply (the desired harvest volume in a given period), rather than some state variable such as stand age. Thirdly, unlike the standard continuous time models, it is not limited to one-time changes or long-term trends in the exogenous variables, but allows for their incorporation into the short-run behavior. Permanent changes in the current stumpage price or tax rate can be dealt with, as well as their anticipated future changes (the latter have to do with the additional effect of an announced switch between tax bases). Fourth, the model is technically simple and open to generalizations. For example, it can easily deal with various “imperfections” in the capital market (e.g. Lohmander 1983, Koskela 1989b, Kuivulaivanen 1990); in the rotation model, this would call for a major revision of the modelling strategy, since present values are not well-defined. While not an issue for this study, such things may matter when modelling NIPF owners’ short-run behavior for empirical purposes (e.g. Kuivulaivanen 1989). Also, the results can be taken to represent both thinnings, uneven-aged management, and even-aged management with clearcutting (see section 3). This is true also for the rotation model, which deals with an even-aged stand and clearcutting.

The two-period model also has significant shortcomings as regards price. As presented so far, First, the only decision variable has been harvest timing for a given stock of timber. Consequently, the concept of “timber supply” is identical to the current harvest or short-run supply. This notion may be too narrow for the evaluation of forest taxes. For example, seeking to elicit a maximum timber supply subject to a tax revenue target then results in maximizing the current harvest without properly recognizing the reduction in the future harvest. Secondly, while silvicultural measures actually are of importance to timber production over time, forest growth has been taken to be determined by a given soil productivity alone. Thus, the two-period model calls for extensions to allow for the management intensity decisions and the two-period model on longer-stumpage supply. Thirdly, land rent considerations have been ignored. It will be shown below how a counterpart of the land rent factor could be incorporated.

2.1.3 Modelling stochastic elements

Future stumpage prices, real interest rates and forest growth may involve varied degrees of uncertainty. A number of modelling approaches have been suggested to deal with risk situations, where the uncertain outcomes are assumed to have a known mean and probability distribution. Several studies have incorporated stochastic elements into the optimal rotation model. Reed (1984), for example, incorporated the risk from wildfire. Applications of the optimal stopping approach to resource management include Clarke & Reed (1989) and Reed & Clarke (1990). Optimal stopping rules are derived for biological assets with stochastic age-dependent (1989) as well as size-dependent (1990) growth and stochastic prices. Timber harvesting decisions with stochastic future prices are also considered by Braze & Mendelsohn (1988) and Haigh & Clarke (1990), who both use reservation prices to derive the optimal stopping rule (with the current price above the reservation price, the stand should be harvest; with the current price below the reservation price, the stand should be retained).

The above studies (except Clarke & Reed 1989) have assumed risk neutrality, whereby decisions are based on the expected present value (mean of the probability distribution). However, there is increasing evidence that investors are more likely to be risk averse, and a number of attempts have been made to incorporate risk aversion into the management decision.

Formally, risk aversion is defined by the strict convexity of the utility function (diminishing marginal utility with respect to income). Thus, the two-period model of consumption and savings offers a natural way to incorporate uncertainty and risk aversion in terms of the expected utility hypothesis. Using this approach, Koskela (1989a,b) analyzed the effects of price uncertainty on the timber supply decisions. Under perfect capital markets and certainty, the harvesting decision is independent of the consumption decision. In contrast, where future price uncertainty and risk aversion are present, the harvesting decision depends on the forest owner’s consumption preferences. Thus, harvesting and consumption decisions must be considered simultaneously (a similar impossibility is implied by capital market “imperfections” such as credit rationing). The current harvest will increase compared to the case of certainty. Olikainen (1990) considers the effect of interest rate uncertainty, showing that lenders tend to decrease and borrowers increase their current harvest.

On the other hand, other approaches have been developed which employ the expected value and higher moments of the distribution of returns. The best known of these criteria is the mean-variance rule, which is valid for quadratic or exponential utility functions or, irrespective of the form of utility function, for returns with a specific random pattern (e.g. Samuelson 1970, Newbery & Stiglitz 1981). Caulfield (1988) incorporates risk aversion into the rotation decision under the risk of wildfire by using stochastic dominance analysis, where an explicit assessment of the utility function is not required.

2.2 Effects of forest taxation and non timber objectives

2.2.1 Harvesting, management intensity, and taxation

Earlier work on taxation and forests is mainly based on the optimum rotation model (e.g. Kempen 1976, Jackson 1981, Chang 1982, 1983). It concentrates on the impacts of annual property taxes (the unmodified ad valorem property tax on the value of timber plus land, site values, and timber tax) vs. harvest taxes levied on the realized stumpage income (the percentage yield tax, and the severance or unit tax).

Considering the rotation age alone, the qualitative main result that yield taxes tend to extend rotations, while property taxes tend to shorten them (e.g. Chang 1982). Chang (1983) extends the tax analysis to cover the effects on management intensity. The effect of an ad valorem property tax is equivalent to an increase in the interest rate by the tax per cent. In one case, it can be shown to reduce both the optimal
planting density and rotation age. Otherwise the results remain ambiguous, which is due to the generally undetermined sign of the interaction effect between the management intensity and rotation length. The site value tax leaves both planting density and rotation age unaltered in all cases. Its neutrality is of interest since the site value is in effect similar to the "unmodified" production tax, both representing lump-sum taxes. The yield tax on the stumpage value at harvest is equivalent to a reduction in the stumpage price by the tax per cent. It lengthens the optimal rotation and lowers the planting density in some cases, but in another case its effect remains uncertain.

It may be noted that the results from rotation models are based on the assumptions of perfect capital markets and certainty. These are required for the maximization of present value to be a well-defined objective, i.e., for the implicitly assumed separability of consumption and harvesting decisions to hold (e.g. Hirshleifer 1958, 1970). Also, the effects are stated in terms of rotation age rather than optimal harvest volume, so the implications on short and long-run timber supply are only implicitly determined.

Koskela (1989a) analyzes timber supply and forest taxation (yield, and unit tax) under future price uncertainty and risk aversion using a two-period model of consumption, savings, and timber harvesting. In Koskela (1980b), capital market "imperfections" are also included. Adjustability of harvesting and consumption decisions, the impacts of forest taxes differ sharply from those under perfect capital markets and certainty. In addition to the substitution effects, taxes now have wealth effects. Consumption (yield) in the case of perfect capital markets (Koskela 1989a), lump-sum taxes are nonneutral and the effects of yield taxes remain ambiguous as the substitution and wealth effects act in opposite directions. The future yield tax also has a risk effect. Under credit rationed capital markets (Koskela 1989b), the wealth effects are replaced by liquidity effects. In Olikainen (1990), forest taxation is similarly considered. The discount rate is gross interest rate and perfect vs. imperfect capital markets. Olikainen (1991) analyzes lump-sum, exogenous labor income and capital income taxes under price uncertainty, showing that the entire tax system may affect timber supply decisions. The capital income tax is of special importance because, as will be shown below, its effect does not depend on the presence of any imperfections or uncertainty, but appears even in the separation case.

Besides the ceteris paribus effects of individual forest taxes, the studies by Koskela and Olikainen also consider the effects of compensated switched between forest taxes which keep the present value of the total tax revenue unchanged. The latter results are partially underdetermined by the chosen type of model. As timber supply refers to the harvest timing problem (i.e., short-run supply), analyzing the relative effectiveness of forest taxes by searching for the tax regime with the highest tax intake is minimizing the exposition burden. The possibility of income tax induced distortions, is established as the appropriate measure of the relative effectiveness of forest taxes. Finally, the magnitude of distortions, or reductions in gross income caused by each tax, is measured in quantitative terms. The results from a numerical simulation suggest that yield taxes outperform property taxes, but there is only a small quantitative advantage.

The analysis by Gamponia & Mendelsohn, however, is not without limitations. First, it is based on the (explicit) assumption that the rest of the economy is distortion free. As no management distortions pre-exist, minimizing the exposition burden implies choosing a combination of yield and property taxes so as to neutralize the distortions from forest taxes. Alternatively, a single neutral tax could be used, such as the site value or productivity tax. However, the desirability of neutral forest taxes only holds if any distortions from other taxes do not pre-exist. Where they do, the efficiency effects of forest and other taxes should be simultaneously considered (e.g. Rosen 1985, p. 286).

Kovoneck (1986, p. 202) puts it, neutrality, unless defined with respect to a complete tax system, may not be an appropriate goal of tax policy. When tax distortions already exist, a non-neutral tax in any given sector can be more efficient than a neutral tax, if it is properly designed to correct the initial inefficiency. Second, their definition of excess burden refers only to the income lost, i.e., reduction in output. Generally, the deration of excess burden although the output is increased (e.g. Rosen 1985, p. 287; Auerbach 1985, p. 67–69). Also, only rotation age distortions are considered, while the analysis of changes in management intensity remains to be done.

Kovoneck & Rothchild (1983) examine the efficiency of a capital gains tax in an economy with an "Austrian sector" and an ordinary sector (standard examples of Austrian assets are trees and wine, while the ordinary sector is defined as a sector that yields a constant stream of returns on resources invested therein). Capital gains taxes are only imposed on Austrian assets.

First, the intersectoral allocation of investment is efficient when the marginal rate of (social and private) returns on funds invested is the same in all sectors, i.e., the marginal return in the ordinary sector, and no taxes in the Austrian sector, resources invested in the ordinary sector have a higher marginal social rate of return than those in the Austrian sector. Consequently, too much capital would be invested in the Austrian sector, moving resources from the Austrian to the ordinary sector would imply an efficiency gain. Secondly, there is the problem of allocation within a sector. For Austrian investments, the allocation is optimal when trees, for example, are cut down at the time which maximizes the discounted social value of the resource. That is, the marginal rate of value increment should equal the social discount rate. If the ordinary sector is taxed by an income tax while the Austrian sector is not, assets such as timber will be held too long. In other words, there is a lock-in effect in the absence of capital gains taxation on Austrian investments.

Kovenock and Rothchild consider both capital gains taxes levied on a realization basis (due when the asset is sold) and those levied on an accrual basis (whenever an asset's market value changes). A capital gains tax at the basis drives resources from the Austrian sector and increases the marginal rate of return on such assets. However, especially the effect on the selling time of timber depends on whether an accrual or realization basis is chosen. In most cases, the higher the capital gains tax rate the sooner the asset is sold. This holds, for example, for timber taxed on an accrual basis (cf. accrual income tax). An exception is timber taxed on a realization basis (cf. harvest or yield taxes). In that case, the selling time of timber is independent of the tax rate and longer than it should be.

Kovenock and Rothchild (1983) examine the effects of property and income taxation in a similar setting and shows that a property tax is appropriate for the Austrian sector. When the ordinary sector is subject to an income tax, a property tax on the market value of Austrian assets allows the economy to achieve production efficiency (note that the market value of "land" includes the value of the timber). A property tax levied in the Austri-
an sector at a properly chosen rate – equal to the social discount rate multiplied by the income tax rate in the ordinary sector – attains both inter and intrasectoral efficiency. Property taxation at this rate is shown to be equivalent to an accrual income tax at a rate equal to the income tax in the ordinary sector. In the latter case, income is defined as the sum of realized cash returns and the changes in the asset’s market value (i.e., an increase in the standing stock is also taxed). On the other hand, Kovenock shows that a realized income tax with immediate expensing in the Austrian sector is inconsistent with production efficiency.

Property taxes, when based on the market value of the timber, tend to shorten timber rotations. This non neutrality has been much criticized in the U.S. forest tax debate (for a survey, see Boyd 1986). However, part of their “bad reputation” (Klemperer 1977) might be explained by the assumption of no pre-existing distortions which has often been implicit in the discussion. Even Campona & Meindelsson’s (1982) analysis, correct as such, explicitly shares this presumption. As the assumption is unlikely to hold in real economies, the policy implications tend to be misleading. As a notable exception, Kovenock (1986) argued that the policy neutrality of taxation must be considered in terms of the entire tax system (a similar idea can be found in Chisholm 1975). Accordingly, a realized income tax on forestry, even if neutral as such, will generate a lock-in effect on timber harvesting when combined with a tax on the interest from other assets. In contrast to most of the earlier discussion, an ad valorem property tax is in fact shown to attain efficiency under such circumstances.

Kovenock (1986) provides a major contribution in terms of both analytic insight and relevance to policy issues. It can be noted that Kovenock’s approach represents a partial solution with respect to the taxation effects in the Austrian sector, given an income tax in the ordinary sector. Despite the theoretical limitation, it seems reasonable – with an eye on implications to forest rotation – to follow this approach in the present study (for more detail, see section 5.1). On the other hand, limitations in the scope of Kovenock’s study suggest some useful extensions. First, management intensity is not considered and timber supply consequences are not directly shown. Secondly, one may ask if the conclusions are sensitive to the assumptions on the decision-maker’s objective function. An obvious example is the inclusion of the forest’s nontimber services, which are commonly taken to be positively related to the standing stock of timber.

2.2.2 Timber harvesting with nontimber benefits

Besides commercial timber at harvest, the standing forest also provides a flow of benefits such as scenic beauty, recreation, wildlife, berries and mushrooms, and watershed control. The flow of these other services – the scenic recreation value of a forest, for example – apparently depends on the age of the trees. Therefore, such considerations may matter for the harvesting decision that alters the size and age structure of a forest’s standing stock. There are two main lines of modeling this relationship in the literature.

As a generalization of the Faustmann model, the influence of age dependent nontimber services is first considered by Erlich (1975) and Strang (1983). They suggested that the socially optimal rotation age with nontimber values added exceeds the commercial rotation and, in the polar case, the forest may never be cut. However, the result depends on the assumption that the flow of nontimber services is monetarily increasing with respect to age. As noted by Bowes & Kruittia (1985) or Hite et al. (1987), there is no priori reason for this to be the case. A variety of interference is represented. Rather, the socially optimal rotation will be longer (shorter) than the commercial rotation as the amenity value is monotonically increasing (decreasing) in stand age. The problem has also been considered as an extension to the linear forest model by Berck and Bible (1984) and Johansson et al. (1989). In an economy with forest owners deriving utility from commercial timber and nontimber environmental services, Johansson et al. present a Pareto optimal system of shadow prices for amenity services. Then, the optimal “multiple-use” harvest policy can be solved from a present value problem augmented by the shadow prices for environmental services from each age class (also, Johansson & Löfgren 1988).

The approach is restrictive because, first, the additivity of commercial and nonharvest values presupposes that the harvesting and consumption decisions are made independently. Where the imputed utility from unpriced amenity values is taken into account, this is not generally true, even if the capital markets are perfect (Hite et al. 1987, Johansson & Löfgren 1988, Ovaskainen 1989). Second, to maximize the sum of harvest income and nontimber services, the nontimber benefits must be measurable in monetary terms; and while possible to estimate in principle (e.g., Cummings et al. 1986, Johansson 1987), monetizing the intangible benefits is not a priori known. Therefore, there is no way for the forest owner to be compensated for providing nontimber services, which usually are nonmarketed public goods. Thus, there is little “external” incentive to follow the optimal plan, even if the shadow prices were known.

An alternative approach has been used by e.g., Binkley (1981, 1987), Kuuluvainen (1985, 1986), and McIvor & Lehm (1988). The nontimber services are taken to be an increasing function of the volume of the standing stock. This function or, assuming proportionality for simplicity, the standing stock itself, is substituted directly into the forest owner’s utility function. A basic implication is that the nontimber considerations will reduce the current harvest, since a larger stock is desired if the environmental value is monotonically increasing in the standing volume.

There seems to be an advantage in explicitly treating the nontimber services as nonmarketed, nonpriced benefits, because this serves to highlight the fact that given an actual compensation, it depends on the forest owner’s subjective preferences whether or not the scenic or recreational values will be taken into account. However, as is the case with the rotation model, the shape of the flow of amenities should be established in the light of empirical findings (see Chapter 6). Also, the harvest change is just a short-run reaction. Up to a certain limit, a larger growing stock implies an increase in the sustainable harvest over time. Further, the earlier analyses were static, involving a single period only, or, in the multiperiod case, implicitly assumed that the forest owner has no access to the capital market. The two-period model by McIvor & Lehm (1988) adds a dynamic intertemporal aspect, but retains the implicit autarchy assumption.

In Hyberg & Holthausen (1989), the harvest timing and reforestation decision is modelled as a multiperiod utility maximizing problem with the imputed utility from nontimber benefits included in the objective. The model involves (perfect) capital markets and a growth function dependent on stand age and reforestation intensity. Some implications are that “utility maximizers” harvest less often and invest more in reforestation than do “profit maximizers”. Forestry incentive programs might subsidize the consumption of nonmarket forest amenities but have limited effect on timber production. Due to the model’s increased complexity, however, all comparative statics results remain uncertain unless the interaction between the two is completely excluded. Further, the extended rotations are dictated by the assumption that the amenity value is monotonically increasing in stand age and volume.

Few papers have dealt with forest taxation in the presence of nontimber services. Max & Lehman (1988) consider the ad valorem property, yield, severance, and site productivity taxes using a two-period model. The impacts of yield, severance, and site taxes remain indeterminate, as the substitution effects work in the opposite direction to the income effects. The only unambiguous result is for the property tax, which increases the current harvest (i.e., both effects work in the same direction). Englin & Kran (1990) investigate the impacts of timber taxation on the production of external nontimber benefits using an optimal rotation model. When nontimber benefits are treated as nonmarketed, the failure to take them into account leads to a divergence between social and private rotation periods. Accordingly, the study searches for potential “pigouvian taxes” (after Pigou 1920), i.e., a tax that induces the private landowner to behave in a socially optimal manner. Pigovian tax formulas are presented for harvest taxes (the yield, severance or unit, and profit tax) and for a property tax levied on the value of timber. The results suggest that the “optimal” tax rates depend on several factors, and are difficult to determine in practice.

2.3 Conclusion

The motivation and objectives of the present study can now be specified in more detail (for numbering, compare section 1.2). The preceding review pointed out that the effects of forest taxes are rather well understood – and their relative efficiency can be analyzed – in terms of rotation age and management intensity. However, it is considered useful to explicitly analyze forest taxation in terms of timber supply, which is the ultimate point of practical interest in the issue.
Notes to Chapter 2

1 Denoting the land expectation value by LEV, the problem in the basic rotation model (the Faustmann formula) can be written as:

\[\text{Max LEV} = \left(p(t) + m \right) \left(1 - e^{-\alpha t} \right) \]

where \(p(t) \) is stumpage price, \(f(t) \) is timber volume as a function of stand age \(t \), \(r \) is the rate of interest in the perfect capital market, and \(C \) is the regeneration cost. The first-order condition \(p(t) - p(t-r) - r \text{LEV}(t) = 0 \) can be rewritten as:

\[p(t) - p(t-r) - C = r(1-e^{-\alpha t}) \]

i.e., the relative rate of value growth equals the discount rate corrected by \(1-e^{-\alpha t} \).

3 The maximization of the present value of the standing timber plus net receipts from the subsequent rotations, denoted PV, can be written as:

\[\text{Max PV} = \left(p(a) + \text{LEV}(a) \right) e^{-\rho a}, \]

where \(a \) denotes the harvest age (time) for the standing timber and \(b \) is its initial age, while \(p(a) \) and \(f(a) \) are its stumpage price and timber volume as functions of harvest age. Further, \(\text{LEV}(b) = \left(pf_{b}(b) - m \right) e^{-\rho b} \) where \(p_{b} = p(b) \), \(f(b) = f(b) \), \(r = r \), and \(\rho \) captures shifts in the initial price level while \(\rho \) represents the rate of a continuing price change (trend).

4 This holds excluding a corner solution where all timber is cut in the first period. The same basic intuition underlies the adaptive optimization or optimal stopping approach, using reservation prices, to resource management in a stochastic environment (see section 2.1.3).

5 In other words, the forest owner himself is assumed to derive utility from the nontimber services. Contrary to the implication by Englin and Klau (1990), this assumption need not suggest that the public is excluded from the use of the environmental services. Indeed, they may be institutionalized as public goods by the so-called everyman's rights ("allemandsrätt"), as in Scandinavia.

3 A model of timber supply

This chapter develops the theoretical model which is to be used as an analytic tool in the study. As discussed in Chapter 2, the discrete time two-period model is an appropriate point of departure but two extensions need to be made. Section 3.1 introduces the formulation, with management intensity incorporated as an additional choice variable, and discusses the basic assumptions. The solution and comparative statics results for the short-run timber supply and management intensity decisions are established in section 3.2. The long-run steady state timber supply and its properties are developed in section 3.3. In section 3.4, additional notes are made concerning the properties of the model.

3.1 Formulation and assumptions

In the actual analysis of forest taxation and timber supply, a two-period model will be used. Initially, however, a three-period setting is considered. This way of presentation serves to establish the validity of the two-period model with respect to short-run timber supply (the first-period harvest is unaffected by the number of periods). On the other hand, the three-period setting is used to derive the long-run timber supply, which is conceptually met by the second-period harvest in a three-period model. It is shown that even the long-run effects can be analyzed by using the results from a two-period model.
Objective function and budget constraints

Suppose the forest owner behaves as if he/she maximized the utility of stock over three periods. Following e.g. Koskela (1989a,b), let the forest owner’s preferences with respect to consumption be represented by the intertemporally additive separable utility function \(U \),

\[
U = u(c_1) + \beta u(c_2) + \beta^2 u(c_3).
\]

In (3.1), \(c_i \) is consumption in period \(i (i=1,2,3) \) and \(\beta = (1 + \rho)^{-1} \), where \(\rho > 0 \) is the forest owner’s subjective rate of time preference (Atkinson & Stiglitz 1980, Olson & Bailey 1981). Further, a positive but diminishing marginal utility of consumption is assumed, i.e., \(u'(c_i) > 0 \) and \(u''(c_i) < 0 \).

In what follows, \(H_i \) is used to denote the desired volume of timber harvested or timber supply in period \(i \), \(E_i \) denotes management intensity (silvicultural effort), and \(S_i \) is net savings (saving as \(S > 0 \) and borrowing as \(S < 0 \)). Further, \(p_i \) is the stumpage price, \(w_i \) is the unit cost of silvicultural inputs, and \(r \) is the market rate of interest (constant for all periods). First-period consumption possibilities, constrained by the revenue from timber sales minus net saving and investment in silviculture, can then be written as

\[
c_i = p_i H_i - S_i - w_i E_i.
\]

The second-period consumption is constrained by the sum of harvest revenue and past savings with the interest minus that period’s saving and forest management costs,

\[
c_i = p_i H_i + (1 + r) S_i - S_i - w_i E_i.
\]

The third period is the terminal point of the time horizon, during which no savings or productive investment are made. Thus, all the revenue from timber sales, as well as all past savings and interest, can be consumed, or

\[
c_i = p_i H_i + (1 + r) S_i.
\]

Next, define the relevant constraints for each period’s harvest, \(H_i \), and the expressions for the growing stock \(K \), which remains after the harvest in the beginning of each period. Let \(Q \) denote the exogenously given initial stock of timber, while \(F = F(K,E) \) is forest growth as a function of the growing stock and management intensity. The harvest constraints for periods 1 through 3 (excluding corner solutions) are

\[
H_i < Q \quad (3.5)
\]

\[
H_i < K_i + F(K,e_i) \quad (3.6)
\]

\[
H_i = K_i + F(K,e_i).
\]

and the respective expressions for the post-harvest growing stock \(K \) are defined as

\[
K_i = O - H_i > 0
\]

\[
K_i = O - H_i + F(O-K,e_i) - H_i > 0
\]

\[
K_i = O - H_i + F(O-K,e_i) - H_i - F(O-K,e_i - E_i) \quad (5.6)
\]

As the first and second-period harvest constraints are non-binding, \(H_i \) and \(E_i \) will be true choice variables. In the terminal period, the whole inventory and increment inherited from period 2 will be cut, since the standing stock itself is not assumed to impose utility (cf. Chapter 6). Thus, the third-period harvest constraint will be binding and can be substituted into the budget constraint to eliminate \(H_i \). Solving first (3.2) for \(S_i \) and substituting into (3.3) for \(S_i \) can be eliminated. Solving in turn (3.3) for \(S_i \) and substituting into (3.4), \(S_i \) can also be eliminated. Besides \(S_i \), the equation for \(H_i \) defined in (3.5) and (3.6) will be substituted into (3.4) to write the intertemporal budget constraint. By finally substituting the resulting expression for \(c_i \) into the objective function, \(c_i \) is eliminated, and the problem becomes

\[
(3.7) \quad \text{Maximize } U = u(c_1) + \beta u(c_2) + \beta^2 u(c_3).
\]

where

\[
c_i = p_i (O - H_i + F(O-K,e_i) - H_i + F(O-K,e_i - E_i) - H_i) + (1 + r) p_i H_i + (1 + r)
\]

\[
(p_i H_i - w_i E_i - c_i) - w_i E_i - c_i.\]

In other words, the choice variables of the problem are first and second-period consumption, harvest, and management intensity. Before going into the formal solution of the optimization problem and its implications, it is useful to discuss some assumptions of the model.

Properties of the growth function

The growth function \(F = F(K,E) \) is assumed to be twice continuously differentiable with the following properties:

\[
F(K,E) > 0 \quad \text{for all } K \geq 0, E \geq 0;
\]

\[
F(K,E) \geq 0 \quad \text{for all } K \geq 0, E > 0;
\]

\[
F(K,E) - F(K,0) \geq 0 \quad \text{over the relevant range.}
\]

In (A.1), \(M \) denotes the density of maximum sustained yield (MSY) at which \(F(K,E) = 0 \). It is the carrying capacity of the site, i.e., the saturation stock at which the growth declines to zero (Fig. 1). The assumptions in (A.1) imply, for example, that the growth rate first increases with the growing stock (\(F(K,E) > 0 \)) as the productive potential of the site is more fully utilized. Yet the marginal return on the growing stock, with \(E \) fixed, is diminishing so that the slope \(F(K,E) \) declines and eventually becomes negative at \(K > M \) due to increasing competition between the trees for sunlight, water, and nutrients. Similarly, the management intensity shows diminishing marginal returns, i.e., the additional gain becomes progressively smaller for each additional unit of inputs.\(^{1}\) Following e.g. Hyde (1980), \(E \) is assumed to include all labor and capital inputs measured continuously in some standardized unit (kilos of fertilizer with the growing stock fixed, successively higher numbers of seedlings or man- machine hours given to site preparation per hectare, etc.). A fixed area of land, normalized to one, is implicit in the formulation.

The second-order cross-partial derivative of the growth function, \(F_{kE}(.) \), requires special attention. This is because it turns out to be decisive for the interpretation of the results. The interaction effect measures the change in the marginal product of the growing stock as a result of changes in management intensity, or vice versa.\(^{2}\) There is a difficulty that resembles the one pointed out by Chang (1983) with respect to the yield function in the generalized rotation model. In the general case, the sign of \(F_{kE}(.) \) might depend on the location of the optimum so that no single sign can be postulated (Fig. 1). However, even if the interaction term can be positive, negative, or zero, it can be signed definitively for specific types of silvicultural measures. The following classification of distinct cases will suffice to interpret the results. (Mathematically, \(F_{kE}(.) = F_{kE}(.) \) by Young's theorem. While only discussed in terms of \(F_{kE} \) for space, the real-world interpretations similarly go through in terms of \(F_{kE}(.) \).

(1) A positive interaction \(F_{kE}(.) > 0 \) is represented by measures such as fertilizing a thinned immature stand, an uneven-aged forest or a mature stand considered for clearcutting, as well as the drainage of well-stocked peatlands. Improvements such as fertilization or drainage compare to a higher site index. As the carrying capacity of the site increases, the stand will eventually reach a higher maximum volume (Chang 1984). The slope \(F_{kE}(.) \) thus increases for all relevant densities (Fig. 2).

(2) No stock-effort interactions arise \(F_{kE}(.) = 0 \) from the establishment of new stands on previously idle land (e.g. the afforestation of arable land or drainage of poorly stocked peatlands). Since such improvements are operationally independent of the cutting of any existing stands, the aggregate growth for the remaining old-growth plus the new stands could be written in the additive separable form \(F(K,E) = F(O-H) + g(E) \), which readily implies \(F_{kE}(.) = 0 \) (E represents site preparation, planting density, etc. in the new stands;
only, excess burden is represented by the distortions beyond income effects, i.e., by substitution effects alone. That is why the income effects, and capital market “imperfections” or uncertainties that generate them, can be ignored here, even if they are likely to appear in reality. By the same logic, the income effects will be omitted in the normative analysis in Chapter 6, where they arise from the inclusion of the utility from nonmarket benefits.

In other words, the income effects depend on the amount of taxes collected rather than the specific way they are levied. For a reasonable comparison between any two taxes, both must be set to collect an equal tax revenue. Considering switches between forest taxes with the total tax revenue unchanged, an increase in one tax implies an equivalent reduction in the other. Then, the wealth or liquidity effects of forest taxes due to uncertainty or credit rationing, respectively, cancel out (Koskela 1989a,b). This is why liquidity constraints, for example, do not change the effects of compensated tax switches (Koskela 1989b).

3.2 Short-run timber supply and management intensity

This section turns to the properties of the harvesting and management intensity decisions. An interior solution will be assumed throughout the study (for discussion see section 3.3). Partially differentiating (3.7) with respect to all decision variables and setting the derivatives equal to zero, the following first-order conditions for a solution to the maximization problem are obtained:

\[U_{L_1} = u'(c_1) - p(a_1) + r^2(1 + r) = U_{c_1} = -\lambda (1 + r) = 0 \]

\[U_{H_1} = u'(c_1) - p(b_1) + r^2(1 + r) = 0 \]

\[U_{E_1} = u'(c_1) - p(b_2) + r^2(1 + r) = 0 \]

\[U_{F_{11}} = u'(c_1) - p(b_2) + r^2(1 + r) = 0 \]

Using the first two conditions,

\[U_{L_1} = U_{c_1} = 0 \]

the condition for first and second-period consumption is obtained as

\[u'(c_1) = 1 + r (t = 1, 2) \]

which is similar to the first-period consumption in any two-period model (e.g., Sandmo 1985). As regards the harvesting and management intensity decisions, the condition

\[U_{H_1} = U_{H_2} = U_{E_1} = U_{E_2} = 0 \]

holds if and only if the bracketed expressions \(\{ \} \) are zero, because \(\beta, u'(c_1) > 0 \) by assumption. This has an important implication: where perfect capital markets and certainty can be assumed and benefits other than timber do not matter, the harvesting and management intensity decisions are separable from the consumption decision. That is, the productive decisions are determined by relative prices irrespective of the forest owner’s preferences and consumption plans (e.g., Koskela 1989a, Kuuluvainen 1989). Whatever the forest owner’s desired temporal pattern of consumption, the highest consumption set is obtained by following the present value maximizing productive solution, while the most preferred consumption pattern can be attained by adjusting consumption possibilities between periods by borrowing and lending in the capital market (Hirschleifer 1958, 1970, Johansson & Löfgren 1985). By the separation result, the conditions for the optimal first and second-period harvest and management intensity decisions can be simplified as follows:

\[p_1 [1 + F_{	ext{H1}}] = (1 + r)^2 \]
Optimal management intensity

The effects of exogenous variables on management intensity are given in (3.13):

\[E_F = D_1' p_F F_{X_1} + (1 + r) F_{X_2} \]

\[E_F = D_2' q_F F_{X_2} \]

\[E_F = (1 + r) F_{X_1} \]

There are two kinds of effects involved in the comparative statics results: first, direct effects due to changes in the marginal revenue and cost of current harvest and, secondly, indirect effects due to changes in the optimal management intensity. As the latter ones emerge through the interaction term \(F_{X_1} \) and depend on its sign, the type of silvicultural measures must be specified for definite conclusions. For thinning stands (or an uneven-aged forest), fertilization is about the only relevant consideration beyond harvesting, while regeneration is the typical form of management choices for mature stands considered for final cutting. Accordingly, the case \(F_{X_2} > 0 \) is identified with timber supply from thinnings (or selective harvests), while \(F_{X_2} < 0 \) is taken to represent supply from final fellings. In particular, the effects of the stumpage price and interest rate are discussed in some detail. This is because they prove to be comparable to the effects of some of the most common forest taxes. Consider a ceteris paribus increase in the current stumpage price (i.e., an observed price change perceived as temporary). The short-run supply will unambiguously increase, since the marginal revenue of the current harvest rises with its marginal cost unchanged. With an increase in the future stumpage price, the current harvest decreases as the marginal cost increases. However, there is another effect due to an increase in the optimal management intensity. With \(F_{X_2} > 0 \) (fertilization and thinning in well-stocked immature stands), an increase in \(E \) implies an increase in the growing stock, and a higher stock is desired. Consequently, timber supply from thinning stands is reduced. The same is true for \(F_{X_2} = 0 \) (precommercial thinning, etc.), although the indirect effect vanishes. For \(F_{X_2} < 0 \) (E represents reforestation intensity), the two effects work in the opposite direction. With an increase in \(E \), the marginal product of the current standing stock decreases relative to that of subsequent stands. The optimal stock of old stands therefore decreases. As the positive indirect effect counteracts the negative direct one, the overall effect of increasing price expectations on the supply from final fellings remains ambiguous.

With a higher interest rate, the current harvest tends to increase owing to an increase in the opportunity cost of capital tied to the growing stock. But the opportunity cost of investments in silviculture increases, too. The weakening of incentives to fertilize stands—the case of \(F_{X_2} > 0 \)—amplifies the reduction in desired growing stock by reducing its marginal product. Thus, timber supply from thinnings unambiguously increases. This also holds for \(F_{X_2} < 0 \). As regards timber supply from final fellings, the effect of a higher interest rate remains ambiguous. This is because a higher opportunity cost of capital renders reforestation investments less attractive. However, it is plausible that the positive effect of a higher stock holding cost will dominate, because the growing stock represents a much larger input of capital.

Summary of comparative statics

It is useful to summarize the main effects of various exogenous factors in an unambiguous manner. An inspection of (3.12) and (3.13) reveals that there is no ambiguity whenever \(F_{X_2} > 0 \), since both effects work in the same direction. In the case \(F_{X_2} < 0 \), it seems reasonable to assume that where both direct and indirect effects arise, the direct effects dominate. Under this simplification, the results can be stated as indicated by the signs below each exogenous variable:

\[H^* = H^*(p_{X_2}, p, r, w, Q) + \cdots + 0. \]

Further, (3.15b) and (3.16) imply \(F_{X_1}(K, E) = F_{X_2}(K, E) \). According to (3.15b) and (3.16), the stationary solution always has \(F_{X_1} = r > 0 \), which means that the optimal stock is always lower than the MSY stock. Similar implications can be derived from the first-order conditions (3.9c) and (3.9d) with respect to the management intensity. Consequently, it can be concluded that

As this assumption helps to clarify the conclusions and also seems empirically justifiable, it will be repeatedly used below.

3.3 Long-run steady state timber supply

As stated earlier, the long-run timber supply refers to the average sustainable harvest level. As opposed to the short-run supply (limited by an arbitrary initial stock of mature stands), the long-run supply is constrained by forest growth over time. Based on an endogenously determined optimal growing stock, the concept refers to an established equilibrium state beyond the adjustment period (Clark 1976, Binkley 1987). Note that this definition is met by the second-period harvest in the three-period model: the second period's initial stock is endogenous, and it also is a non-terminal period. As usual, the long-run timber supply will be considered as a steady state notion. Specifically, consider a stationary steady state with all relative prices assumed unchanged over time. With \(p = p_0 = w_0 = \text{r} \) constant, the conditions (3.9a) and (3.9b) become

\[(1 + F_{X_1}(r))[1 + F_{X_1}(r)] = (1 + \gamma) \]

which imply

\[1 + F_{X_1}(r) = 1 + \gamma. \]

Further, (3.15b) and (3.16) imply \(F_{X_1}(K, E) = F_{X_2}(K, E) \). According to (3.15b) and (3.16), the stationary solution always has \(F_{X_1}(r) > 0 \), which means that the optimal stock is always lower than the MSY stock. Similar implications can be derived from the first-order conditions (3.9c) and (3.9d) with respect to the management intensity. Consequently, it can be concluded that
(3.17a) $K_i = K_i$

(3.17b) $E_i = E_i$

In other words, the optimal growing stock is equal for periods 1 and 2. The same applies to the optimal management intensity (in fact, this would hold for all periods $i \in N$ with any N). Finally, substituting the expressions for first and second-period post-harvest growing stocks from (3.6), it can be seen that (3.17a) is equivalent to

(3.18) $H_i = F(Q - H_i, E_i) = F(K_i, E_i)$

Denoting the long-run supply by h, it can thus be written

(3.19) $h = H_i = F(K_i, E_i)$

According to (3.19), the long-run steady state timber supply is equal to forest growth at the optimal growing stock and management intensity. For the stationary case, $h = F(K^*, E^*) = h$ (constant) for all $i \in (1, N - 1)$. Accordingly, the solutions of the model can be summarized as follows.

(1) The first-period harvesting decision is defined in terms of an optimal growing stock K^*, to which the arbitrary initial stock is adjusted. The cutting rule requires that the marginal rate of return on the growing stock equals the opportunity cost of capital. With given and time invariant stumpage prices and costs, the first-period harvest readily leads to the long-run optimum stock.

(2) In the second period as well as every (non-terminal) period beyond the first, once the amount of steady state growth at the optimum stock and management intensity is harvested. Thus, after the initial adjustment period, the growing stock is kept at the constant steady state optimum level.

It should be noted, first, that an interior solution with $H^* > 0$ is assumed. In other words, it is assumed that $Q > K^*$ so that the growing stock is adjusted by cutting. A corner solution with $H^* = 0$ would follow only if $Q < K^*$ so that approaching the optimal stock requires waiting for the stock to grow. The interior solution implies $F_K(0)$ so, resulting in a very large optimal stock, as $p_s = (1 + r_p)$, while $F_K(0) > 0$ with the stock strictly below the MSY level otherwise. Thus, the zero harvest is more likely when the initial stock is small and a significant increase in real stumpage prices is expected. Since in Finland, at least, neither of these assumptions seems "representative", the corner solution is not considered.

Secondly, the solutions for short and long-run timber supply are discrete time counterparts of the bang-bang control and steady state harvest found in continuous time models for renewable resources. (For the basic model and its solution, see Johansen & Lofgren 1985, Clark 1976). Note that the "bang-bang" control is optimal because the budget constraints are linear with respect to the quantity harvested. This is reasonable for a "small" forest owner facing given stumpage prices. For a large-scale timber producer, the analysis could be modified by taking the stumpage prices to be decreasing in the quantity sold. Then, a gradual rather than bang-bang adjustment might be optimal.

Properties of the long-run supply

As the long-run solution h is similar for all periods $i \in (1, N - 1)$, its qualitative properties can be found by using the second-period solution

(3.19') $h = F(Q - H_i, E_i)$

Noting that $h = F(Q - H_i, E_i) = F(Q - H_i, E_i)$, the comparative statics for h are obtained by simply substituting the first-period optimal solutions or reaction equations $H^* = H^*(p_r, w, Q)$, $E^* = E^*(p_r, w, Q)$ into the growth function in (3.19'). With respect to any exogenous variable $j \in (p_r, w, Q)$, it is obtained by the chain rule

(3.20) $h = \partial h / \partial j = -F_d(j, E_i) + F_d(j, E_i)$

Changes in the exogenous variables can influence the long-run supply directly, both through the growing stock (harvesting decision) and through the management intensity (investment decision). These effects are shown by the first and second terms in (3.20), respectively. Moreover, there may be indirect effects due to interactions between K and E that are represented by F_d involved in H_i or E_i. To evaluate the effects, note that the first-order conditions of the stationary case imply $F_d(j = r) > 0$ and $F_d(j = (1 + r_p) > 0$. Inserting $p_s = p$ into the first-order conditions and re-sloving, the comparative statics results in (3.12) and (3.13) simplify to $h = -D_p F_d(0)$ for $F_d > 0$ and $E = -D_p F_d(0)$ for $D_p F_d > 0$. That is, the optimal management intensity unambiguously rises if there is a stumpage price increase perceived as permanent. Regarding the harvesting decision, a permanent increase in the stumpage price level has only indirect effects. Consequently, the current harvest from fertilized thinning stands decreases as a higher stock level becomes optimal ($F_w \geq 0$), while reforestation and hence clearcutting ($F_w < 0$) are encouraged.

Substituting the short-run results H_i, E_i and rearranging, the comparative statics for the long-run timber supply can be stated as follows:

(3.21a) $h = D_p F_d(0)$ for $F_w \geq 0$ as $F_w \downarrow 0$

(3.21b) $h = D_p F_d(0)$ for $F_w \leq 0$ as $F_w \downarrow 0$

(3.21c) $h = D_p F_d(0)$ for $F_w \leq 0$ as $F_w \downarrow 0$

(3.21d) $h = 0$

A higher stumpage price level tends to increase the sustainable harvest by means of a greater management intensity, but the (indirect) effect through the growing stock depends on the specific case. When E represents the number of years until fertilization ($F_w > 0$), the optimal stock increases so that the stock effect is positive. Thus, the overall effect is also positive, as is that for measures like brush control in seedling stands ($F_w = 0$). On the other hand, the higher price level encourages reforestation measures ($F_w < 0$), which is the consequence is increasing harvests tending to reduce the optimal growing stock and hence the sustainable harvest. A higher interest rate implies a higher opportunity cost of capital and tends to reduce the sustainable harvest. This is because it discourages long-range investments, and because higher stock holding costs imply a lower growing stock. Compared to these two direct effects, the indirect one is unlikely to be of much importance. The main effect of higher management costs is the negative impact through a reduction in management intensity. Finally, the long-run supply is independent of the initial stock.

Summary of comparative statics

The results in (3.21a) through (3.21c) indicate that the direct effects are unambiguous in all cases. For p and w, the only direct effect appears through E while for r, direct effects through both K and E work in the same direction. Even the indirect effects work in the same direction with the direct ones whenever $F_w \geq 0$. That is, the results are unambiguous for interpretations of E such as fertilization, drainage, pre-commercial thinning and/or brush control, or the establishment of new stands. Ambiguities arise only where clearcutting and reforestation intensity are considered ($F_w < 0$). Assuming that the direct effects dominate over the indirect ones, the results can be summarized as

(3.22) $h = b(h, r, w, Q)$

According to (3.22), the long-run timber supply is increasing in the stumpage price level and decreasing in the interest rate and management costs.

3.4 Conclusion

It was shown above that the two-period model sufficiently represents the forest owner’s short-run timber supply in that the first-period decision with the deterministic number of periods to come (as suggested without detailed analysis by Max 1983, p. 32). Moreover, the results of the two-period model can also be used to analyze the long-run timber supply. The latter holds given that the budget constraints are linear in the choice variables so that a bang-bang adjustment is optimal. Interestingly, the solutions are parallel with the solution concepts of the well-examined continuous time optimal control models for renewable resources. The discrete time current harvest and long-run supply prove to be the counterparts of the bang-bang adjustment and steady state harvest, respectively. On the other hand, the results may be compared with the optimal rotation model. A comparison can be found in Appendix 1. The comparative statics results, especially the results for the long-run supply in (3.21) and (3.22), are qualitatively very similar to those indirectly obtainable from the rotation model. In the two-period model, however, the results are analytically more accessible.

Some clarifying notes on the nature of the two-period model may be in order. First, the formulation formally suggests that all timber is cut in the second period. While seemingly restrictive, this was seen to be harmless, since the
first-period cutting rule is unaffected by the number of periods. Intuitively, the model represents adaptive decision-making with the standing stock repeatedly allocated between the present harvest and the future; then, a terminal period in which all timber is literally cut need never really happen. (Note that the time periods in the model are not equal to calendar years. The present period might be taken to be 5 years, for example. In particular, the second period does not refer to next year but represents all future periods lumped together.) Secondly, the density dependent "lumped-para- meter" growth function ignores the fact that forest growth not only depends on the volume of the biomass per hectare but also on its age distribution. For a general discussion on the suitability of age vs. size dependent growth functions, one may refer to Reed & Clarke (1990). While most important for practical management planning, the age issue is considered unimportant here, since the aim is qualitatively characterizing the harvesting decision rather than providing quantitative predictions. The mean age of the trees could in fact be incorporated into the growth function as a coefficient $g = g(t) > 0$, with $g(t)<0$ to highlight the fact that the growth rate of trees declines with age (Clarke et al. 1976, p. 264), to obtain $F = g(t)F(Q - H_E)$. The mean age of the remaining trees, in turn, depends on the current harvest, $t = t(H)$. As the sign of $t'(H)$ depends on the specific cutting practice, the formulation would produce ambiguous results without economic insight.

Finally, compared to the Faustmann rule, it may seem "erroneous" that the cutting rule makes no adjustment for the land rent considerations. In fact, a counterpart of the land rent factor could be explicitly incorporated. However, the standard growth function can be used for simplicity without loss of qualitative insight.

Notes to Chapter 3

1 An example of specific functional forms with the assumed curvature is the logistic growth function frequently used in biogeostatistics (e.g., Clark 1976, Braun 1978, Wilen 1985), which implies the standard S-shaped yield curve characteristic of various density-dependent populations. The basic form is

$$F(K) = \rho_u K - K^-C.$$

where ρ_u is the intrinsic growth rate (maximum per capita growth rate, limited, $F(K)/K$ and C is the carrying capacity of the site. Management intensity can enter in two ways (see Tahvonen 1989 for pollution impacts). First, increased carrying capacity may be conserved (e.g., $C = C(\lambda)$). If the relationship is $C'(\lambda) < 0$ (e.g., fertilization or drainage), or $C'(\lambda) > 0$ (e.g., provision of water), the carrying capacity is increased or decreased (e.g., increased reforestation intensity, faster-growing species, etc.). Also, other assumptions in (1.1) hold for all $K, C(\lambda), E > 0$. Secondly, the intrinsic growth rate may change, or $\rho_u = \rho_u(\lambda)$ with $\rho_u > 0$. Here, the change may be due to increased (e.g., pollution) or due to decreased (e.g., climate change) growth rates, and if $\rho_u > 0$. An approxim-

ation method could be the quadratic function

$$F(K) = \sigma_1 K + \sigma_2 E + \sigma_3 K^2 + \sigma_4 E^2 + \sigma_5 KE$$

with $\sigma_1, \sigma_2 > 0$ and $\sigma_3, \sigma_4, \sigma_5 < 0$ (graphically, a downward opening parabola). The age of the trees and the site index could be added (see Nautial & Couto 1984).

2 Diminishing marginal returns for the growing stock (basal area) and the nutrient input are supported by Nautial & Couto (1984), which also shows a positive interaction between the two. With respect to the stand-

planting density and site index, comparable to fertilization, see the yield functions in Chang (1983, 1984).

3 The cross partial of the production function has a singu- lar role in the neoclassical theory of input demand. Fol- lowing Ferguson (1969), K is a substitutable complement if $F_{22} < 0$ and competitive if $F_{22} > 0$. The complemen-

tary relation usually prevails, and if there is a range of com- petitiveness, then a range of complementarity must also exist. If $F_{22} = 0$, the function is separable in K and E. (This terminology should not be confused with Hicks-

Allen complements vs. substitutes; e.g., Ferguson, p. 71).

4 The intrinsic growth rate increases with the carrying capacity of the site unchanged. Stands established with greater site preparation and advanced-age seedlings for shorter regeneration lags, higher planting density, or faster-growing improved material converge to the maximum volume more rapidly (Chang 1984).

5 First, denote the area cleared and replanted by $A = A(H)$ with $A > 0, A > 0$ (for simplicity), the latter ignoring the fact that marginal increase in H in M might call for younger stands with lower stocking to be cut. Thus, timber growth due to subsequent stands is $g = g(A(H))g > 0$, so $g > g_A(H)$ (H). Assuming $g_A = 0$ (all hectares of equal productivity), $g = g_A(H) + g_A(H) = g_A(H)$. The cross g_A partial

iva. The tax regime to be considered is first defined in more detail and the background for treating each of them is briefly discussed. The effects of various taxes on the harvesting decision (short-run timber supply) and manage-

ment intensity are established in section 4.2, and in section 4.3, the results are used to derive the effects on the long-run timber supply. Throughout

Chapters 4 and 5, only consumption — i.e., the income from timber production — is assumed to be shared by both the forest owner and the policy-

maker.

4 The effects of forest taxes: a positive analysis

4.1 Definitions of forest tax systems

In the present study, lump-sum (or site productivity, realized income or yield, and ad valorem property taxes will be considered. First, the label lump-sum tax is used to refer to taxes paid annually per hectare of forest land according to site quality, regardless of the actual harvest or timber stock. The basic type is the damodar-

ied site productivity tax. For example, the pro-

ductivity taxation in Finland, dating back to the 1920's, was virtually an unmodified site productivity tax until 1980. Also, site value taxes are the lump-sum type (as is the property tax on forests in Finland). While the estimated taxable income is a lump sum, the actual tax to be paid annually may depend on the forest owner's personal tax rate and, thus, total in-

come.

Secondly, realized income taxes — in the for-

estry context universally known as yield taxes (also,

"Graphically, K and E are determined by the point of tangency between the well-behaved growth function $F(K,E)$ and a plane surface in (K,E,F) space, which satisfies the slope conditions defined in the first-order conditions. With F strictly concave in both K and E, the uniqueness of the solution is clear (Assuming that $F(E)$ eventually becomes negative, $F(E)$ will have the "egg-

half" shape shown in Vehkmaki (1986, Fig. 1) or Omwu-

mi (1988, Fig. 3a)).

"Where final fellings and reforestation are considered, the growth specification $F(O - H_E) = 0 (O - H_E) - g(O,E)$ could be used. As a consequence, $F(O,E)$ (condition (3.11a)) would be replaced by $[(F(K) - g_d)]$. That is, the marginal cost of the current harvest (A) is equal to the forgone marginal growth of the old-growth stand, but lower than that, or $(F(K) - g_d)$ minus the marginal return from the subsequent stands, $g_d > 0$. The term g_d (that is, the sum of the subsequent stands and encourages old-growth stands to be cut earlier, as does the land rent term in the Faustmann rule (Samuelson 1976, Hyde 1980). On the other hand, the interaction term T_F, would in this case be replaced by $g_d > 0$ (end note 5). Under long rotations, the land rent issue has to do with marginal changes in the timing of receipts accruing several human generations ahead; unlike the case with 100 years and common interest rates, e.g., 3-4%, the term $[1+e^{-r}]$ is close to unity.
harvest or sales taxes) – are levied on the stumpage value of timber only at the time of harvest. Only proportional yield taxes are examined in this study, i.e., the tax rate is a fixed per cent of the annual harvest value. Two variations of realized income taxation are considered to distinguish between taxes levied on the net vs. gross value of timber. The profit tax (e.g. Englin & Klian 1989) is the stumpage income, net of management costs. That is, actual costs are fully deductible (thus, the profit tax is equivalent to the realized income tax with immediate deductibility of costs as presented by Kvennok 1986). Under the gross yield tax, no allowance for costs is made, or only a fixed per cent of harvest value is deducted on an average basis. A special motivation for considering these taxes is that according to current proposals (Pääsäjarvi, 1989, Puu myyntijafööjien ... 1992), a proportional realized income tax at the uniform capital income tax rate is to be introduced in Finland.

Thirdly, the ad valorem property tax is defined as a tax levied annually at a given per cent of the market value of the standing stock. As only the potential harvest value of the timber is taxable, it is a "timber tax", as distinct from the unmodified proportional tax levied on the value of the timber and forest land. Ad valorem property taxes are commonly applied, and have been much discussed, in the U.S. (e.g. Klemperer 1976, 1977, 1982, 1983, Chang 1982, 1983, Stier & Chang 1983, Kvennok & Rothschild 1983, Kvennok 1986, Boyd 1986, 1987, 1989). Another reason for treating the property tax here is the proposed weighting of the site productivity tax in Finland by the woodlot's age distribution. According to the suggestions of (Rihinen 1982, Puhuhalonn ... 1985), the per-hectare tax would increase with the age class of the stand. However, discrete age classes are mathematically inconvenient. A proportional tax on the value of standing timber is therefore used to represent such an age dependent tax regime (a tax burden increasing with stand age being basically equivalent to one increasing with the stocking level). In addition to the three main taxation types, Chapter 5 will briefly consider the accrual income tax, whereby the taxable income is defined as the realized income plus any change in the value of the standing stock. While realized income taxes are frequently used for administrative reasons (the accrual income tax would require a re-evaluation of the property's timber stock at times), realized income is in fact not a satisfactory concept of income. In the case of appreciating assets such as timber, its conceptual inappropriateness seems particularly clear and tends to result in inefficiency. The accrued income, instead, would duly recognize the nature of forestry income. It would also meet the Haig-Simons comprehensive definition of income (e.g. Mungave 1975) in including not only the relevant period's consumption (realized income) but also any capital gain or loss. However, accrual income taxation need not be considered in detail, because the ad valorem property tax, based on the value of the standing stock, is equivalent to taking the changes in the stock into account as taxable income.

4.2 Effects on short-run timber supply and management intensity

As shown in Chapter 3, the effects of taxes on the short-run timber supply, management intensity, as well as the long run-supply, can be analyzed using a two-period model. Thus, assume the forest owner behaves as if he/she maximized the discounted utility of consumption over two periods (today and the future).

\[U = u(c(t)) + \beta u(c_{t+1}) \]

subject to the relevant budget constraints. The notation is similar to Chapter 3, with the modification that \(t = 1,2 \). To economize on the number of formulas, the lump-sum and profit taxes are written into the budget constraints simultaneously (section 4.2.1). The gross yield and ad valorem property taxes are considered in separate sections.

4.2.1 Lump-sum and profit taxes

The lump-sum tax, to be denoted by \(\Lambda_i \), is a reduction in the disposable income independent of the values of any decision variables. The profit tax, denoted by \(\lambda_i \), implies a proportional reduction in the timber sales revenue net of management costs. Thus, the first and second-period budget constraints with the lump-sum and profit taxes included become

\[c_i = (1 - \pi_i)(p_i H_i - W_i) - S - \Lambda_i \]

\[c_i = (1 - \pi_i)(p_i H_i + i (1 - \pi_i)) - S - \Lambda_i \]

Solving and substituting \(S \) from (4.2a) into (4.2b), the intertemporal budget constraint is obtained. Substituting this into (4.1) along with (4.3) and omitting the time subscripts of \(H_i \) and \(E_i \), the problem can be written as

\[(4.3) \quad \text{Maximize } U = u(c_t) + \beta u(c_{t+1}) \]

\[\text{subject to } c_t = (1 - \pi_t)(p_t H_t - W_t) + \lambda_t \left[(1 - \alpha_t)(p_t H_t - W_t) - \Lambda_t - c_t - \Lambda_t \right] \]

The first-order conditions for an interior solution are

\[(4.4a) \quad U_t = u'(c_t) - \beta u'(c_{t+1}) + 0 \]

\[(4.4b) \quad U_t = \beta u'(c_{t+1}) - (1 - \pi_t)(p_t H_t - W_t) + \lambda_t \left[(1 - \alpha_t)(p_t H_t - W_t) - \Lambda_t - c_t - \Lambda_t \right] \]

\[(4.4c) \quad U_t = \beta u'(c_{t+1}) - (1 - \pi_t)(p_t H_t) + \lambda_t \left[(1 - \alpha_t)(p_t H_t - W_t) - \Lambda_t - c_t - \Lambda_t \right] \]

Given \(\beta, u' \), \(\pi_t \), 0, the separation result of Chapter 3 continues to hold. Thus, the second-order conditions will always hold under the properties of \(F(t) \) stated in (A.1). The harvesting and management intensity decisions are determined by the two conditions:

\[(4.5a) \quad - (1 - \pi_t)(p_t H_t) + F_t \text{-tax } (Q - H_t) + (1 - \pi_t)(p_t H_t) - \Lambda_t = 0 \]

\[(4.5b) \quad - (1 - \pi_t)(p_t H_t - W_t) - (1 - \pi_t)(p_t H_t - W_t) - \Lambda_t = 0 \]

As the lump-sum taxes \(\Lambda_t \), \(\Lambda_t \), do not appear in the optimality conditions (4.4) or (4.5), it is readily seen that the lump-sum tax is neutral with respect to the harvesting and management intensity decisions. The conclusion holds whether temporary or permanent changes are considered, i.e., whether the level of taxation is constant or varies over time. This is because lump-sum payments leave the marginal revenues and costs unchanged. Note that the lump-sum tax is effectively the site productivity taxes (Chang 1983, Gamponia & Mendelsohn 1987), or the taxation of "pure income" from forestry (Vehkamäki 1986). In (4.5), the profit tax is equivalent to a proportional reduction in the stumpage price and unit cost of silvicultural inputs. Note that the definition differs from the yield tax in Chang (1983) or Gamponia & Mendelsohn (1987), as well as from the ad valorem sales tax in Vehkamäki (1986), where management costs are not deducted. With \(\pi_t = \pi_t \), changes in the tax rates will affect the after-tax relative prices (1 - \pi_t)\(p_t \) and (1 - \pi_t)\(p_t \) and thereby the optimal decisions. But if \(\pi_t = \pi_t \), both current and future stumpage prices and the factor cost change by the same proportion and relative prices remain unchanged. Formally, the effects are as follows:

\[(4.6a) \quad H_{t+1} = - (1 - \pi_t)(p_t H_t) > 0 \text{ as } F_t > 0 \]

\[E_{t+1} = (1 - \pi_t)(p_t H_t) > 0 \text{ as } E_{t+1} > 0 \]

\[H_t = 0 \]

\[E_t = - (1 - \pi_t)(p_t H_t) > 0 \text{ as } E_t > 0 \]

If \(\pi_t = \pi_t \), the marginal cost and marginal revenue with respect to harvesting and management intensity change equiproportionally, so the ratio remains unaltered. Thus, the profit tax is neutral if the tax rate is expected to remain constant over time (or any changes are perceived as permanent). This agrees with the results from the rotation model (Kvennok 1986, section V, Johansson & Løgren 1985, p. 96). An important precondition for the result is the full deductibility of management costs. However, temporal variations in the profit tax rate matter. The distinction between direct and indirect effects (section 3.2) applies. Whenever \(F_t \geq 0 \), the results are unambiguous, since the indirect effects work in the same direction as the direct ones. Assuming the direct effects dominate where \(F_t < 0 \), the results can be summarized as

\[(4.7) \quad H(t) = 0 \quad \text{E(t), E(t)} \quad H(t) = 0 \quad E(t) \quad 0 \]

for all types of silvicultural measures. According to this, a rise in the current profit tax rate will reduce the current harvest by reducing its marginal revenue, if perceived to be temporary. Under the same proviso, management intensity tends to increase due to a decline in the after-tax management cost relative to the marginal return (future stumpage price). On the other hand, an
expected rise in the future tax rate means that the future after-tax price declines. This will encourage the forest owner to cut more in the current period but discourages forestry investments.

4.2.2 Gross yield tax

Assume next that the tax base is the gross stumpage value at harvest time, with no allowance for silviculture. Alternatively, the tax could be levied on the harvest revenue deducted by an arbitrary proportion to allow for the average management costs, best taken as the reforestation cost. The reason for considering this case is that the silvicultural measures costs and estimating their true costs on an individual basis might require too much administration work. Denoting the gross yield tax by γ and the rate of tax deduction by proportion d of the harvest value, the budget constraints become

\[(4.8a) \quad c_i = (1 - \gamma) \cdot p_i \cdot h_i - S - wE_i, \]

\[(4.8b) \quad c_i = (1 - \gamma) \cdot p_i \cdot h_i + (1 + d) F_{i, 0} \]

where $-\gamma = [1 - \gamma (1 - d)]$. The marginal conditions for the harvesting and management intensity decisions will be

\[(4.9a) \quad - (1 - \gamma) \cdot p_i [1 + F_{i, 0} (Q - H_{i, 0})] + (1 - \gamma) \cdot p_i (1 + r) F_{i, 0} = 0, \]

\[(4.9b) \quad (1 - \gamma) \cdot p_i F_{i, 0} (Q - H_{i, 0}) - w (1 + r) F_{i, 0} = 0. \]

Compared to the profit tax, (4.9b) involves w instead of $(1 - \pi) w$. In other words, the yield tax in effect reduces the stumpage price while leaving the unit cost of silviculture unaffected. Therefore the gross yield tax with $\gamma = 1$ is equivalent to the yield of ad valoreum sales tax in Chang (1983), Gamponia & Mendelsohn (1987) or Veckhamiki (1986). As the management costs are not fully deductible, the gross yield tax differs from the profit tax in that even a constant yield tax rate changes the ratio of marginal revenue and cost with respect to silvicultural measures. The same qualitative results will hold whether $d = 0$ or $0 < d < 1$. Formally, the results are

\[(4.10a) \quad H_{i, 1} = D - d (1 - \gamma) \cdot p_i \cdot p_i (1 + r) F_{i, 0} \quad \text{as } F_{i, 0} \gg 0, \]

\[(4.10b) \quad E_{i, 1} = D - d (1 - \gamma) \cdot p_i \cdot p_i F_{i, 0} (1 + r) F_{i, 0} + (1 + r) F_{i, 0} \quad \text{as } F_{i, 0} \gg 0, \]

\[E_{i, 1} = D - (1 - d) p_i F_{i, 0} \quad \text{as } F_{i, 0} \gg 0. \]

Assuming the direct effects dominate, the results can be summarized as

\[(4.11) \quad H = \gamma \cdot E (1, \gamma, \gamma, \gamma) = E (1, \gamma, \gamma, \gamma). \]

Compared to the profit tax, the major conclusion is that the gross yield tax is no longer neutral, even if the tax rate remains constant over time. While the direct effect on the harvesting decision vanishes, there is an indirect effect. Taking the case $F_{i, 0} < 0$ to represent clearcutting and reforestation decisions (Chapter 3), the result $H < 0$ for $F_{i, 0} < 0$ means that even a constant yield tax γ will reduce short-run timber supply. This is because the tax discourages reforestation investments and thereby final fellings of mature stands. Similarly, the gross yield tax unambiguously discourages silvicultural measures ($E_i < 0$ irrespective of $F_{i, 0}$). As (4.9b) indicates, this is because γ, in effect, reduces the marginal return on investments but leaves their marginal cost unaffected.

4.2.3 Ad valorem property tax

The ad valorem property tax is considered as a proportional tax on the value of the standing stock. More specifically, each period's tax base is the value of timber stock remaining after the harvest in the beginning of the period. As the stock equations of the two-period model imply that, formally, all timber is cut in the second period, the second-period tax would become zero. While harmless in fact, this suggests a priori that the results may be biased, as the current period is followed by one with no tax at all. Therefore, a three-period setting is used to analyze the property tax. Denoting the ad valorem property tax by α_i, the taxes for periods 1 through 3 are

\[(4.12a) \quad H_{i, 1} = D - d (1 - \gamma) \cdot p_i \cdot p_i (1 + r) F_{i, 0} \quad \text{as } F_{i, 0} \gg 0, \]

\[(4.12b) \quad E_{i, 1} = D - d (1 - \gamma) \cdot p_i \cdot p_i F_{i, 0} (1 + r) F_{i, 0} + (1 + r) F_{i, 0} \quad \text{as } F_{i, 0} \gg 0, \]

\[E_{i, 1} = D - (1 - d) p_i F_{i, 0} \quad \text{as } F_{i, 0} \gg 0. \]

Inserting the tax terms in (4.12) into the budget constraints and simplifying, the problem becomes formally similar to (3.7). Therefore, the formulation and complete first-order conditions are not repeated. The conditions for optimal H_i and $E_i (i, 1, 2)$ will be

\[(4.13a) \quad - p_i (1 + F_{i, 0}) (1 + F_{k, 0}) + (1 + r) p_i (1 + \alpha_i) + (1 + r) \alpha_i p_i (1 + F_{k, 0}) = 0, \]

\[(4.13b) \quad - p_i (1 + F_{i, 0}) + (1 + r) (1 + \alpha_i) = 0, \]

\[(4.13c) \quad p_i (1 + F_{i, 0}) F_{i, 0} (1 + r) \alpha_i p_i F_{i, 0} + (1 + r) \alpha_i p_i F_{i, 0} = 0, \]

\[p_i F_{i, 0} (1 + r) \alpha_i p_i F_{i, 0} = 0. \]

Eq. (4.13b) implies $p_i (1 + F_{i, 0}) = (1 + r) p_i (1 + \alpha_i)$. Substituting this into (4.13a) and (4.13c), the rules for the optimal first-period harvest and management intensity become

\[(4.14a) \quad P_1 (1 + \alpha_i) F_{i, 0} (1 + r) = 0, \]

\[(4.14b) \quad F_{i, 1} (1 + r) = 0. \]

For the harvesting decision, (4.14a) suggests that the ad valorem property tax is effectively like a multiplicative increase in the current stumpage price by the tax rate α_i. Alternatively, (4.14a) can be written in the form

\[(4.14c) \quad P_1 (1 + \alpha_i) = (1 + r) (1 + \alpha_i). \]

The latter form indicates that, as regards the harvesting decision, the property tax is equivalent to an additive increase in the interest rate. This comparison with the earlier findings based on the optimum rotation model (Chang 1983, Kovenock 1986, Gamponia & Mendelsohn 1987), as well as the analysis by Veckhamiki (1986a), based on size dependent growth, the rate of increase in the effective opportunity cost of capital is approximately equal to the tax rate α_i, because $1 + (1 + r) (1 + \alpha_i) = 1 + r + \alpha_i$, $1 + (1 + r) = 1 + (r + \alpha_i)$. Considering management intensity, (4.14b) suggests that the property tax has no direct impact on the optimal decision, as the tax rate does not appear in the rule. Formally, the comparative statics are obtained from the simultaneous equations

\[(4.15a) \quad - p_i (1 + F_{i, 0} (Q - H_{i, 0})) (1 + \alpha_i) p_i (1 + r) = 0, \]

\[(4.15b) \quad p_i F_{i, 0} (Q - H_{i, 0}) - w (1 + r) = 0. \]

and the results are as follows:

\[(4.16a) \quad H_{i, 0} = H_{i, 0} - D - d (1 + r) F_{i, 0} < 0, \]

\[(4.16b) \quad E_{i, 0} = E_{i, 0} - d (1 + r) F_{i, 0} \quad \text{as } F_{i, 0} \gg 0, \]

\[(4.16c) \quad E_{i, 0} = E_{i, 0} = 0. \]

Notably, only the current property tax rate α_i matters for current decisions. As the results for α_i and α are the same, it makes no difference whether the tax rate is expected to vary over time or remain constant. The fact that α_i does not matter means that expectations of future changes in the tax rate are irrelevant. In other words, changes in the property tax rate are taken into account, in a myopic manner, as they occur.

First, the ad valorem property tax unambiguously increases the short-run timber supply. (4.16a) indicates that there is only a direct effect. Comparison with (3.12) shows that the overall effect on short-run supply is formally equivalent to that of the current stumpage price. Secondly, (4.16b) suggests that the property tax has no direct effects on the management intensity decision. This may seem surprising, as it might be expected that a tax on the future stock would discourage investments that only aim at augmenting the stock. Indeed, Chang (1983) found that the ad valorem property tax reduces both the optimal planting density and rotation length.

The apparent contradiction stems from a difference in the setup. In the present model, the property tax is imposed on the growing stock remaining after each period's harvest. In contrast, capital investments in forestry are not taxed as they occur, but their contributions on the sign of the interaction term. By (4.16b), measures such as fertilization are thereby discouraged ($E_{i, 0} < 0$ as $F_{i, 0} > 0$), since a lower growing stock implies a decline in their marginal product. Precommercial thinnings, etc. ($F_{i, 0} = 0$) remain unaffected, while regeneration measures are indirectly increased with an increase in final fellings.
Summary of the results

To conclude, the ceteris paribus effects on short-run supply and management intensity of the various forest taxes can be summarized as

\[
H = H(\lambda, \pi, \rho, \gamma, \gamma_o; \alpha, \alpha_o, \epsilon) \quad 0 - + + - + \theta + 0
\]

(4.17)

\[
E = E(\lambda, \pi, \rho, \gamma, \gamma_o; \alpha, \alpha_o, \epsilon) \quad 0 - + - ? - ? 0
\]

(4.18)

The neutrality of the lump-sum tax holds irrespective of whether the tax rate is expected to vary over time. The gross yield tax, unlike any of the profit tax, is never neutral (recall that direct effects are assumed to dominate). Finally, the effects of the ad valorem property tax are the same for the current or constant tax rate (tempo- rary or permanent changes). In fact, correct results for the latter case would have been obtained by using the two-period model, because expectations of the future tax rate proved to have no role.

4.3 Effects on long-run timber supply

Turning next to the permanent, long-run effects of forest taxes, the long-run steady state timber supply was defined in section 3.3 as

\[
h(n) = F_Q - \theta H(n) + E(n) + o(n).
\]

(4.18)

Consequently, the effect of any tax (n) on the long-run timber supply can be analyzed by substituting its impacts on the short-run supply and management intensity decisions into

\[
h(n) = F_Q - \theta H(n) + E(n) + o(n).
\]

(4.19)

Assuming a stationary steady state implies that the tax rates are taken to be constant over time. Also, it is known that \(F_Q, F \geq 0 \). Assuming that (for \(\gamma \) and \(\alpha \)) the direct effects dominate, the results can be first summarized as follows:

\[
h = h(\lambda, \pi, \gamma, \alpha). \quad 0 - + - -
\]

(4.20)

The lump-sum and profit taxes are neutral with respect to the long-run supply. According to the short-run results, the lump-sum tax is neutral regardless of variations in the tax rate. By (4.6a) and (4.6b), neutrality applies to the profit tax when perceived to be constant over time. For the gross yield tax, (4.10a) and (4.10b) imply

\[
b_{h} = D^{\gamma}(1 - \rho)F_Q[z_{F}^{(1)}F_{K}^{(1)} - F_{K}^{(1)}]^{\gamma} + \eta 0
\]

(4.21)

as \(F_{K}^{(1)} \neq 0 \).

By (4.21), the gross yield tax tends to reduce the long-run timber supply. First, there is an unambiguously negative direct effect from a reduction in the management intensity. Secondly, there is an ambiguous indirect effect through the optimal growing stock. Assuming the direct effect dominates, the result is \(b_{h} < 0 \). This coincides with Chang's (1983) result that the tax tends to lengthen the rotation and lower the planting density, which in turn tend to reduce the long-run supply (see Appendix 1). According to Vehkamäki (1986), an ad valorem sales tax reduces both forestry investments and the equilibrium growing stock and harvest. The present study has shown that the stock effect, depending on \(F_{K}^{(1)} \), can in fact take any sign. However, the main conclusions coincide.

Finally, for the \(ad \) \(valorem \) \(property \) tax, substituting (4.16a) and (4.16b) implies

\[
b_{h} = D^{\gamma}(1 - \rho)F_Q[z_{F}^{(1)}F_{K}^{(1)} - F_{K}^{(1)}]^{\gamma} + \eta 0
\]

(4.22)

This suggests that the property tax also tends to reduce long-run supply, but through a different mechanism. First, it has an unambiguously negative direct effect through a reduction in the optimal growing stock. Secondly, there is an indirect effect, associated with the management intensity decision, which is uncertain in sign. If the direct effect dominates, the result is \(b_{h} < 0 \). According to Chang (1983), the property tax may reduce both the planting density and the rotation age. Where this is the case, it will unambiguously reduce the long-run timber supply as suggested here (in some cases, the results remain uncertain).

5 The relative efficiency of forest taxes: a normative analysis

This chapter turns to the normative analysis of forest taxation, i.e., the choice of a desirable forest tax regime with respect to a stated criteria. Specifically, forest taxes are analyzed from the relative efficiency point of view. While the basic principle of taxation is raising revenue for public expenditure, production efficiency requires that taxes levied for this purpose should be designed so as to distort economic decisions as little as possible. More formally, the excess burden of taxation at any given level of tax revenue should be kept to a minimum.

Section 5.1 further discusses the concept of excess burden in general and shows how this concept starting point can be specifically applied in the present context. Section 5.2 considers the efficiency of the common forest taxes in an initially undistorted economy by analyzing the effects of compensated switches between forest taxes. Section 5.3 introduces capital income tax taxation as an important example of nonforest taxes that matter for forest management decisions. The appropriate forest tax regime, given the net tax distortion, is then solved using the criterion of intra and intersectoral efficiency of investment. Section 5.4 makes some concluding remarks.

5.1 Excess burden and the efficiency of taxes

5.1.1 Conceptual remarks

The excess burden of a tax (also known as deadweight loss, efficiency loss, or welfare cost) is the amount that is lost in excess of what the government collects (Auerbach 1985, p. 67), or the loss of welfare above and beyond the tax revenues collected (Rosen 1985, p. 276). The period would lead to a price reduction.

In Vehkamäki (1986), the effect of a "timber tax" on the equilibrium stock depends on the direction of stumpage price change. This is because the price in his model follows a continuous price adjustment. In the present setup, similar implications would arise if the expected future price were assumed to change with observed changes in the current price, i.e., \(p_t = f(p_t) \).

Acta Forestalia Fennica 233

Ovaskainen, V.
forest tax regime could be designed to offset the pre-existing distortion; neutrality is an appropriate objective only when defined with respect to the entire tax system (Kvenoock 1986). Thirdly, *only substitution effects are relevant when defining the excess burden. Such effects are due to tax-induced changes in the marginal revenues and costs, i.e. relative prices. In contrast, that minimizing the reduction in disposable income are not a symptom of economic inefficiency (The Structure ... 1978). The excess burden can be defined as the reduction of utility in excess of that which would occur if the given amount of tax were collected as a lump sum (e.g. Rosen 1985, p. 278). On the other hand, lump-sum taxes have income effects only, so the result means that the excess burden is represented by the loss of utility above and beyond the income effect.

5.1.2 Applying the measure

Rather than numerically measuring the excess burden in specific cases, this study aims at general conclusions on the relative efficiency of forest taxes. For such a qualitative analysis, operational counterparts for the concept of excess burden are needed. Throughout Chapter 5, only the income from timber production is assumed to matter. Section 5.2 additionally assumes that no tax distortions pre-exist. In this case, it turns out that minimizing the loss of production efficiency is equivalent to analyzing the effects of compensated switches between forest taxes on the long-run timber supply. The reasoning behind this solution principle is three-fold. First, according to Gamponia & Mendelsohn's (1987) definition of the excess burden, the efficiency of forest taxation requires minimizing the present value of lost income from tax-induced distortions at any given level of tax revenue. Where only the commercial timber matters, the excess burden will be minimized if the forest tax base is chosen so as to maximize the present value of stumpage income (which is just the mirror image of minimizing losses therein). Further, this implies that optimizing the long-run steady state timber supply, subject to a given tax revenue requirement, as a proxy (see section 5.2).

Secondly, Koskela (1989a,b) analyzed the effects of compensated switches between forest taxes, which keep the total tax revenue unchanged. The same procedure will be used to maximize the long-run timber supply subject to a tax revenue target. (The effects of compensating tax switches on the short-run supply are also considered to represent the transitional effects of an anticipated or announced switch, but have no normative status).

Thirdly, public forest policies have traditionally been concerned with the adequacy of sustenance, income and capital. Thus the demand for tax distortions is zero; by the nonneutrality of excess burden this must be the limiting case.

While valid in a special case, this solution is limited: it only holds under the assumption of no pre-existing distortions, and that a tax-induced reduction in the stumpage income is the sole source of excess burden. However, some distortions may indirectly subsidize forestry, and direct tax subsidies are often involved in forest taxation. While increasing timber production, they may imply a misallocation of resources.

Section 5.3.1 therefore introduces a more general approach based on the notion of intra and intersectoral efficiency of investment (Kvenoock & Rothschild 1983, Kvenoock 1986). Given no forest taxes or other initial distortions, the forest owner's optimal management decisions (Chapter 3) imply that the marginal rate of return on the growing stock and other inputs equals the interest rate. Assuming the capital market is efficient, the interest rate represents the general pre-tax rate of return on investment, i.e., the social opportunity cost of capital. Then the private marginal conditions also represent efficient (socially optimal) investment decisions. The correct forest tax rule calls for choosing nondistortive (neutral) forest taxes so as to retain an efficient allocation of capital.

In section 5.3.2, a capital income tax on the interest from financial assets (deductibility of interest charges) is introduced. This is equivalent to a relatively small level of tax revenue, which no longer reflects the true social opportunity cost of capital. While seemingly favorable to forestry in the long run, a reduction in the interest rate discourages timber harvesting. As timber is held too long, too much capital is tied into the mature timber compared to other assets.

As the private solution prior to forest taxes does not coincide with a social optimum, neutral forest taxes are no longer consistent with efficiency. Instead, production efficiency in forestry requires that forest taxation should offset the management distortions from capital income taxation. Thus, the correct tax rule now calls for a "corrective" forest tax structure to restore the efficiency of investment. Following Kvenoock & Rothschild (1983) and Kvenoock (1986), the un distorted, untaxed solution is compared in section 5.3.3 to the private solution which includes both the capital income tax and each type of forest tax in turn.

It is useful to relate the present approach with the literature on the theory of forest taxation; for reviews, see Auerbach 1985, Slemrod 1990). The typical problem in optimal taxation is to determine a structure of taxes which minimizes the excess burden, i.e., the loss of individual utility or optimal commodity taxation or production efficiency (production taxes on firms or suppliers of inputs) at any given level of tax revenue. In more sophisticated models, distributional considerations may be involved. In the present case, this would amount to a general equilibrium analysis to simultaneously determine the optimal structure of both capital income and forestry taxes, which minimizes the overall economic burden of taxation in the economy. While an interesting topic for future research, this is beyond the scope of this study. The main features of the present approach and/or its differences from a typical optimal tax analysis can be summarized as follows.

First, efficiency will only be met in the sense that the distortionary effects of capital income taxation on forest management decisions are corrected (i.e., the excess burden of the two taxes in the forestry sector becomes zero). This is not the case as a whole, since the distortions in intertemporal consumption-savings decisions remain. Thus, imposing a corrective tax on forestry alone represents a partial equilibrium solution. (Also, it could be characterized as second best policy (e.g. Ng 1979), involving piecemeal improvements in a single sector at a time where a first-best solution is hampered for some reasons. In general, a second-best solution, in general is a second-best problem, since lump-sum taxes are usually ruled out). Secondly, the tax revenue is not fixed to a given level. For policy purposes, the implied level of tax burden must therefore be considered separately. In fact, the "corrective" forest tax rates are similar to what is known as 'pigovian tax formulas' after Pigou (1920); for pigovian forest taxes, see Englin & Klan 1990). Also, note that the study focuses on production efficiency, while the effects on the tax-payers (forest owners') welfare are not considered.

In summary, capital income taxation is taken to be a given, uncorrectable distortion. The structure of forest taxation is then designed to neutralize its effects on forest management decisions. Accordingly, the resulting forest tax regime is "optimal" in the sense of production efficiency in the forestry sector alone. As regards implications for forest tax policy, such a partial solution is in fact the realistic choice, because capital income taxation is bound to be maintained for both political and fiscal reasons.

5.2 Efficient forest taxation in an initially undistorted economy

5.2.1 Long-run effects of compensated tax switches

This section turns to the choice of a desirable (economically efficient) forest tax base under the assumption that no management distortions prior to forest taxes exist. Another important assumption (to be relaxed in Chapter 6) is that only timber harvest matters. The excess burden is simply the present value of income lost for tax-induced distortions (Gamponia & Mendelsohn 1987). Minimizing income losses, in turn, is equivalent to maximizing the present value of the sustainable harvest at any given level of tax revenue. Note that a representative forest owner is considered and that given stumpage prices are accordingly assumed. As will be shown in Chapter 8, taking into account the price adjustments due to tax-induced shifts in aggregate timber supply would reduce the effects of forest taxes, without changing the qualitative conclusions concerning their relative efficiency.

Denote timber price by p, the sustainable harvest by h, the interest rate by r, and the vector of relevant tax parameters by b. Then, efficiency is formally defined by choosing the forest tax structure b so as to

\[
\text{Maximize } PV = ph(b) + r \text{ s.t. } T(b) = T^*.
\]

where \(T^*\) is a given tax revenue requirement. With p and r constant, the quantity ph(b)r clearly
is maximized at the same point as h. Accordingly, a valid rule for the choice of a forest tax base in this case is simply maximizing the long-run steady state timber supply subject to a tax revenue requirement.

In the present study, the primary problem is the choice among a number of discrete tax base alternatives rather than setting the value of a continuous tax rate (the latter aspect also enters in the following section). Thus, the problem is conveniently solved by analyzing the effects of compensated switches between two types of tax at a time, with their total tax revenue held at the target level (Koskela 1989a,b). Specifically, switches from the lump-sum tax towards other taxes will be considered. This is because choosing a neutral tax as the point of reference simplifies the analysis. (Naturally, lump-sum taxation in the form of site productivity or site value taxes is also of practical relevance). Denote the long-run timber supply as a function of the lump-sum tax A and an alternative forest tax n by

\[h = h(A,n). \]

(5.2)

Suppose there is a switch from the lump-sum tax towards tax type n so that the increase in taxes collected by n is compensated by an equal reduction in the lump-sum tax. That is, the present value of total tax revenue is kept at the target level (for the profit tax, for example, \(\lambda + \pi (p_H - w_E) = T_0 \)). The resulting change in long-run timber supply is expressed by the total differential

\[dh = A dA + n dn. \]

(5.3)

Because \(A_0 = 0 \) by Chapter 4, (5.3) reduces to

\[dh = n dn. \]

The effect of a switch from A towards n then simplifies to

\[dh / dn = h_{11} = h_{11}. \]

(5.4)

In other words, when the reference case is the neutral lump-sum tax, the effect of a compensated switch reduces to the ceteris paribus effect of the alternative tax.

By (5.4), the effect of a switch from the lump-sum tax towards any of the other taxes is obtained by using the results in Chapter 4. For a switch to the profit tax, \(h_{11} = 0 \) (according to (4.20)). That is, the choice between the lump-sum and profit taxes does not matter in terms of long-run timber supply. Note, however, that for the realized income tax to be neutral, management costs must be fully deductible and the tax rate must be constant over time. For the gross yield or ad valorem property tax, (4.21) and (4.22) imply

\[dh / dn = h_{11} = h_{11}, \]

(5.5)

for \(n = y, \tau, \). A switch towards either the gross yield tax or the ad valorem property tax tends to reduce the long-run timber supply compared to lump-sum taxation. The effect is unambiguously negative whenever \(F_{x0} \geq 0 \), and the same also holds for \(F_{x0} < 0 \) if the direct effects dominate.

The policy implications of the results are as follows. First, where timber production only matters and no tax distortions pre-exist, neutral forest taxation is desirable since it provides the highest long-run timber supply at any given tax revenue. Specifically, the choice between lump-sum taxes (the unmodified site productivity or site value tax) or the profit tax does not matter from the efficiency point of view. Secondly, any of the neutral taxes outperform the gross yield tax or the ad valorem property tax, which both tend to reduce the long-run supply of timber. The relative performanceconstantly the latter two remains a priori ambiguous (see Appendix 3).

An additional note on the foregoing yield tax may be useful. A well-known result from the basic rotation model suggests that the (gross) yield tax, by lengthening rotations, will increase the long-run timber supply (cf. Equation 1). Thus, the goal of maximizing long-run supply would seem to favor yield taxation. However, this conclusion is no longer valid when the management intensity is incorporated and/or alternative applications of yield taxation are considered. The gross yield tax will reduce the long-run supply via an unambiguously negative impact on the management intensity, while via the growing stock (cf. rotation age, Chang 1983), there is only an ambiguous indirect effect. On the other hand, the profit tax - with full deductibility of costs - is neutral when constant over time, and thereby equivalent to lump-sum taxation in terms of long-run timber supply.

5.2.2 Transitional effects

Even if the normative analysis is mainly concerned with the long-run effects of alternative forest tax bases, the transitional effects must also be taken into account if a switch to a completely new tax regime is considered. In practice, such a major reform cannot be put into effect overnight, and a transition period is usually required. Therefore, the effects on short-run timber supply and management intensity of an anticipated or announced tax are examined (while unanticipated tax base switches are not considered relevant). Formally, the future tax base is assumed to change to see how expectations of a tax switch affect the current timber supply and management intensity decisions during the transition period.

Suppose there is a compensated switch in future taxation from the lump-sum tax towards a neutral tax n (with lump-sum and profit taxes, for example, the tax revenue is \(\lambda + (1 + r) A_1 + \pi (p_H - w_E) + (1 + r) \pi p_H H_1 = T_0 \). Given that \(f = f(A_1, n) \) and \(e = e(A_1, n) \), the effects of a switch between \(A_1 \) and \(n \) are indicated by the total differentials \(dh = H_1 dA_1 + H_n dn \) and \(de = E_1 dA_1 + E_n dn \). Since \(A_1 = E_1 = 0 \), the first terms vanish. Again, the effects of compensated changes therefore reduce to the ceteris paribus effects, i.e.,

\[dh / dn = h_{11} = h_{11}, \]

(5.6a)

\[dh / dn = h_{11} = h_{11}, \]

(5.6b)

For \(n = y, \tau, \). Consider, first, a switch to profit or gross yield tax taxation. The results in (4.6) and (4.10) imply

\[dh / dn = h_{11} = h_{11}, \]

(5.7a)

\[dh / dn = h_{11} = h_{11}, \]

(5.7b)

Since \(H_1 = E_1 = 0 \), the first terms vanish. Again, the effects of compensated changes therefore reduce to the ceteris paribus effects, i.e.,

\[dh / dn = h_{11} = h_{11}, \]

(5.8a)

\[dh / dn = h_{11} = h_{11}, \]

(5.8b)

By (5.8), an anticipated switch from lump-sum taxation towards either the profit or gross yield tax tends to increase harvesting but decrease the management intensity during the transition period. Secondly, suppose a switch to the ad valorem property tax is expected. According to (4.16),

\[dh / dn = h_{11} = h_{11}, \]

(5.9a)

\[dh / dn = h_{11} = h_{11}, \]

(5.9b)

Interestingly, (5.9) suggests that expectations of a switch to the ad valorem property tax will affect neither timber supply nor management intensity decisions during the transition period, although the property tax was found to be nonneutral. As discussed earlier (Chapter 4), the basic reason is that an immediate adjustment of the standing stock - i.e., selling any amount of timber without affecting the unit stumpage price - is possible for the representative forest owner. Consequently, changes in the ad valorem property tax are taken into account as they occur rather than adjusting the behavior in anticipation.

An interesting corollary is that the transitional effects of the gross yield and ad valorem property taxes appear to be quite different: a switch to yield taxation is likely to cause a major transitional shock before the actual switch, while the property tax would more steadily encourage harvesting after the transition period. Consider the transition process in three stages. At stage (1), the future tax switch has been announced (see the results in (5.8) and (5.9)). At stage (2), the new tax regime has been put into effect and is applied both in the current and future taxation. At stage (3), the new long-run equilibrium that is established over time (section 5.2.1).

An announced switch to yield/profit taxation is equivalent to a reduction in the expected future stumpage price by the tax rate. Given that yield tax rates might be in the order of 25 per cent, the desired harvest would markedly increase during the transition period, stage (1). Even if the shock were reduced by a consequent reduction in the market prices for stumpage, the standing stock and thereby timber supply at stage (2) might be reduced significantly.2 At stage (3), the yield/profit tax implies a lower or unchanged equilibrium harvest (\(h_y < 0, h_{p0} = 0 \)). The results suggest that a switch to the ad valorem property tax, in contrast, would not change timber supply during the transition stage (1). The property tax would first increase harvesting when put into effect, at stage (2). Compared to yield taxes, the short-term shocks would even then be less drastic.3 On the other hand, the effect of the property tax does not vanish when established, as even a constant property tax was shown to encourage harvesting. The long-run supply finally tends to be reduced when the growing stock settles at a lower equilibrium level.

5.3 Efficient forest taxation with pre-existing tax distortions

The assumption of an economy with no initial tax-induced management distortions is likely to
be an unrealistic point of departure. This section therefore introduces capital income taxation as an important complication of tax distortions that may exist prior to, or regardless of, forest taxes. If the income from non-forest assets is taxed and the interest charges for loans are tax deductible, the initial allocation will be distorted via a reduction in the effective private opportunity cost of capital. As discussed in section 5.1.2, maximizing the long-run timber supply is no longer a valid criterion for forest taxation. Rather than forest taxes alone, the efficiency effects of forest and other taxes must be considered as a whole.

Section 5.3.1 develops a more general procedure to deal with this case (together with non-timber objectives or tax subsidies in Chapters 6 and 7). To introduce the alternative approach, the results on efficient forest taxation with no other taxes are first restated. Section 5.3.2 analyzes the effects of a uniform capital income tax (deductibility of interest charges) on consumption-savings and forest management decisions. Section 5.3.3 then solves for the appropriate forest tax regime under an income tax on non-forest assets. It will be shown that production efficiency net of non-market (capital gains) taxation of forestry to offset the initial distortion. Section 5.3.4 shows that, besides an ad valorem property tax, efficiency could be attained by an accrual income tax.

5.3.1 Forest taxes and the efficiency of investment

Recall the marginal conditions for the representative forest owner’s optimal harvesting and management intensity decisions, with no taxes, in Eqs. (3.11). Letting \(p_c = p_r = p \) for clarity (the prices would eventually vanish anyhow), (3.11) simplifies to:

\[
\begin{align*}
(5.10a) & \quad 1 + F_{Ec} = 1 + \frac{\pi_c}{1 - \frac{\pi_c}{p}} + r \\
(5.10b) & \quad F_{Ec} = (1 + r)\left(k/w \right) + p.
\end{align*}
\]

To focus on the tax issue, let us assume that the capital and stumpage markets are "by and large" efficient or, rather, ignore the potential failures therein. According to the neoclassical theory of interest, the equilibrium of the capital market under idiosyncratic conditions implies that the market rate of interest is equal to the marginal productivity of capital, the opportunity cost of capital, and the social marginal rate of substitution between present and future consumption. (For a brief statement of the standard view, its potential complications and further references, see e.g. Clark (1976, p. 70–72, 87) or Ch. 6 in Dasgupta & Pearce (1978).) The market rate of interest can then be taken to represent the general pre-tax rate of return on investment, i.e., the social opportunity cost of capital. Similarly, the stumpage prices can be taken to reflect the marginal social benefit of a unit of timber cut.

Under these assumptions, the untaxed, undistorted private decisions also represent a socially optimal intertemporal allocation of resources. Eq. (5.10a) determines the private and socially optimal growing stock, at which the marginal return on the growing stock equals its opportunity cost (i.e., the pre-tax interest rate representing the rate of social and private returns on alternative assets). Similarly, (5.10b) equates the private and social marginal return on capital invested in silviculture with the returns on investment in other sectors of the economy. Both intra and intersectoral efficiency will be met, because the marginal rates of return on the growing stock, silviculture, and non-forest assets are the same and equal to the social opportunity cost of capital. No reallocation of resources would improve the performance of the economy.

Obviously, forest taxation should leave the harvesting and investment decisions unaltered, once the initial allocation is efficient. For the lump-sum and profit taxes, (4.5) with \(p_c = p_r = p \) becomes

\[
\begin{align*}
(5.11a) & \quad 1 + F_{Ec} = 1 + \frac{\pi_c}{1 - \frac{\pi_c}{p}} + r \\
(5.11b) & \quad F_{Ec} = (1 + r)\left(k/w \right) + p.
\end{align*}
\]

Clearly, lump-sum taxation is efficient in this case, since it always leaves the decisions undistorted. The profit tax, in turn, may cause distortions if the tax rate is expected to vary over time. As the terms with \(\pi_c \) vanish when \(\pi_c = \pi_r \), it will be nondistortionary if the tax rate is constant over time. For the gross yield tax, (4.9) implies:

\[
\begin{align*}
(5.12a) & \quad 1 + F_{Ec} = \gamma \gamma^* (1 + r) \\
(5.12b) & \quad F_{Ec} = (1 - \gamma)\gamma^*(1 + r)\left(k/w \right) + p.
\end{align*}
\]

The harvesting decision is directly distorted where \(\gamma^* = \gamma \) but remains unaltered if \(\gamma^* \) is constant. Unlike the profit tax, the management intensity decision is distorted (the marginal product of silvicultural inputs remains higher than the undistorted optimum implies). Thus, the gross yield tax cannot be efficient, as the management intensity will be lower than socially optimal. Finally, (4.14) implies for the ad valorem property tax

\[
\begin{align*}
(5.13a) & \quad 1 + F_{Ec} = 1 + \alpha r(1 + r) \\
(5.13b) & \quad F_{Ec} = (1 + r)\left(k/w \right) + p.
\end{align*}
\]

With respect to the harvesting decision, the property tax is equivalent to an increase in the interest rate. The marginal product of growing stock at the optimum will be higher and the stocking level lower than efficiency requires. Thus, the ad valorem property tax will not meet efficiency under these circumstances (even if management intensity is not directly distorted). Summarizing, the conclusions are equivalent to those in section 5.2.1.

5.3.2 Capital income taxation

Next, suppose there is an income tax on the interest from bank accounts, loans on non-forest assets, and interest charges for bank or government loans are tax deductible. A uniform, proportional capital income tax at rate \(\tau \) is assumed to be symmetrically applied to both savings and borrowing. Both the income tax from savings (\(S > 0 \)) and interest charges for loans (\(S < 0 \)) are consequently reduced by the same fraction. The second-period budget constraint involves (1 + \(\tau \)S) = \(\tau \)S instead of \(1 + rS \)

\[
\begin{align*}
(5.14) & \quad c_r = p_rH_r \left[1 + (1 - r)\tau \right]
\end{align*}
\]

Denoting \(\tau (1 - r) = \rho \), the private optimality conditions now become:

\[
\begin{align*}
(5.15a) & \quad U_{c_r} = u(c_r) - \beta u'(c_r)(1 + r) = 0 \\
(5.15b) & \quad U_{F_{Ec}} = \beta u'(c_r)(1 + F_{Ec} + p + (1 + r) = 0 \\
(5.15c) & \quad U_{F_{Ec}} = \beta u'(c_r)(1 + F_{Ec} + (1 + r) = 0.
\end{align*}
\]

According to (5.15), the representative forest owner’s effective interest rate becomes the after-tax interest rate \(p^* \), and the capital income tax is equivalent to a reduction in the interest rate. Clearly, the tax-induced reduction in the effective private opportunity cost of capital will distort both the consumption-savings and forest management decisions. As alternative assets become less attractive and borrowing is encouraged, timber will be held too long. More specifically, consider the intertemporal consumption decisions now characterized by

\[
\begin{align*}
(5.16) & \quad u(c_r)/b(c_r) = 1 + r + \tau
\end{align*}
\]

(cf. Chapter 3). Via a reduction in the cost of borrowing and returns on assets, \(\tau \) tends to switch consumption towards the present and to discourage savings. As the reduction continues to hold, the consumption decision can be analyzed by using (5.15a) with \(c_r = p_rH_r \left[1 + (1 - r)\tau \right] \), i.e. treating the harvesting and management intensity decisions as the "determined" optimum values denoted by asterisks. Totally differentiating with respect to \(c_r \) and \(\tau \), the effect of \(\tau \) can be written as:

\[
\begin{align*}
(5.17) & \quad \frac{\partial c_r}{\partial \tau} = -\rho_\tau \left[u(c_r) + \beta u'(c_r)(1 + r) \right] \\
& \quad = -\rho_\tau \left[u(c_r) + \beta u'(c_r)(1 + r) \right] \\
& \quad = -\rho_\tau \left[u(c_r) + \beta u'(c_r)(1 + r) \right]
\end{align*}
\]

where \(S = (p_rH_r \left[1 + (1 - r)\tau \right] \). For a borrower (\(S < 0 \)), \(\tau \) will unambiguously increase current consumption, since both the substitution effect (due to its lower relative price) and the income effect (due to lower interest charges, hence higher disposable future income) are positive. For a net lender (\(S > 0 \)), the effect is ambiguous. While the substitution effect is positive, the reduction in future interest income has an opposite effect (see Sandmo 1985, p. 209).

The harvesting and management intensity decisions now characterized by

\[
\begin{align*}
(5.18a) & \quad 1 + F_{Ec} = 1 + r + \tau
\end{align*}
\]

where the stumpage price has been set constant for comparison with (5.10). The optimal private forest management decisions in (5.18) under capital income taxation no longer coincide with the socially optimal allocation, because the marginal rate of return on the growing stock and other inputs in forestry remains lower than the social opportunity cost, i.e., the pre-tax rate of return on other assets. Formally, the effects of \(\tau \) on harvesting and management intensity decisions and long-run timber supply are
The capital income tax tends to reduce timber harvesting. This follows mainly from the negative direct effect via the opportunity cost of the growing stock (the indeterminate case is due to the positive indirect effect of an implicit subsidy on reforestation investment). As an implicit subsidy to the capital cost, \(r \) on the other hand tends to increase management intensity. Due to positive direct effects through both the growing stock and management intensity, the long-run timber production and potential supply tends to increase. Note, however, that both intertemporal efficiency within forestry and intersectoral efficiency between forestry and other sectors are violated. With no or neutral taxation in forestry, an inefficiency is generated as too much capital is tied to the mature timber relative to other assets. Further, too low-yielding investments in timber growing are encouraged.

5.3.3 Correcting initial tax distortions through forest taxation

The above analysis showed that capital income taxation, even when proportional and symmetric, will distort intertemporal decisions (for more detailed discussion, see e.g. Sandmo 1985). A nondistortionary tax treatment of savings would call for a system whereby the income saved (rather than consumed) is exempted and the interest income is not taxed until withdrawn for consumption. Such an expenditure tax (see The Structure ... 1978, Bowdary & Wildasin 1984, Musgrave 1985) is briefly discussed in Appendix 4. However, there is no experience of applying the expenditure taxation (while some argue it cannot be applied in practice, it has also been suggested that it is exactly for administrative reasons that it should be used; see The Structure ... 1978). Capital income taxes, with respective interest charge deductions, are most likely to be maintained for both fiscal, political and international reasons. What for the implicit tax, a proportional income tax is therefore assumed.

As the initial allocation with capital income taxation is inefficient, neutral forest taxes may no longer be desirable. Instead, efficiency gains could be achieved by designing the forest tax regime so as to reduce the initial management distortions. Next, an appropriate forest tax base and "corrective" tax rate will be determined by searching for a forest tax regime that exactly offsets the distortionary effect of capital income taxation on forest management decisions. Not the least important natural resource management implication of this line of thought is that the current tax system, at least in its present form, is inefficient. The income foregone by not taxing an efficient tax base can be substantial. At the very least, an efficient tax base will avoid the loss in efficiency suggested by the given equation. The simultaneous equations in (5.21) must be solved for \(\pi_1 \) and \(\pi_2 \) to see whether an appropriate profit tax rate exists. As the ratio of factor cost to stumpage price \(w/p \) vanishes, the two equations in fact collapse to one. According to (5.21a), no constant profit tax rate will do: setting \(\pi_1 = \pi_2 \) implies \(1 + r(1 - r) = 1 + r \), which is untrue for any \(r > 0 \). On the other hand, treating \(\pi_1 \) as fixed and solving for \(\pi_2 \) gives

\[
\pi_2 = \pi_1 + r(1-r)(1+r) > \pi_1.
\]

That is, the profit tax can only cancel the effect of \(r \) if the future tax rate is determined (expected) to exceed the current tax rate by a given amount. Clearly, such a result is meaningless from a policy point of view, since the tax rate cannot be steadily increased year by year. Thus, the profit tax cannot be used as a corrective tax. The conclusion is equivalent to that by Kovenock (1986), who shows that a realized income tax, what would result with respect to the harvesting decision, implies inefficiency when combined with an income tax on the ordinary sector.

The gross yield tax

For the gross yield tax, it is similarly obtained

\[
\pi_2 = 1 + \gamma(1 + r) > 1 + r
\]

(5.23a) and

\[
\pi_2 = 1 + \gamma z r(1 + r) > 1 + r
\]

(5.23b)

\[
\pi_2 = (1 + \gamma z)(1 + r(1+r)) = 1 + r \alpha + \alpha (1 + r)^2
\]

which gives the approximation

\[
\alpha = \frac{r}{1 + r}
\]

As it makes no difference whether the ad valorem property tax rate varies over time, the optimal \(\alpha \) will be constant over time to the extent that \(r \) and \(r(1+r) \) remain constant. Formula (5.25) can be further simplified by noting that \((1 + \alpha)(1 + r) = 1 + r^2 + \alpha + 2 \alpha r = 1 + r^2 + \alpha r \). Using the form \(1 + r(1+r) = \alpha + 1 + r \) gives the approximation

\[
\alpha = 1 + r
\]

A number of conclusions can be made. First, among the common forest taxes considered above, the ad valorem property tax is the only one that tax rate \(\alpha \) is approximately equal to the pre-tax interest rate \(r \). The solution \(\alpha = r \) is equivalent to Kovenock's (1986, p. 205) result. According to Kovenock, both inter and infrasectoral efficiency is attained if a property tax is levied in the Austrian sector at a rate equal to the social discount rate, or pre-tax rate of return in the ordinary sector, multiplied by the
income tax rate in the ordinary sector (in Kovenock’s notation, \(r = r_{x} \)). Thirdly, as the tax rate is determined by two directly observable factors – and constant over time to the extent that its determinants are – the solution appears feasible for policy purposes.

However, practically setting the appropriate property tax rate is not without difficulty (ad-ministrative problems are omitted at this point; see Chapter 8). The relevant interest rates in fact vary across individuals. (Also, the effective capital income tax rate \(\tau \) differs between borrowers and lenders if the tax on interest income and interest charge deductions are determined asymmetrically. See end note 4). Further, formula (5.26) is derived for analytic purposes from a model where all variables are expressed in real terms. For numerical estimates of \(\alpha \), the role of inflation must be explicitly considered, in order to distinguish between nominal and real interest rates, because both capital income taxes and interest charge deductions are actually based on nominal magnitudes. Appendix 5 shows how to take this into account and provides numerical examples.

5.3.4 A Note on the Accrual Income Tax

It was shown above that realized income taxation in forestry, even if neutral as such, results in inefficiency when combined with an income tax on other assets. The delay in the realization time of timber is due to the fact that realized income taxation fails to recognize the capital gains aspect of changes in the forest property’s value. Therefore, even if the capital income tax is levied at a uniform rate on forestry and other sectors, an asymmetry prevails: investment in the standing timber is tax exempted while other assets are taxed. The ad valorem property tax, in contrast, can attain efficiency, since – given a sufficient re-valuation of the property – unrealized increments in the growing stock, as well as reductions therein, will be recognized.

Another way to achieve the same result is to define the forest forestry on an accrual rather than realization basis. Under the accrual income taxation, the tax base is defined as the realized net income plus any change in the potential harvest in the growing stock compared to the previous period. Unlike the profit or gross yield taxes, the unrealized capital gain added to the realized income while a reduction in the standing stock is deducted (the harvest in excess of the forest’s increment represents a transfer of wealth between the forest and other assets rather than real income). Denoting the accrual income tax rate by \(\kappa \), and the previous period’s growing stock and stumpage price by \(K_{0} \) and \(p_{0} \), the budget constraints are

\[
\begin{align*}
(5.27a) & \quad c_{t} = (1 - \kappa)(p_{t}H_{t} - wE) - S - \kappa(p_{t}K_{t} - p_{0}K_{0}) \\
(5.27b) & \quad c_{t} = (1 - \kappa)(p_{t}H_{t} + (1 + r)S - \kappa(p_{t}K_{t} - p_{0}K_{0}).
\end{align*}
\]

Noting that \(K_{0} = Q - H_{0}, H_{t} = Q - H_{t} + F(Q - H_{t}E) \) and \(K_{t} = 0 \) and simplifying, these can be rewritten as

\[
\begin{align*}
(5.27a') & \quad c_{t} = p_{t}H_{t} - (1 - \kappa)wE - S - \kappa(p_{t}Q - p_{0}K_{0}) \\
(5.27b') & \quad c_{t} = p_{t}H_{t} + (1 + r)S - \kappa(p_{t}p_{0}Q - \kappa H_{t}) + p_{t}F(Q - H_{t}E).
\end{align*}
\]

The latter form indicates that the accrual income tax is, in effect, a capital gains tax on the forest’s value increment due to the volume increment and stumpage price change. The optimal harvest and management intensity will be determined by the conditions

\[
\begin{align*}
(5.28a) & \quad -((1 - \kappa)p_{t}[1 + F_{t}(1)] + p_{t}((1 + r) - \kappa)) = 0 \\
(5.28b) & \quad (1 - \kappa)p_{t}F_{t}(1) + (1 + r)(1 - \kappa)w = 0.
\end{align*}
\]

Rewriting (5.28) as

\[
\begin{align*}
(5.28a') & \quad (1 - \kappa)p_{t}F_{t}(1) = 1 + r - \kappa \\
(5.28b') & \quad (1 - \kappa)p_{t}F_{t}(1) + (1 - \kappa)w = 1 + r
\end{align*}
\]

shows, first, that \(\kappa \) does not appear in the cutting rule (5.28a’). That is, the current tax on the realized income and the respective reduction in the capital gains tax exactly offset each other. Secondly, \(\kappa \) appears both as a reduction in \(p_{t} \) on the L.H.S. of (5.28a”) and as a reduction in the interest rate on the R.H.S. As the former effect tends to increase and the latter to reduce the current harvest, the total effect is not clear.

However, the effect is likely to be small, as the R.H.S. \(1 + r - \kappa \), \(1 + r - \kappa \), \(r = r_{x} \), so that the terms with \(\kappa \) tend to cancel out. Thirdly, a constant accrual income tax rate \(\kappa = \kappa \) would resemble \(\kappa \). Considering (5.28b”), \(\kappa \) tends to increase management intensity similarly to a reduction in the factor cost \(w \), while \(\kappa \) tends to reduce it similarly to a reduction in \(p_{t} \).

5.4 Conclusion

Chapter 5 has considered the choice of a desirable forest tax base from the perspective of economic efficiency, assuming that only the consumption of marketed goods – hence timber production – matters to the representative forest owner as well as the policy maker (timber services of the forest will be allowed for in Chapter 6). The main conclusions are as follows.

First, where no significant tax distortions pre-exist, neutral forest taxation is desirable. This was shown in two alternative ways. Among the common tax considered here (excluding any direct or indirect tax subsidies), neutral forest taxes provide the highest long-run timber supply at any given tax revenue. On the other hand, neutral taxes do not distort relative prices and the intra and intersectoral allocation of investment. Specifically, lump-sum taxes, such as the site productivity tax, are desirable in an initially undistorted economy (the same holds for the profit tax, with caution). The gross yield and ad valorem property taxes change relative prices and cannot be efficient. The results agree with the conclusions in e.g. Gamponia & Meldorff (1987). The transitional effects of compensated tax base switches were also considered.

Secondly, management distortions from capital income taxation were assumed to exist initially. The objective of neutral taxation should then be understood as the neutrality of forest and other taxes taken together. Neutral forest taxes are no longer efficient. For the initial mis-allocation to be cancelled, forest taxation should encourage the realization of timber to the same extent that the tax-induced reduction in the opportunity cost of capital discourages it. In this case, both lump-sum taxation and realized income taxes, such as the profit or gross yield tax, fail to attain efficiency.

Realized income taxes, even if neutral as such, imply inefficiency when combined with an income tax on other assets. The ad valorem property tax, in contrast, seems appropriate. More specifically, a properly chosen property tax rate can induce efficient realization decisions for timber and thereby restore the efficiency of allocation between the standing stock and other assets. Alternatively, an accrual income tax can be used. The latter conclusions agree with those by Kovenock & Rothschild (1983) and Kovenock & Kovenock (1986) who show that properly set capital gains taxes on forests can be used to attain production efficiency, while realized income taxes on assets such as timber are inconsistent with efficiency under an income tax on other assets.

Notes to Chapter 5

1. In some cases, taxes can be designed to correct for previous misallocations due to externalities, imperfect competition, etc., or to reduce socially undesirable effects (e.g. The Structure ... 1978). Examples are taxes on alcohol and tobacco, as well as “environmental taxes” (CO2 or sulphur dioxide) or forestry taxes on nitric and phosphorous fertilizers, or excise taxes on disposable cans). Such taxes seek to limit the use of and damage from such products. In the case of forestry, neither timber harvesting under well-defined property rights nor the standing forest can reasonably be considered as harmful activities/effects that call for such treatment.

2. Following a reduction in the standing stock, a negative supply effect at stages 2 was unambiguous. The effect of the tax itself was negative if the forest owners perceive only the current tax when the new regime has only just become operative (\(H_{x} = 0, H_{x} = 0 \)). If both current and future taxes are fully recognized, it would be rather neutral (\(H_{x} = 0, H_{x} = 0 \)).
6 Taxation and timber supply with nontimber benefits

So far, timber supply and forest taxation have been analyzed under the assumption that all that matters is the consumption of marketed goods, and thereby the income from timber production. In this chapter the nontimber services of the forest, such as scenic beauty and recreation, are incorporated. The purpose of this chapter is to extend the modelling of timber supply decisions. A second purpose is to examine whether the conclusions on the efficiency of forest taxes are sensitive to the assumptions concerning the forest owner’s and/or policy-maker’s objectives.

Section 6.1 first discusses the modelling approach and the relationship of a forest’s perceived amenity to stand/forest characteristics. Section 6.2 analyzes the harvesting decision with nontimber considerations and its comparative statics properties. The effects of alternative forest taxes are analyzed in section 6.3, and section 6.4 examines their relative efficiency. Both an initially undistorted economy and one with pre-existing management distortions from capital income taxation are considered. Section 6.5 concludes by summarizing the results on efficient forest tax regimes from all cases covered in Chapters 5 and 6.

6.1 Modelling approach

The nontimber benefits from a forest, such as scenic beauty and recreation, are usually nonmarketed benefits, nonexclusively available to the public without charge. That is, they represent public goods or a special kind of positive consumption externality, and there is no way for the forest owner to receive compensation for providing them. According to the standard theoretical result on externalities (e.g. Ng 1979), incorporating the nonindustrial private forest owners (NIPF) is concerned, however, it has been frequently suggested that the forest owners themselves derive utility from the forest’s nontimber services and, therefore, they take them into account in forest management decisions.1 Especially where the owner lives on the property or regularly uses it as a part-time residence, this seems plausible. Therefore, the case where the forest owner takes the nontimber considerations into account is also analyzed in order to examine their implications on the harvesting decision.

The amenity values will be explicitly treated as nonmarketed, unpriced benefits and accordingly incorporated directly into the forest owner’s utility function. For simplicity, the production of nontimber services is taken to be proportional to the standing volume. Thus, the standing stock itself, with a positive marginal utility, can be included into the utility function to represent such values (Binkley 1981, Kuluuvainen 1985, 1986, Max & Lehman 1988). Given that

clearcut regeneration areas are disliked while mature stands with big trees are usually considered attractive, it seems reasonable to assume that the forest’s scenic value, increasing with stand age, also depends positively on the standing volume per unit area. However, it is useful to refer to some empirical findings on how the perceived amenity of a forest depends on various forest characteristics.

According to Kellomäki & Savolainen (1984) and Pulkka et al. (1988), mature and relatively sparsely stocked stands of tall trees had the greatest scenic value, with tree size and age clearly increasing the valuation. For congested stands, the scenic value was two-peaked with respect to the development stage of the stand (Kellomäki & Savolainen). While at its lowest on open areas and higher for seedling stands, the scenic beauty index declined again for sapling stands due to a poor range of vision. After that, the scenic value rapidly increases but peaks as soon as the stand reaches maturity. The results for mean and dominant height, mean breast height diameter, standing timber age, and stand age were very similar to the development stage. Interestingly, the results suggest that scenic value does not substantially rise after a given "sufficient" level of stem volume has been reached; for example, a marked increase from 1975 to 1984 did not value higher than a commercially managed single-species coniferous stand. Rather than monotonically increasing the amount of a forest, the marginal effect of the standing volume tends to zero and eventually becomes negative when the within-range of vision and attractiveness for recreation start to decline. As a high number of trees per hectare implies a low amenity while a high amenity value involves big trees rather sparsely located, the total volume cannot become very high. However, it is not until the timber volume common in commercially managed mature stands is reached that the marginal effect of the standing stock tends to zero (Kellomäki & Savolainen 1984).

The amenity of a forest region may depend on aggregate (forest-wide) factors which differ from the within-stand amenity factors. Within reason, the limit an increase in the mean timber volume per hectare contributes positively the forest amenity, because the proportion of the least valued open areas and young sapling stands thereby declines while the proportion of mature stands increases. However, the between-stand variation and distant scene have been observed to increase the amenity of a forest region so that

seeding stands or even open areas may have a positive value (e.g. Pulkka et al. 1988).

In this context, it is reasonable to focus on commercially managed forests mainly used for timber production. The above findings then suggest, first, that while the effect of the standing timber volume is non-monotonic, the marginal utility with respect to the standing stock can be assumed positive (but diminishing) over the relevant range of timber volumes. Secondly, stand age (or tree size) clearly matters. A mature stand with tall trees and moderate density is valued higher than a young stand with a high number of trees and height growth per hectare is the same. Thus, a separate variable reflecting the size of individual trees might be relevant. However, it will be omitted as its introduction would induce ambiguity in the results without major economic insight.

6.2 The harvesting decision with nontimber considerations

A major consequence of incorporating the imputed utility from the standing forest into the model is that the separation of consumption and production decisions no longer holds. Rather than the variable cash flow from the first period harvest, the second-period harvest becomes a true decision variable. The solution will consequently be more complicated compared to the separation case discussed so far. For the clarity and fluency of the presentation, two simplifications will be made.

First, the management intensity decision will be omitted. Appendix 6 shows that management intensity, in fact, would be separable from the consumption decision and that the inclusion of nontimber values would not directly influence its optimal level if silvicultural measures as such do not affect the decision-maker’s utility. In this case, the optimal management intensity could be solved independently and substituted into the problem. Obviously, however, this would bring little insight compared to the earlier analysis. On the other hand, intensive regeneration measures, such as site preparation, can directly impute disutility. If the management intensity directly entered the utility function, it would also be determined simultaneously. With up to five choice variables (including the future, as well as current, intensity decision), the analysis would become too involved. Secondly, following e.g. Johansson et al. (1989), the decision-maker’s
utility function is assumed to be additive separable not only intertemporally but also with respect to income and non-income benefits (i.e., the marginal utility from stock-dependent amenities is independent of the consumption level and vice versa). Technically (denoting the utility function by V), the cross partial derivatives \(V_{xS} = V_{xS} \) vanish, which simplifies the analysis (cf. Max & Lehanne 1988). A zero cross derivative is also a reasonable first approximation, because \(V_{xS} \) might take on alternative signs depending on the specific type of benefits under consideration.

The objective function and constraints

Assume the forest owner behaves as if he/she maximized the discounted utility from the consumption of market goods and non-timber services of the standing forest. The forest owner’s preference ordering over the consumption of marketed goods and nonmarket amenities is represented by the additive separable utility function

\[
V = u(c) + v(H) + v(O - H) + \beta u'(c) + v'(K)
\]

where \(c \) denotes the consumption of goods in period 1, \(H = (1 + r)H \), as before. The subutility functions \(u(\cdot) \) and \(v(\cdot) \) exhibit positive and diminishing marginal utilities, i.e., \(u'(\cdot) > 0 \), \(v'(\cdot) = 0 \), and \(u''(\cdot) < 0 \). Further, the standing stock \(K \) represents the production of nontimber services. Intuitively, the relevant standing stock variable regarding the environmental value of the forest is each period’s minimum stock after harvest. Thus, \(K \) are defined as

\[
(6.2a) \quad K_i = O - H_i
\]

\[
(6.2b) \quad K_i = Q - H_i + F(Q - H) - H_i
\]

For the growth function \(F = F(K) \), it is assumed, similarly to (A.1), that \(F'(\cdot) > 0 \) as \(K \) and \(F''(\cdot) < 0 \) for all \(K \in (0,c) \).

As the standing stock imputes utility, the future harvest’s decision making no longer implies cutting down all the trees (instead, the utility from the marginal unit of timber in consumption equals the marginal amenity loss). Formally, the strict inequality \(H_i < Q - H_i + F(Q - H) \) will hold, so the harvest possibility constraint is not binding and the second-period harvest \(H_i \) is a choice variable. The budget constraints are

\[
(6.3a) \quad c_i = p_i H_i + 1 - S
\]

\[
(6.3b) \quad c_i = p_i H_i + (1 + r)S
\]

where \(p_i, S, \) and \(r \) denote stumpage prices, net savings and the interest rate as before. Furthermore, the current period’s exogenous (nonforest) income \(I \) has been included for use in the comparative statics analysis.

The solution

Substituting the intertemporal budget constraint \(c_i = p_i H_i + (1 + r)P_i (1 - c_i) \), and as \(K_i \) and \(K_i \) from (6.2), into the objective function, the problem can be written as

\[
(6.4) \quad \max V = u(c) + v(O - H) + \beta u'(c) + (1 + r)P_i (1 - c)
\]

\[
+ \beta u'(c) + (1 + r)P_i H_i + 1 - c_i) + v(O - H - F(Q - H) - H_i)
\]

The first-order conditions for an interior solution are

\[
(6.5a) \quad V_{c_i} = u'(c) - \beta u''(c)(1 + r) = 0
\]

\[
(6.5b) \quad V_{H_i} = \beta u'(c) + (1 + r)P_i - \beta v''(K) + v(O - H - F(Q - H) - H_i) = 0
\]

\[
(6.5c) \quad V_{K_i} = \beta u'(c) + v(O - H - F(Q - H) - H_i) = 0
\]

Using the subscripts \(i = (1,2,3) \) to denote the partials of \(V_i \) with respect to \(c_i, H_i, \) and \(K_i \), respectively, the second-order conditions for a maximum can be written as \(D_i = V_{c_i} = 0 \), \(D_i = V_{H_i} = 0 \), \(D_i = D \) \(V_{c_i}V_{c_i}V_{H_i} - V_{c_i}V_{H_i}V_{K_i} = 0 \), \(D_i = D \) \(V_{H_i}V_{H_i}V_{K_i} - V_{H_i}V_{K_i}V_{K_i} = 0 \), where \(D_i = D \) and \(D_i = D \) are the determinants of the Hessian matrix and its principal minor respectively. These can be shown to be satisfied for all \(c_i, H_i, \) and \(K_i \) under the stated assumptions. Solving (6.5c) for \(V'(K) \), substituting into (6.5b) and rearranging gives

\[
(6.6) \quad \beta u'(c) - (p_i + 1 + r)P_i = \beta v'(K) + v'(K)
\]

Since \(\beta u'(c) = u'(c)(1 + r) \) by (6.5a), this can be rewritten as

\[
(6.7) \quad \beta u'(c) = u'(c)(1 + r) - \beta v'(K) - v'(K)
\]

\[
P_i = [1 + F'(K)](1 + r) - \beta v'(K)
\]

To highlight the implications of the non-timber objectives on the harvesting decision, set the marginal utility of standing stock equal to zero. Eq. (6.6) then reduces to

\[
(6.6') \quad \beta u'(c) - (p_i + 1 + r)P_i = \beta v'(K)
\]

while (6.7) becomes

\[
(6.7') \quad P_i = [1 + F'(K)](1 + r)
\]

The latter are clearly equivalent to the solution of the basic model in Chapter 3. Two implications are readily seen by comparing (6.6') with the basic case solution (6.6'). First, if the standing stock has value, the harvesting decision is not separable from the consumption decision but depends on the forest owner’s consumption plans and preferences, even if the capital market is perfect. Second, the positive marginal utility of the standing stock reduces the current harvest. Given \(\beta, u'(c), v'(K) > 0 \), the bracketed expression \(\beta v'(K) \) in (6.6) must be positive. According, the marginal revenue of current harvest at the optimum is greater than the marginal cost. In (6.7), the term involving the marginal utility \(v'(K) \) of the standing stock reduces the R.H.S. compared to (6.7). Thus, the marginal rate of return on the growing stock will be less than the market rate of interest, which implies that the optimal growing stock remains greater and less will be cut in the current period.

Properties of short-run timber supply

Given the nonseparation of harvesting and consumption decisions, the comparative statics results must be solved from the three simultaneous equations in (6.5). A change in the current price, for example, will affect the current period’s harvesting decision through two channels.

First, there is the substitution effect due to an increase in the marginal revenue of the current harvest (i.e., the compensated effect of a change in relative prices at a given utility level). Second, an increase in the stumpage price also has an income effect, because the income level and attainable consumption at any given harvest thereby increase. The latter effect did not appear in the basic case where the harvesting decisions were independent of the consumption pattern. The total effects are decomposed into compensated and income effects using a technique described by Koskela (1989a).

The results are discussed in some detail, because the effects of common forest taxes can be readily understood by comparison with the effects of exogenous income, stumpage prices, or the interest rate. The technical details are presented in Appendix 7.

For notational simplicity, the current harvest \(H_t \) will be denoted below by \(H \). The effect of any exogenous factor \(f \) written in the form \(H_t = H_t - G_H \). That is, the total effect can be written by using, first, the compensated or substitution effect \(H_t \) with respect to \(f \). Secondly, the effect of exogenous income \(H_t \) is needed to determine the income effect represented by the second term (\(G_t \) represents the compensation required to keep the maximum attainable utility unchanged). The comparative statics results are given in (6.8) (for the signs of the compensated and income effects, as well as \(G_t \), see Appendix 7).

\[
(6.8a) \quad H_t = -D' \beta u'(c)u'(c) + v'(K) = (1 + r)P_i - [1 + F'(K)](1 + r)P_i < 0
\]

\[
(6.8b) \quad H_t = H_t + H_t - H_t < 0
\]

\[
(6.8c) \quad H_t = H_t + H_t - H_t < 0
\]

\[
(6.8d) \quad H_t = H_t + S_t - H_t < 0
\]

\[
(6.8e) \quad H_t = H_t + H_t - H_t < 0
\]

According to (6.8a), an increase in the exogenous income reduces the current harvest. At a higher income level, there is less of an incentive to increase the current consumption by harvesting more, given that the marginal utility of consumption is diminishing. More amenities are produced instead. The same holds for future income, since given perfect capital markets, the current and future income have similar impacts on the present value of the life-time income. As a corollary, it may be noted that both consumption and amenities are normal goods, i.e. the demand for both increases with income (\(c_i, K_i > 0 \)).

Using the result for exogenous income, the income effects of other factors can also be signed. An increase in the current stumpage price has a positive compensated effect related to an increase in the marginal revenue of the current harvest. The income effect is negative. As an increase in the stumpage price implies a higher income at any given quantity of timber sold, the forest owner becomes less willing to increase his/her current consumption by harvesting more. Thus, the total effect in (6.8b) remains ambiguous. The effect of an expected increase in the future stumpage price, in (6.8c), is unambiguously negative. As the marginal opportunity cost of the current harvest increases, the substitution

Acta Forestalia Fennica 233

48

Ovaskainen, V.
effect is negative. The income effect also is negative, as the future income is expected to rise ceteris paribus.

The substitution effect of the interest rate is always positive. This is because an increase in the interest rate implies a higher stock holding cost (i.e., a higher opportunity cost for an increase in the future harvest or in the production of nontimber services). The income effect, however, may be either positive or negative. For positive net savings (S > 0), the income effect is negative since an increase in the interest rate implies a higher interest income in the future. The total effect in (6.8d) then remains indeterminate. For a net borrower (S < 0), a higher interest rate means a reduction in the disposable income after the interest charges. Consequently, a borrower is willing to harvest more to restore, in part, his/her current consumption level, and the total effect is positive.

The initial stock of timber has a positive compensated effect (Appendix 7). Rather than changes in the marginal revenue and cost, this now relates to the substitution between marketed goods and nonmarket amenities (loosely speaking, a larger initial stock allows the forest owner to harvest more while still retaining a high level of stock-dependent amenities). On the other hand, a greater initial endowment means a higher wealth and thereby has a negative income effect. As the marginal utility of consumption is diminishing, part of the additional standing stock is held for nontimber purposes.

Concluding remark

The comparative statics results differ in certain respects from the basic model with only timber values considered (Chapter 3). The results can be summarized as

(6.8') H = HDP + q + r + i, Q.
\[\Delta Q = \frac{1}{2} \beta \Delta Q \]

The effect of current stumpage price, for example, is a priori uncertain because of opposite substitution and income effects. Empirical evidence suggests that the positive substitution effect dominates in practice, and the same seems to be true for the interest rate (see end note 7, Chapter 3). Notably, the effect of the initial stock also differs from the separation case. Rather than a unitary scale effect, the present model suggests that the effect is not only less than one but a priori uncertain in sign. Regarding NIPF owners in Scandinavia, at least, the present result seems to be more consistent with empirical findings (end note 7, Chapter 3). The latter suggests that while the positive compensated effect dominates, the elasticity of timber supply with respect to the timber inventory for one reason or the other is well below one.

While, theoretically, the non timber considerations tend to reduce timber harvesting in the short run, their consequences on aggregate timber supply should be considered with caution. First, the effect on timber harvesting is likely to be of major importance for only small forest properties. This is because forest stands located near the house or second home are of most importance from the scenic point of view, and consequently the relative share of property subject to restricted timber harvesting due to scenic considerations, for example, is higher on small properties. (In Finland, for example, the mean annual harvest on the smallest woodlots, with less than 10 hectares of forest land, has been lower than in other size classes both in cubic meters and as a proportion of the allowable cut; Jarvileinen 1985, Karpinnen & Hanninen 1990). Secondly, the non timber considerations result in a larger growing stock per unit area. Within reasonable limits (up to the MSY level), this implies an increase in timber growth and sustainable harvest, or potential supply, over time.

6.3 Effects of forest taxes: a positive analysis

The effects of alternative forest taxes are now analyzed to see how the results change when non timber management objectives are introduced. As in Chapter 4, lump-sum, yield, and ad valorem property taxation are dealt with. Note that management costs are not considered, so the results for yield taxation will correspond to the case where costs are fully deductible. Therefore, the specific label profit tax will be used below for clarity.

The formal decomposition procedure is not repeated. This is because the effects of the forest taxes (as well as the capital income tax) are directly comparable to those of the exogenous income, stumpage prices, and the interest rate in section 6.2. Also, because the ultimate interest is on the relative efficiency of taxes, only the substitution effects matter (see section 5.1.1 and Appendix 2). These effects, in fact, can readily be understood by considering the first-order conditions with the marginal utility of consumption held unchanged. Once only changes in relative prices matter, the optimal forest tax regime (section 6.4) can be solved by simply using the optimality conditions with the terms \(u' c \) treated as constants (see Appendix 7).

The optimization problem generally remains the same as that in (6.1) through (6.4). The only difference appears in the budget constraints. With all relevant taxes simultaneously written down, these become

\[c_i = (1 - \pi_i) p_i H_i + 1 - S - \Lambda - \alpha p_i K_i \]
\[b_i = (1 - \pi_i) p_i H_i + 1 - S - \Lambda - \alpha p_i K_i \]

where \(\Lambda, \pi, \text{and } \alpha \) denote the lump-sum, profit, and ad valorem property taxes, respectively, and \(K_i \) and \(K_i \) are as in (6.2), given the intertemporal budget constraint

\[c_i = (1 - \pi_i) p_i H_i + 1 - (1 - 1) \pi_i p_i H_i + 1 - S - \Lambda - \alpha p_i K_i - (1 - 1 - \alpha p_i K_i - \alpha p_i K_i) \]

the first-order conditions for an interior solution become

\[V_{c_i} = u' c_i - \beta u(c_i) (1 + r) + 0 \]
\[V_{b_i} = \beta u(c_i) (1 + (1 - 1) \pi_i p_i + \alpha p_i) + (1 + (1 - 1) \pi_i p_i + \alpha p_i) - \beta V(c_i) (1 + r) - V(c_i) = 0 \]

To illustrate the substitution effects of taxes, "cutting taxes" similar to (6.7) are used with the terms \(u(c_i) \) treated as constants. For income effects, the result in (6.2) for the exogenous income in (6.2) is used. Denoting the substitution effects by the compensated supply function \(H(\cdot) \) and total responses by the ordinary supply \(H(\cdot) \), the results can be summarized as follows:

\[H = H(\Lambda, \pi, \pi, \alpha, \alpha, \alpha) \]

The lump-sum tax

According to (6.9), the lump-sum tax \(\Lambda \) is equivalent to an equal reduction in the exogenous income in period i. As relative prices remain unaltered, there is only an income effect which is obviously positive: given a reduction in disposable income, the forest owner is willing to harvest more to restore in part his/her consumption level. The lack of substitution effects also shows in that the optimality conditions become similar to the untaxed case (6.7), except that \(\Lambda \) is included in the argument of \(u(c) \). When considering substitution - i.e., compensated effects, however, any impacts due to changes in \(\pi_i \) are ignored. Recalling (6.10), an increase in \(\Lambda \) reduces the life-time consumption possibilities or \(c_i \). Given \(u' c_i > 0 \), \(\beta u' c_i \) (in 6.7) then increases. Consequently, the R.H.S. increases so that \(F = F(K_i) \) and \(\beta V(K_i) \) must increase to restore the equilibrium. The latter (with \(F < 0 \), \(\beta V < 0 \)) implies a lower growing stock \(K_i = K - H \) and an increase in the current harvest. In other words,

\[H(\Lambda, \pi, \pi, \alpha, \alpha, \alpha) \]

or the lump-sum tax increases the current harvest whether the tax rate varies or remains constant over time.

The profit tax

The effects of the remaining taxes now become readily tractable as it is noted that, first, the substitution effects are equivalent to changes in the stumpage prices or the interest rate (section 6.2). Secondly, the income effects always work in the same direction as the lump-sum tax, i.e., both current and future income effects are positive for all the taxes. For the substitution effects of the profit tax, consider

\[(1 - \pi_i) p_i H_i + 0 \]

According to (6.14), the stumpage prices \(p_i \) are replaced by the after-tax prices \(p_i - \pi_i \). In other words, the profit tax is equivalent to a reduction in the relevant period's stumpage price. For compensated effects alone, an increase in \(\pi_i \) tends to reduce while \(\pi_i \) increases the current harvest. Assuming \(\pi_i = \pi_0 = \pi \), the expressions \((1 - \pi) \) on the L.H.S. cancel out and \(\pi \) only appears on the R.H.S. As \(\pi \) reduces the R.H.S., \(F(\cdot) \) and \(\beta V(K_i) \) must be reduced to restore the equality. The latter re-
quires a greater growing stock so the current harvest must decline. Thus, even an invariant profit tax has a negative substitution effect so that $H_{t+1} < 0$, $H_{t+2} > 0$, and $H_{t+3} < 0$. The income effects are always positive, the total effects can be stated as

$$\text{sgn} H_{t+1} = -\text{sgn} H_{t} \geq 0,$$

$$\text{sgn} H_{t+2} = -\text{sgn} H_{t+1} > 0,$$

$$\text{sgn} H_{t+3} = -\text{sgn} H_{t+2} \geq 0.$$

The ad valorem property tax

The corresponding cutting rule under the ad valorem property tax becomes

$$E^2 = (1 + \tau') F = (1 + \tau)(1 + \alpha) - \frac{\nu(K_t)}{\beta \psi(u)} H_{t+1}.$$

By (6.16), the substitution effect is equivalent to an additive increase in the interest rate, at a rate approximately equal to the tax rate, as $\tau' = (1 + \tau)(1 + \alpha) - 1 + \tau + \alpha$. Alternatively, dividing through by $(1 + \alpha)$ shows that it is equivalent to a multiplicative increase in the current stumpage price at the rate of τ' (cf. Chapter 4). As α decreases the R.H.S. and $v(K_t)$ must increase, which implies that more will be cut today. In other words, $\text{sgn} H_{t+2} = \text{sgn} H_{t+3} = \text{sgn} H_{t+4} > 0$. The income effects, in contrast, are not equal with the interest rate but unambiguously positive for all cases so that

$$\text{sgn} H_{t+2} = -\text{sgn} H_{t+3} = -\text{sgn} H_{t+4} > 0.$$

The ad valorem property tax will unambiguously increase the short-run timber supply, since both compensated and income effects are positive for the current tax as well as an intertemporally invariant tax rate. Unlike the basic case, an anticipated change in the future tax rate also has a qualitatively similar impact due to a positive income effect.

6.4 Efficient forest taxation: a normative analysis

This section turns to the relative efficiency of forest taxes in the presence of nontimber objectives. As earlier, the distinction between an initially undistorted economy and one with a pre-existing capital income tax will be central to the analysis.

The conditions for a socially optimal allocation now involve the marginal valuation of the standing stock to represent the production of nontimber services, as shown in section 6.2. As regards the representative private forest owner, however, it is not clear whether the nontimber considerations will be taken into account or not. Since both possibilities can be argued, two cases will be considered in the normative analysis below.

(1) The representative forest owner's and the policy-maker's preferences with respect to consumption (income) and nontimber benefits are first assumed to be identical (section 6.1.4). That is, the policy-maker as a social planner "must be" interested both in income and environmental values, while the forest owner himself derives utility from the forest's nontimber services and therefore takes them into account. The latter assumption is plausible with respect to a NIPF owner who regularly lives on the property or uses it as part-time residence. (Assuming the opposite in this case might amount to arguing that a forest owner's preferences, for some reason, inherently differ from other people's).

(2) Alternatively, it is assumed that the nontimber services, while socially valued, are completely ignored by the private forest owner (section 6.4.2). This follows the view that the environmental benefits are not consumed, as an externality with no compensation to the landowner, will be underproduced. This might be a reasonable assumption in the case of corporate owners, as well as NIPF owners who live off the property without even using it as a part-time residence.

Due to the nonseparability of harvesting and consumption decisions, taxes now have income effects in addition to the compensated or substitution effects. As established earlier, only substitution distortions matter for the relative efficiency of alternative taxes while the income effects can be ignored. To anticipate the results, this implies that where (a) nontimber benefits are taken into account by both the forest owner and the policy-maker and (b) distortions from other taxes do not pre-exist, efficiency calls for a forest tax regime with no substitution effects. If the opposite is true in both respects, the proper tax rate should not only offset the initial tax distortion but also internalize the social valuation of nontimber benefits.

6.4.1 Identical private and social valuations

Consider a "symmetric" case where the policy-maker and the representative private forest owner have identical preferences over income and non-income benefits. (The opposite symmetric possibility was represented by the basic case where neither party was assumed to pay "special attention" to nontimber values; this can be re-interpreted as a situation where the standing forests are so abundant that the marginal utility from an increase in their environmental services tends to zero). Focusing on the substitution effects alone and according omitting the effects due to changes in the consumption level, means that the intertemporal budget constraint c_t remains unchanged. Thus, as in Chapter 5, the optimal forest tax regime can simply be found by considering the private and socially optimal cutting rules with the marginal utilities $u(c_t)$, as well as $u'(c_t)$ and $v(K_t)$, treated as given quantities (see Appendix 7). As the solution is reduced to one equation, only one unknown can be solved at a time so the relevant tax rate must be constant over time.

No pre-existing distortions

The socially optimal cutting rule for the stationary case ($p_t = p_{t+1} = p$) becomes

$$E^2 = \frac{(1 + \tau')(1 + \alpha)}{1 + \tau + \alpha} - \frac{\nu(K_t)}{\beta \psi(u)} H_{t+1}.$$

Next, the private cutting rules with the forest taxes and without/with the capital income tax τ are developed in a similar form. Formally, inserting all relevant forest taxes, the private solution can be written as

$$E^2 = \frac{(1 + \tau)(1 + \alpha)}{1 + \tau + \alpha} - \frac{\nu(K_t)}{1 - \tau p \beta \psi(u)}.$$

Equating the R.H.S. with the R.H.S. of (6.18) yields

$$E^2 = \frac{(1 + \tau)(1 + \alpha)}{1 - \tau p \beta \psi(u)} = \frac{\nu(K_t)}{1 - \tau p \beta \psi(u)}.$$

According to (6.20), first, the lump-sum tax is consistent with efficiency. By the assumption of identical preferences, the terms $u'(c_t)$ and $v(K_t)$ on both sides are equal. With $\pi = \alpha = 0$, (6.20) holds irrespective of Λ, so that the private and social optima coincide. Secondly, for the remaining taxes $\pi = \alpha = 0$ is the only tax rate at which (6.20) can hold. Thus, the profit or ad valorem property taxes cannot be efficient.

In conclusion, only lump-sum taxes, such as the unmodified site productivity tax, are consistent with efficiency given that the economy is initially undistorted and the nontimber values matter both to the policy-maker and the forest owner. Compared to Chapter 5, note that the profit tax no longer is efficient. This is because the profit tax, even when constant, now has a (negative) substitution effect, which an appropriate forest tax in this case should not have.

Distortionary capital income taxation

As shown in Chapter 5, the interest rate τ is replaced by $r_t = r_t + \tau$, if the income from other assets is taxed and/or the interest charges for loans are tax deductible. That is, the capital income tax τ is equivalent to a reduction in the interest rate. According to (6.8d), the following therefore holds for its compensated and total effects in the presence of nontimber objectives:

$$\text{sgn} H_{t+1} = -\text{sgn} H_{t} < 0,$$

$$\text{sgn} H_{t+2} = -\text{sgn} H_{t+1} > 0.$$

Since the capital income tax has a negative substitution effect on the short-run timber supply, the appropriate forest tax should accordingly encourage the realization of timber to offset the distortion. (Interestingly, it can be shown that even the expenditure taxation (see Appendix 4) in this case would not be without substitution effects. This is because the consumption of marketed goods is taxed, while the nonmarket amenities are not). The counterpart to (6.20) now becomes

$$E^2 = \frac{(1 + \tau)(1 + \alpha)}{1 - \tau p \beta \psi(u)} = \frac{\nu(K_t)}{1 - \tau p \beta \psi(u)}.$$

It can readily be seen that lump-sum taxes, with no substitution effects, can not be efficient in the presence of capital income taxation. Setting $\pi = \alpha = 0$ implies $1 + \tau = 1 + r$, which is untrue given $\tau < 0$. For the profit tax, the solution can be written as

$$\pi = 1 - \frac{\nu(K_t)}{\nu(K_t) - r \tau p \beta \psi(u)} > 0,$$

as $\nu(K_t) - r \tau p \beta \psi(u) > 0$.

The profit tax clearly cannot be used as a correc-
tive tax, as the solution suggests meaningless tax rates that are negative or greater than one hundred per cent. In fact, that the profit tax amplifies rather than offsets the initial inefficiency could be expected, as it was shown to have a negative compensated effect on the current harvest — i.e., work in the same direction with \(\tau \) even when constant over time.

Again, efficiency can be attained by the ad valorem property tax. The appropriate property tax rate to offset the initial distortion becomes

\[
\alpha = \frac{r \tau}{1 + r(1 - r)} - \tau,
\]

i.e. the interest rate multiplied by the capital income tax rate. The result is equivalent to the case of a pre-existing capital income tax with no non-timber considerations.

6.4.2 Asymmetric valuations

This section considers an "asymmetric" case where the policy-maker (society) does value the non-timber benefits but the forest owner does not take them into account. In other words, the representative forest owner is now assumed not to derive utility from the non-timber services. As the latter are provided as an externality with no compensation for providing them, the forest owner then behaves as if the marginal utility of the standing stock were zero. The policy-maker, on the other hand, perceives the marginal social value of the standing stock as positive and wishes to induce the forest owner to behave in a socially optimal manner by choosing an appropriate forest tax regime (cf. Pigouian forest taxes in Englin & Klan 1990).

No pre-existing tax distortions

Setting \(v'(K) = 0 \), the private solution reduces to a separation result similar to the basic model. The socially optimal cutting rule is the same as in section 6.4.1. For an initially undistorted economy, the counterpart to (6.20) and (6.22) becomes

\[
(6.25) \quad (1 + r)\left(1 + a\right) - \frac{v'(K)}{pu'c} = r,
\]

because \(A \) has no substitution effects at all and \(a \) with a constant tax rate will change the separable private cutting rule. By (6.25), neither the lump-sum nor the profit tax can induce the forest owner to appropriately change his/her behavior. The private optimum under lump-sum or profit taxation implies a marginal product of the growing stock in excess of that at the social optimum. The standing stock and provision of amenities thereby remain lower than socially optimal.

Interestingly, the result that the profit tax fails to attain efficiency contrasts with the contention (e.g. Heaps & Hellwell 1985, Gamponia & Mendelson 1987) that yield taxes, as they lengthen forest rotations, are more sympathetic with the forest’s nonmarket services. Suppose the reason why forest taxation should extend rotations is that private forest owners tend to ignore non-timber values. Then, however, the profit tax cannot really contribute to this aim, since a (constant) profit tax is in fact neutral in the case of profit-maximizing forest owners. For the gross yield tax, there might be a point in the argument, but no rigorous proof seems to have been presented.

For the ad valorem property tax, the solution is

\[
(6.26) \quad \alpha = \frac{v'(K)}{pu'c} < 0
\]

which can be compared to the solution \(\alpha = r \tau \) for the symmetric cases. In principle, a property tax rate can be found that offsets the net distortion from the capital income tax, on the one hand, and from the ignorance of non-timber values by private owners, on the other hand. The required tax rate is equal to the interest rate multiplied by the capital tax rate minus the ratio of the marginal utility of timber in consumption and its marginal utility as an in situ resource. The suggested rate is always lower than the earlier cases. As a practical tax policy, however, the solution is not without problems. It is not clear a priori whether \(\alpha \) should be positive or negative. Further, it depends not only on the values of \(r \) and \(\tau \) but also on the social marginal valuations between the forest-related amenities vs. the consumption of marketed goods. This is not directly observable, and may be only vaguely quantifiable.

6.5 Conclusion

At this point, it is useful to summarize the results concerning the relative efficiency of forest taxes. To give an overall view of all cases considered, Table 1 indicates the appropriate forest tax base and tax rate, if any, under alternative assumptions concerning the presence of capital tax distortions as well as non-timber considerations.

<table>
<thead>
<tr>
<th>Table 1. Summary of economically efficient forest tax regimes under alternative assumptions. (\Lambda, \pi) denote lump-sum, profit, and ad valorem property taxes, (\kappa) is theacciual income tax, and (R = l + r).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only underwriter</td>
</tr>
<tr>
<td>Order matters</td>
</tr>
<tr>
<td>No tax distortions pre-existing</td>
</tr>
<tr>
<td>Distortionary capital income tax</td>
</tr>
</tbody>
</table>

*Applies where \(\alpha > 0 \)

Acta Forestalia Fennica 233
Notes to Chapter 6

1 Johannsson et al. (1989) show the externality-induced market failure by assuming that the forest owner is interested in income only while other consumers also derive utility from the environmental services. Binkley (1981, 1987), Kuuluvainen (1985, 1986), Royer (1987), Max and Lehman (1988), and Dennis (1989) assume that the net timber values matter to lumber buyers (Hyberg & Holthausen (1989) develop zero restrictions to test the hypothesis). There is suggestive evidence that nontimber values matter to NPF owners. According to Carlén (1990), one third of forest owners ranked nonmonetary goods as their most important objective. In Finland, many small forest holdings are mainly used for purposes other than timber production (Järviäläinen 1988, Kappinen & Häinänen 1990). According to Halinen (1992), timber income and other monetary objectives were ranked highest by 2/3 of forest owners, and recreation or other nonmonetary objectives by about one third.

2 Following Hartman (1976) or Berck & Bivace (1984) (also Strang 1983, Hiet et al. 1987, Johannsson & Loftgren 1988, Johannsson et al. 1989), known shadow prices could be assumed to illustrate the potential difference between socially optimal and private harvest patterns. Here, a different approach is chosen in order to highlight the fact that given no actual compensation for producing amenity services, it depends on the forest owner’s subjective preferences whether such considerations will be taken into account. Assuming known money measures would also conceal the nonseparation of harvesting and consumption decisions and the related income effects.

3 Kellomäki & Savolainen (1984; also Savolainen & Kellomäki 1981, 1984) measured the scenic value of forest stands by the so-called additive sum. Pukkala et al. (1988), in addition to scenic preferences, studied the recreational value of forest stands using beauty and recreation scores on a 10-point rating scale (for Scenic Beauty Estimation, see Daniel et al. 1989).

4 If the mean diameter is used to represent tree size, the amenity of a forest could be written as \(v = v(K,d) \), where \(v_0, v > 0 \), where \(K \) and \(d \) denote the standing volume and mean diameter, respectively. Harvesting affects both the standing volume and mean diameter of the remaining trees.\(t = K(H), K(H) < 0, \) and \(d = d(H) \). However, the direction of change in the mean size of remaining trees depends on the specific cutting practice. Intuitively, \(d = v_1 > v \) for thinning from below but \(d = v_2 < v \) for thinning from above, selective harvesting, or final fellings in the oldest age classes of a forest.

5 The long-run timber supply will not be formally considered. This is because where the imputed utility from the standing forest also matters, a maximum supply of timber alone has no normative status for the subsequent tax analysis. Also, the long-run supply could not be so simply analyzed. As the objective function is no longer linear in the quantity harvested (the marginal utility of consumption is endogenous to the solution rather than a given constant), the optimal first-period harvest does not imply an immediate, "bang-bang" adjustment to an optimal steady state stock. While a steady state with the harvest equal to forest growth intuitively exists, it may not be reached within a finite time horizon.

6 For a closer look at the "public goods" aspect, several (groups of) individuals, with different willingness-to-pay, should be considered. Because a single representative forest owner is considered here, the polar difference between private and social valuations must be used as a short-cut presentation. A third set of assumptions could also be derived. The nontimber considerations, in part incompatible with timber production, have sometimes been considered as a threat to the availability of industrial wood. Following this, the forest owner would behave as if the standing stock had a positive marginal utility, while from the policy-maker’s point of view there is no need to adjust harvesting decisions. However, this case is omitted. It is not particularly well-argued, and the tax results, in broad terms, would be similar to those in section 6.4.2 with a reversed sign on the marginal social value of the standing stock.

7 If the profit and property taxes could be used in combination, (6.20) could be solved for the optimal \(x + \pi \) fixed, or vice versa. Using (6.5b) and (6.5c), the solution with respect to \(c \) eventually simplifies to \(x = \pi - (\pi - F) \cdot (1 - \pi)(1 + r) \), with \(x > 0 \) as \(F < \pi \).

8 While the denominator of the latter term (B cannot be signed a priori), it can be noted that \(r + p + u(c) > 0 \) so the denominator is less than the numerator. Thus, whenever \(V(K) < r + p + u(c) > 0 \), the quotient (B) must be greater than one in absolute value so that \(1 - B < 0 \). If the denominator is negative, it follows that \(1 - B > 1 \).

This chapter analyzes the forest tax issues specific to Finland. The purpose is twofold. Theoretically, first, this provides an example of actual forest tax systems that may be rather more complicated than the stylized representation of the main forest tax types suggests. It is also shown that tax subsidies, while augmenting timber production in the long run, may result in an inefficient allocation. Secondly, the analysis is of direct relevance to the forest tax policy in Finland. The effects of the new instruments introduced within the site productivity taxation in 1991 have not been properly established. Further, the proposal of a switch to realized income taxation in forestry seems to ignore the issue of economic efficiency or, at least, fails to consider the effects of the tax system as a whole.

7.1 Recent tax issues and forestry

Since 1922, forest taxation in Finland has been based on site productivity. The system was initially close to the unmodified site productivity tax, where the taxable income is determined by the estimated mean annual yield by site quality irrespective of the actual harvest and timber stocking. Criticism has been concerned with the level and allocation of the tax burden, since the average taxable income may not fully reflect the actual short or medium-term income-earning capacity of individual woodlots. Recently, it has been suggested that the aggregate taxable income may become overestimated as the annual timber growth exceeds the annual harvest level and timber growth has not been estimated or can not be realized. On the other hand, even if one of the main arguments for site productivity taxation has been the lack of disincentive effects on intensive forest management, suggestions have been made that forest taxation be designed to more actively encourage the use of forest resources (e.g. Puhuulon ... 1985).

Two contradicting trends have recently emerged. One is represented by a committee on forest taxation (Metsätietotoimiston ... 1988), which scheduled several changes within the site productivity taxation. In part, the reform was motivated by equity arguments, such as reallocation of the tax burden relatively to the potential of individual woodlots and taking into account the actual realization possibilities at the aggregate level. Another purpose was to encourage the use of timber resources, especially the final harvesting and regeneration of mature stands. Accordingly, in 1991 the tax allowance for established seedling stands, applied since 1980, was extended to a tax exemption starting at the time of regeneration. Tax deductions for mature harvesting were also introduced to subsidize reforestation, brush control and precommercial thinnings in seedling stands, as well as first commercial thinnings in juvenile stands (Laki maatalouluden ... 1990). After the 1991 reform, the Finnish forest tax system can no longer be represented by a lump-sum tax, and will be referred to as "modified" site productivity taxation.

As another trend, a switch to some form of realized real income taxation has been repeatedly suggested. A sales tax with special arrangements to alleviate the effects of progressive taxation was discussed in the late 1970's (Metsätietotoimiston ... 1978, Korpinen 1978). In 1989, a proportional realized income tax with immediate expense was considered by another committee (Puuauan ... 1989). Recently, the realized income taxation has appeared in a new setting. A committee on the harmonization of capital taxation has requested that the income and corporate taxation (Paimoja ... 1991) proposed a uniform proportional tax rate to be applied to the realized income from forest harvests, as well as all other capital income-generating capacity of individual woodlots. More detailed regulations for forestry taxation were subsequently proposed (Puu myntitulonen ... 1992), and the new regime is to be introduced in 1993.

Two notes on the background conditions and institutional setting should be made. The first one has to do with the state of capital markets and capital income taxation. Owing to rationed...
nominal interest rates combined with high rates of inflation, the real interest rates used to be low and even negative, which was the case during most of 1970's, for example. (On the other hand, credit rationing tendencies were typical of the capital market). Further, most of interest charges on loans - 75% in the early 1990's - have been tax deductible, thus reducing the effective cost of borrowing through the marginal tax rate. Under these conditions savings are discouraged. There is a lock-in effect on the realization of inflation-safe assets such as timber, and the substitution of bank loans for internal funding, from stumpage harvests for example, is encouraged.

Since the mid-80's, there has been a gradual deregulation of the capital market. The switch towards market-determined and significantly higher interest rates, combined with a reduction of inflation, has established positive real interest rates. (In the early 1990's, the real interest rates have been exceptionally high). However, the distortionary tax treatment of capital income and interest charges remains. According to the scheduled reform (Pääomatuoljen ... 1991), interest charge deductions will continue to be allowed at the uniform 25% capital income tax rate (but without quantitative limitations). On the other hand, the 25% tax rate on interest income is significantly higher compared to the 10–15% level in the early 1990s. Thus, pre-existing distortions from capital income taxation continue to be an important background issue when the efficiency of forest taxation in Finland is considered.

Another background factor worth noting is Finland’s forestry situation. During the last two decades, Finland has undergone a transition from a threatening timber shortage to what has been called the “excess production” of timber: the annual timber growth significantly exceeds the annual harvest and wood-using capacity of the forest industries, and there is an increasing surplus of mature timber standing especially in southern Finland (Puuhaa... 1985, Yearbook of ... 1989, Metsäsektorin ... 1991). For example, the annual cut could be almost doubled for the next two decades without the potential harvest below the current levels (see Metsä 2000 -objelman ... 1992). Thus, the practical main forestry issue is the use of the existing timber inventory, while the long-run supply is unlikely to effectively restrict the annual timber harvest in the foreseeable future (reaching a steady state with the annual harvest equal to timber growth would call for a major expansion in the wood-using industry).

Accordingly, the analysis of timber supply in this chapter refers mainly to the "Short-run" type of supply, as defined earlier. This is in line with the theoretical point (Chapter 5) that the long-run supply has no normative status where initial distortions from capital income taxation exist. (Furthermore, the modified site productivity taxation in the explicit management model makes that increase timber production in the long run, but generate an excess burden).

7.2 The modified site productivity taxation

This section considers the site productivity taxation of forests in Finland after the 1991 reform (Läkit maataloudeni ... 1991). The relevant taxes as a whole include the capital income tax and several variables for specific forest tax items as follows:

1. A proportional capital income tax, at rate r, represents both the tax on interest income and interest charge deductions. This corresponds to the proposed reform of capital income taxation, according to which a uniform tax rate will be applied symmetrically.

2. The annual site productivity tax is based on the estimated taxable income, which in turn is determined by the value of mean annual increment by the forest site type class (soil productivity). As the taxable income from forestry is added to the owner's nonforest income, the actual productivity tax γ_j is to be annually paid depending on his/her personal marginal tax rate. Tax progression is not essential here, so the tax rate is denoted by the fixed income tax rate θ_j, the estimated mean annual yield and unit value of timber by G and p, respectively, the annual productivity tax is γ_j = θ_j p G.

3. A tax exemption for regeneration areas is allowed for 5–10 years following the reforestation measures are completed and for another 15–25 years after the establishment is shown to be well-established. Denoting the annual productivity tax by t (FIM/ha/yr) and the length of the tax exemption period due to a unit of timber harvested by (yr/ha/m3), the money value of the tax exemption per unit of timber cut will be x_j = r_j γ_j (FIM/m3). That is, the marginal tax subsidy for regeneration areas is represented as a fixed amount x_j per cubic meter of timber harvested in period t.

4. Major management costs are tax deductible. A fixed deduction per hectare is made for reforestation measures (planting, seeding, or natural regeneration), as well as precommercial thinnings and/or brush control in seedling stands. This is represented as a fixed proportion δ of actual management costs, which is equivalent to subsidizing the silvicultural measures by this rate.

7.2.1 Effects on timber supply and management intensity

The effects of the tax system on timber supply decision are analyzed using a setting similar to that employed in Chapters 3 through 5. That is, the management intensity is considered as endogenous, while the nontimber considerations are ignored for clarity. Perfect capital markets and perfect foresights continue to be assumed as a purely analytic tool to exclude any income or liquidity effects (as discussed earlier, only the substitution effects of taxes are relevant from the efficiency point of view). Accordingly, the representative forest owner's budget constraints become

\[(7.1a) c_t = p_t H_t - S - w E - \left(\Gamma_j - \epsilon_j \Gamma_j H_t - \delta w E \right) \]

\[= (p_t + \epsilon_j \Gamma_j) H_t - S - \Gamma_j H_t - \left(\Gamma_j - \left(1 - \delta w \right) E \right) \]

\[(7.1b) c_t = p_t H_t + \left[1 + (r_t - r_s) \epsilon_j \Gamma_j H_t \right] - \left(\Gamma_j - \epsilon_j \Gamma_j H_t \right) \]

\[= (p_t + \epsilon_j \Gamma_j) H_t + \left[1 + (r_t - r_s) \right] - \Gamma_j \]

where \(\Gamma_j \) is the site productivity tax (FIM/ha/yr) and \(\epsilon_j \) represents the exemption for regeneration areas (yr ha/m³). Further, \(\delta \) is the tax deductible proportion of management costs, \(r_t \) denotes the capital income tax rate, and all other notation is the same as in Chapters 3 through 5. In what follows, the tax exemption (harvest subsidy per unit of timber) is represented by \(x_j = r_j \Gamma_j (FIM/m^3) \) and the capital income tax by \(t(1 - r_s) = f \). The problem is

\[(7.2a) \]

\[\max U + u(c) + \beta u(c_{t+1}) \]

\[= c_1 + \epsilon_j H_t \]

where \(c_2 = (p_t + \epsilon_j \Gamma_j Q - H_t - \beta Q - H_{t+1}) \]

\[+ (1 + r_t \epsilon_j) (p_t + \epsilon_j \Gamma_j H_t - \Gamma_j) - \left(1 - \delta w \right) E \cdot c_t \cdot \Gamma_j \]

The separation of production decisions from consumption preferences continues to hold. The current harvesting and management intensity decisions are characterized by

\[(7.3a) -p_t (x_t + x_{t+1}) + F_t (x_t) \]

\[+ (1 + r_t \epsilon_j) (p_t + \epsilon_j \Gamma_j H_t) + \epsilon_j H_t - \Gamma_j = 0 \]

which can be rewritten as the optimal cutting and investment rules

\[(7.3b) p_t (x_t + x_{t+1}) + F_t (x_t) = 1 + r_t \]

\[(7.4a) p_t + \epsilon_j \Gamma_j \]

\[(1 + r_t \epsilon_j) \]

\[(7.4b) p_t + \epsilon_j \Gamma_j \]

\[(1 - \delta w) \]

\[(7.4) \]

In contrast to unmodified site productivity taxation, the site productivity tax is no longer neutral. This is because, according to \(x_i = \Gamma_i \), the level of annual site productivity taxes \(\Gamma_i \) and the parameter \(\epsilon_i \) together determine the marginal tax gain \(x_i \) due to an additional cubic meter harvested. According to (7.4), the latter is equivalent to an additive increase by \(x_i \) in the relevant period's stumpage price, which compares with the unit sales subsidy of Vehkamäki (1986) or with the unit tax of Koskela (1989a,b). The effect on the harvesting decision is no longer clearly read when the exemption is perceived as permanent: by (7.4a), both the current and future effective price are affected.

Capital income taxation

For a more detailed analysis, management intensity is restricted to the cases where the management cost deduction applies, i.e. reforestation and brush control. Accordingly, the cross-partial derivative of the growth function can be restricted to \(F_{KE} = 0 \) (cf. Chapter 3). First, the effects of the capital income tax can be stated as

\[(7.5a) \]

\[H_t = D'(p_t + x_t) (p_t + x_t) F_{KE} \]

\[- (1 - \delta w) F_{KE} \]

\[= 0 \]

\[(7.5b) \]

\[E_t = D'(p_t + x_t) (1 - \delta w) F_{KE} \]

\[- (1 - \delta w) F_{KE} \]

As noted earlier, the capital income tax tends to imply a delay in the realization time of timber and encourage investment in forestry through a reduction in the opportunity cost of capital. According to (7.5a), the effect on timber supply is unambiguously negative for \(F_{KE} = 0 \) but somewhat softened by the implicit subsidy effect on reforestation investment (the case of \(F_{KE} < 0 \)). While the direct effect on forestry investment in (7.5b) is positive, there is a negative indirect
effect, since final fellings are discouraged so that fewer hectares will be reforested.

Forest taxes

To consider the specific forest tax variables, recall that the harvest subsidy x_3 is used to repre-
sent both the site productivity tax F_3 and tax
exemption rates e, the effects of which have the same signs (x without subscript refers to the
case $x_3 = x_3$). The effects on timber supply can be written as follows:

\[H_3 = -D - [p_1 + x_3] + (p_3 + F_3)E_{FS} - F_3E_{FS} > 0 \]

(7.6a) \[H_3 = -D - [p_1 + x_3] + (1 + F_3)E_{FS} - F_3E_{FS} > 0 \]

as $F_3 > 0$

(7.6b) \[H_3 = -D - [p_1 + x_3] + (1 + F_3)E_{FS} - (F_3 + r)E_{FS} > 0 \]

(7.7a) \[H_3 = [p_1 + x_3] + (1 + F_3)E_{FS} - F_3E_{FS} > 0 \]

(7.7b) \[H_3 = 0 \] as $p_1 > 0$, $F_3 > 0$ when $E_{FS} = 0$

Like a temporary increase in the stumpage price, the current tax subsidy x_3 will increase the cur-
rent harvest. The result, however, only means that the exemption for regeneration areas, when perceived to be temporary, unambiguously en-
courages final fellings. The future tax subsidy x_3, in contrast, tends to reduce the current har-
vest similarly to an anticipated future price in-
crease, so the effect of a permanent harvest subsidy remains a priori indeterminate. Even if the indirect effect is ignored ($F_3E_{FS} = 0$), the sign of H_3 depends on whether the forest owner ex-
pects the future stumpage price to be higher, equal to, or lower than the current price (cf. Vehkamäki 1986, Koskelä 1989a,b). Formally, this is because $F_3 - p_1 - F_3E_{FS} > 0$ as $p_1 > 0$ according to the first-order conditions. With constant price expectations ($p_1 = p_3$), the direct effect on the current harvest vanishes, i.e. the terms $p_3 + x_3$ in (7.4a) cancel out, and consequently $F_3 - p_1 = 0$ in (7.6a).

In other words, when the option for a tax exemptor is perceived as permanent, it is not clear whether it will in fact encourage final fellings. Intuitively, a marginal tax gain has lit-
tle impact on the optimal harvest timing if cut-
ting a given stand today or later only implies a few years’ difference in its time of receipt. Re-
forestation subsidies, on the other hand, indi-
rectly encourage final fellings ($H_3 > 0$ as

F_{KE} < 0$.

For the management intensity decision, the results are

\[E_{x_3} = -D - (p_1 + x_3) + (1 + F_3)E_{FS} > 0 \]

as $E_{FS} > 0$

(7.6b) \[E_{x_3} = -D - (p_1 + x_3) + (1 + F_3)E_{FS} - (F_3 + r)E_{FS} > 0 \]

(7.7a) \[E_{x_3} = -D - (p_1 + x_3) + (1 + F_3)E_{FS} - F_3E_{FS} > 0 \]

(7.7b) \[E_{x_3} = (1 + r)E_{FS} - (F_3 + r)E_{FS} > 0 \]

(7.8a) \[1 + F_3E_{FS} = (1 + r) \]

(7.8b) \[F_3E_{FS} = r(1 + r)w/p \]

According to (7.8), the marginal rate of return on the growing stock and investment in silvicult-
ure equals their social opportunity cost, or the pre-tax rate of interest representing the rate of return on investment in other sectors of the economy. On the other hand, the private opti-
mum conditions ($\pi' = (1 + r)\pi$, $p = constant,$ and $x_3 = x_3$)

\[H = H(x_1, x_2, x_3, \pi, r) \]

\[+ r + - + - \]

(7.7a) \[E = E(x_1, x_2, x_3, \pi, r) \]

\[+ + + + + \]

Maybe surprisingly, the harvest subsidy (x_3) may not have the expected effect on the short-run timber supply. The impact may vanish because the permanent option for a tax exemption effec-
tively subsidizes both current and future final fellings. In fact, it has been suggested earlier that the allowance for established seedlings stands, in its original form, might only encourage the management of seedlings stands rather than final fellings (Puuhallonen ... 1985, Tik-
kanen & Vehkamäki 1987), and the exemption was therefore proposed to begin at the time of regen-
eration. The present analysis suggests, how-
ever, that even then the desired effect on harvest timing may not be achieved. Finally, note that the above analysis formally dealt with “short-
term” timber supply. However, as discussed in section 7.1, the results are relevant for quite a long time span given the forestry situation in Finland. For the effects on long-run steady state supply, see Appendix 8.

2.2 Efficiency under capital income taxation

Next to be analyzed is the economic efficiency of the modified site productivity tax, given a capital income tax (interest charge deductions). Using the procedure developed in section 5.3, this section considers whether the tax system as a whole can attain the intertemporal efficiency of investment within forestry and the intersectoral efficiency between forestry and other sectors. The socially optimal allocation of investment is characterized by the following undiscounted optimality conditions, similar to (5.10), with respect to the growing stock and other capital inputs in forestry:

(7.8a) \[1 + F_3E_{FS} = (1 + r) \]

(7.8b) \[F_3E_{FS} = r(1 + r)w/p \]

According to (7.8), the marginal rate of return on the growing stock and investment in silvicult-
ure equals their social opportunity cost, or the pre-tax rate of interest representing the rate of return on investment in other sectors of the economy. On the other hand, the private opti-
mum conditions ($\pi' = (1 + r)\pi$, $p = constant,$ and $x_3 = x_3$)

\[H = H(x_1, x_2, x_3, \pi, r) \]

\[+ r + - + - \]

(7.7a) \[E = E(x_1, x_2, x_3, \pi, r) \]

\[+ + + + + \]

Maybe surprisingly, the harvest subsidy (x_3) may not have the expected effect on the short-run timber supply. The impact may vanish because the permanent option for a tax exemption effec-
tively subsidizes both current and future final fellings. In fact, it has been suggested earlier that the allowance for established seedlings stands, in its original form, might only encourage the management of seedlings stands rather than final fellings (Puuhallonen ... 1985, Tik-
kanen & Vehkamäki 1987), and the exemption was therefore proposed to begin at the time of regen-
eration. The present analysis suggests, how-
ever, that even then the desired effect on harvest timing may not be achieved. Finally, note that the above analysis formally dealt with “short-
term” timber supply. However, as discussed in section 7.1, the results are relevant for quite a long time span given the forestry situation in Finland. For the effects on long-run steady state supply, see Appendix 8.

Surprisingly, the rate of harvest subsidy which is required to achieve efficiency is negative for both periods (cooperativity of x_3 is because $1 + (1 - r) < 1 + r$ and consequently $\xi < 0$). Rather than a positive harvest subsidy, the solu-
tion suggests that a unit tax on the timber har-
vested could be used to cancel out the effect of the capital income tax. However, note that $x_3 = x_3$ and, further, $x_3 = \pi - p(1 - \pi)\pi \pi (1 + r) = x_3 = (1 + r)\pi (1 + r) + p + x_3$. That is, the suggested unit tax is non-constant over time and the sec-
ond-period rate is a function of the first-period rate so the solution is practically irrelevant. Therefore, next consider if a combination of a time-invariable rate of x and δ could be used. With x_3 constant, the counterpart of (7.10) becomes

(7.12a) \[1 + (1 - r) > 1 + r \]

(7.12b) \[[1 + (1 - r)] = (1 - \delta) \]

Eq. (7.12a) is independent of the rate of x and implies $\tau = 0$, which could only hold for $\tau > 0$, given $\tau > 0$. In other words, no rate of harvest subsidy (positive or negative) can offset the distortion from capital income taxation on the harvesting decision. Solving (7.12b) alone for π with δ fixed implies, as with (7.11b), that $x_3 < 0$ for all $\tau > 0$, $\delta > 0$. Thus, a unit tax would be more consistent with efficiency than a harvest subsidy as far as the management intensity deci-
sion is concerned. The result that the tax exemption may not work might seem unexpected (given that τ in-
duces the forest owners to harvest “too little”, one could expect that its impact could be offset by a harvest subsidy). The basic reason is that the option for a tax exemption is permanent. The incentive effect on a given period’s final cut is therefore counteracted by the expectation that a tax gain is similarly obtainable in later periods, and the effect on harvest timing tends to vanish.
7.3 Realized income taxation

Only a couple of years after the forest tax reform in 1991, the site productivity tax is to be replaced by a proportional realized income tax. According to the committee on capital income taxation (Päämäärätuloja ... 1991) and subsequent more detailed suggestions (Puun myynnintaraja ... 1992), the uniform capital income tax rate will be extended to the realized income from forestry. (The sales tax will be applied to individual woodlots from 1993 with the owner's consent, or after a 13-year transition period.) The tax is to be levied on real income at a rate of 10% based on considerations other than economic efficiency, such as perceived administrative simplicity and, in the first place, apparent uniformity with the taxation of income from other assets. Nevertheless, the stated objectives also include a symmetric and thereby neutral tax system, and the realized income tax seems to be expected to meet this goal with respect to forestry.

Unfortunately, while the general outlines of the reform have been approved, the realization of this objective seems far off. As shown in section 5.3 of the present study, as well as by Kovenock (1986), such a taxation is not neutral with respect to forest management decisions.

Given a uniform and constant tax rate on net timber revenue and other capital income (interest charges, deductions), the budget constraints become \(S_1 = (1 - \tau) p_{H_1} - w - e_S \), \(S_2 = (1 - \tau) p_{H_2} + 1 + (1 - \tau) S \) (even if \(S = \tau \), the tax levied on forestry income is "ear-marked" as \(\tau \) for exposition). The optimality conditions can be simplified to

\[
\begin{align*}
(7.13a) \quad p_{H_1} + F_{U_1} = 1 + (1 - \tau) y = 0 \\
(7.13b) \quad F_{U_2} = w + (1 - \tau) y = 0.
\end{align*}
\]

As all terms with \((1 - \tau) \) vanish, both the growing stock and other capital inputs in forestry are independent of the "forest tax rate" \(\tau \) but, since \(1 + (1 - \tau) < 1 + \tau \), higher than economic efficiency requires. In other words, a constant proportion of profit tax as such is neutral with respect to both harvest timing and management intensity decisions, but inefficiencies arise from the taxation of the interest from other assets (interest charge deductions). Through a reduction in the opportunity cost of capital, the latter implies a delay in the realization time of timber and encourages less intensive harvests (see Appendix 9).

7.4 Conclusion

While evaluating the relative efficiency of the relevant forest tax alternatives for Finland, it should be noted that the income from other assets is taxed and interest charges for loans are tax deductible. Efficiency then requires that, rather than being neutral, forest taxation should in fact encourage timber harvesting so as to offset the delay in the realization time of timber caused by the capital income tax.

Realized income taxation, neutral at best, involves no such income tax failures to achieve efficiency. Note that a "forestry deduction" (partial depreciation of the property's purchase price) is allowed in some cases. This - in fact, a feature of the current taxation law - might encourage too early harvesting to some extent. However, the option only applies to forest properties acquired by purchase after the introduction of the new forest tax regime. Also, the unrealized capital gain from harvests below growth is not taken into account. On the other hand, the recent 1991 reform of the site productivity taxation made an attempt to encourage final fellings by more extensively exempting regeneration areas and seedling stands (thus, the forest's age structure is indirectly taken into account to some extent). Unfortunately, it is not completely clear whether such a harvest subsidy has the desired effect on harvest timing decisions when available on a permanent basis.

Because neither of the forest tax systems can be unambiguously shown to achieve efficiency, the efficiency effects of the switch from site productivity tax to income taxation remain open. Intuition suggests, however, that while timber harvesting may be temporarily encouraged during the transition period, the modified site productivity tax might have a merit over time.

Given an income tax on nonforest assets, the value of the standing stock or unrealized increments therein should be taken into account if the tax system as a whole is to be neutral with respect to the realization of timber. In other words, economic efficiency calls for capital gains taxation. As shown in this study, and supporting Kovenock (1986), efficiency could be attained by either of the following forest tax schedules:

1. An ad valorem property tax on the market value of the standing stock, at a rate equal to the interest rate multiplied by the capital income tax rate \(\alpha = \tau r \)

2. An accrual income tax on the realized harvest income plus the gain or reduction in the value of standing stock at a rate equal to the capital income tax rate \(\alpha = \tau \).

That is, an income tax at the general capital income tax rate can be efficient if (but only if) the taxable income is defined on an accrual rather than realization basis.

Finally, note that alternative forest taxes have only been considered from the production efficiency point of view. Even if this is of fundamental importance for economics heavily dependent on the forest-based sector such as Finland, other criteria have to be considered in practice for the choice of a forest tax base. These will be discussed in the following chapter.

Notes to Chapter 7

1. A tax allowance for regeneration areas, first applied as a one-time deduction for the well-established seedling stand, was introduced in 1980. In the early 1980's, suggestions were made that the basic site productivity tax be weighted by the property's age class distribution (e.g. Riihinen 1982, Puustulom ... 1985).

2. The constancy of \(\tau \) is a simplification. With an increase in harvest, more hectares are exempted. Assuming a uniform site quality, the reduction in taxable income comes from an additional hectare is constant. If differences in the stocking per hectare are also ignored, the marginal increase in exempted land area per unit of timber cut is constant. That is, assuming \(\tau(H) = \tau, \tau > 0 \) there is no need to consider whether \(\tau \) is increasing or decreasing in the harvest, which depends on whether the most well-stocked or poorly stocked stands are cut first.

3. As shown in Chapter 6, nontimber considerations would increase the optimal stock ceteris paribus. However, if there is no reason to subsidize or penalize the production of nontimber services through taxation, their inclusion would not change the main conclusions concerning the efficiency of forest taxes (see Table 1, Ch. 6). If private
forest owners tend to underproduce nontimber services. Chapter 6 suggests that the corrective tax rate under capital income taxation should be adjusted downwards for a larger standing stock.

The 'socially optimal' management of forests is related to the social objectives that forestry is expected to achieve. As discussed earlier, (7.8) corresponds to the maximization of the present value of income (or utility of consumption) with given resources. This follows the standard approach in public economics. In practice, the society's objectives, or political goals, may not be explicitly stated or there may be conflicting suggestions. The derivation of a production goal for forestry from the goals of the national economy as a whole is discussed by Rihinen (1963, 1978) and Vehkamäki (1986), for example. In Finland, contradictory views concerning forest taxation's role in forest policy seem to be involved in recent decisions. The 1991 forest tax reform (Meisirvetoinikunta... 1988, Laki maatalouden... 1990) was based on the view that forest taxation should encourage the use of forest resources. The 1991-92 tax proposals (Paatamatutajen... 1991, Puun myynnintulojen... 1992), in contrast, reject this view and consider neutral forest taxation to be desirable (see below).

Assuming instead that a harvest subsidy is only available for a limited period (i.e., setting \(x_2 = 0 \) with only \(x_1 > 0 \)), an appropriate combination of \(x_1 \) and \(\delta \) could be found. It turns out that each can be solved independently from a single equation (both variables are necessary to restore efficiency with respect to both inputs). The solution

\[
\begin{align*}
\delta &= \frac{\alpha}{1 + \tau_1 - \tau^2}, \\
x_1 &= \frac{\tau}{(1 + \tau_1 - \tau^2)}.
\end{align*}
\]

8 Tax incidence, equity, and administrative aspects

This chapter considers criteria other than production efficiency that are of importance in the choice of a "good" forest tax base. Of greatest importance are the horizontal and vertical equity and administrative issues (The Structure... 1978, Bawady & Wildasin 1984, Rosen 1985, Auerbach 1985, Slemrod 1990). Even if the points to be made on the equity issue - or on tax incidence - are well-known to readers familiar with the basic ideas of public economics, they have not been crystal clear in the forest tax debate. Further, administrative aspects can be essential to the policy implications of any tax results (e.g. Slemrod 1990). Even if no firm answers will be provided, administrative issues are therefore discussed in order to outline problems that need to be examined in more detail.

Section 8.1 considers the incidence of forest taxes, i.e. their effects on stumpage prices and income distribution between forest owners and timber users. The horizontal and vertical equity between forest owners is discussed in section 8.2. It should be noted that any evaluation of equity is based on value judgments concerning the "fair" distribution of the tax burden, and a reasonable argument requires that the judgments are made explicit. The following discussion is based on what is usually meant by equitable taxation in public economics. Finally, the administrative feasibility and costs of the main tax alternatives are discussed in section 8.3.

8.1 The incidence of forest taxes

So far, the center of attention has been the individual forest owner facing given stumpage prices. In this section, a downward sloping rather than horizontal demand schedule will be assumed to give an idea of the market level effects of taxation on stumpage prices and income distribution between the forest owners and timber users. Such issues are referred to by the term tax incidence. The discussion is based on the effects of the lump-sum, yield and ad valorem property taxes without non-timber considerations in Chapter 5. (For distributional effects, the point of reference is the status quo irrespective of whether the initial equilibrium is undistorted or one distorted by capital income taxation).

The economic incidence of a tax (to whom the tax burden ultimately accrues) must be distinguished from its statutory incidence (who is legally responsible for paying the tax). The two will generally not coincide (Auerbach 1985, Rosen 1985). If forest taxes, for example, affect individual forest owners' harvesting decisions, they give rise to shifts in the aggregate supply of timber. Given that the stumpage price is determined by the interplay of supply and demand, such shifts in turn affect the market price and income distribution between timber buyers and sellers via tax shifting. To which party the tax will mainly accrue depends on the relative steepness of the demand and supply curves. In what follows, the extreme cases of perfectly elastic and inelastic demand/supply curves are ruled out and the ordinary case with a downward sloping demand and upward sloping supply curve is considered.

The demand for timber is derived demand, which can be modelled as the maximization of the firm's profits with respect to the use of roundwood and other inputs. In the short run, the capital input is fixed, so the problem is adjusting the utilization rate of a given production capacity. Because adjustment incurs cost and factor substitution is limited in the short term, the short-run demand tends to be relatively inelastic. In the long run, the capital input is also variable. The problem then is to choose the optimal capacity itself. Thus, long-run demand is determined by the level of investment in the forest industries and technical change. With additional choice variables and possibilities for factor substitution, the long-run demand is likely to be more price elastic.\(^4\)

Lump-sum taxes

Suppose an allocatively neutral tax, such as the unmodified site productivity tax, is initially used. Given supply and demand curves \(S \) and \(D \), the volume traded and stumpage price in the timber market are \(q_0 \) and \(p_0 \) (Fig. 2.3). The buyers' and sellers' surpluses are the triangles \(A \) and \(B \), respectively. As the timber supply is unaffected by the lump-sum tax both in the short and long run, there is no tax shifting and the economic incidences coincide (in the long run, this also applies to the profit tax). Next, suppose the lump-sum tax is replaced by a nonneutral tax with the tax rate set so as to raise an equal tax revenue.

Yield taxes

Consider the short-run effects (stage 2) in section 5.2.2 of a switch to the gross yield tax (the same broadly applies to the profit tax). The initial supply curve \(S^0 \) in Fig. 4(a) indicates that for the sellers to supply a given quantity of timber, they must receive the price \(p_1 \) per unit. Given a yield tax at rate \(\gamma \), the sellers receive \((1 - \gamma)p_1\) per timber sold at the price of \(p \); for them to receive the same unit price after the tax, timber users would have to pay \((1 + \gamma)p_1\). That is, the supply curve perceived by the users after the tax will be \(S^1 \). The quantity traded at the new equilibrium is \(q_1 \), the price

64 Ovaskainen, V.

Acta Forestalia Fennica 233

65
paid by the buyers is \(p_b \), and the after-tax price received by the sellers is \(p_s \).

Owing to the price adjustment, the quantity traded is reduced by less than it would have with a fixed stumpage price (to \(q_1 \), rather than \(q^* \)). The total amount collected as tax revenue is the area \(C + D \), with the tax ultimately accruing to the timber suppliers represented by rectangle \(D \) and the tax accruing to the buyers denoted by \(C \). Timber users therefore lose compared to the lump-sum tax, because part of the tax burden shifts to them via higher stumpage prices. (As the total reduction in surplus, \(C + D + E \), is greater than the total tax revenue \(C + D \), the reduction in output generates an excess burden denoted \(E \).) In the long run, the individual's yield tax (given \(h_p < 0 \)) shifts the aggregate supply schedule to position \(S' \) in Fig. 4(b). Part C of the tax shifts to the timber users as a result of the higher price \(p_b \).

Ad valorem property tax

The short-run analysis of the ad valorem property tax is the reverse of the yield tax. The ad valorem property tax at rate \(\alpha \) appears as an increase in the after-tax stumpage price received by the seller, i.e., his/her perceived price becomes \((1 + \alpha)p \) per unit. For the seller to get \(p \) after the tax, the buyers need to pay \(p(1 + \alpha) = p(1 - \alpha) \), so the supply curve perceived by the buyers becomes \(S' \) (Fig. 5). The stumpage price they pay is \(p_b \), while the sellers' perceived price is \(p_s \). Timber buyers benefit as compared to lump-sum taxation through lower stumpage prices so that their surplus increases by the area \(H + I \). The sellers' surplus also increases by \(F + G \) (cf. the effects of a subsidy, Auerbach 1985), which represents the property tax that the forest owners escape by increasing the current harvest.

The net outcome from the sellers' point of view depends exactly on how the tax rate is set. If \(\alpha \) is not fully adjusted in advance for the increase in harvest, the actual revenue from property taxes will fall short of \(T^* \) originally collected by the lump-sum tax. The sellers, on net, are then better off in the short run. If \(\alpha \) is fully adjusted to collect exactly \(T^* \) despite the reduction in taxable stock, the tax will exhaust the increase in sellers' surplus and the forest owners are left as well off as before. (An excess burden is generated, however, because the units of timber between \(q_0 \) and \(q_1 \) are valued at less than their true social opportunity cost.) For the steady state implications of the ad valorem property tax, Fig. 4(b) applies (timber users pay part of the tax via higher stumpage prices).

The following conclusions can be made. In the short run, replacing a neutral forest tax by a yield tax with the same total revenue would make timber suppliers better off via tax shifting. However, this is at the cost of making timber buyers worse off, so the switch cannot be Pareto optimal from the two parties' point of view. Substituting an ad valorem property tax for lump-sum taxation would make the buyers better off and leave the sellers at least as well off in the short run. In the long run, both yield and ad valorem property taxes, while leaving the sellers better off, would make timber users worse off. The switch therefore is not Pareto efficient for the parties.

Finally, a general implication of the incidence analysis is that the adjustment of stumpage prices at the market level reduces the magnitude of tax-induced management distortions (cf. Gompmon & Mendelsohn 1987). The qualitative conclusions concerning the efficiency of taxes will not change, but the overall management distortions from capital income taxation will be quantitatively smaller than those suggested in section 7.3, based on the representative forest owner's case.

8.2 Equity issues

This section considers the equitable distribution of the tax burden between forest owners. Horizontal equity implies that individuals who are in equal positions should be treated equally. In other words, people who are equally well off should bear equal tax burdens. Vertical equity has to do with how taxation treats individuals at differing levels of welfare; a person with greater taxable capacity should bear the greater tax burden (e.g., The Structure ... 1978, Badoway & Wildasin 1984).

In what follows, vertical equity is defined in the weak sense that the tax burden should be proportional to the individual's taxable capacity. While the property tax has often been associated with the redistribution of income through progressive income taxation, the idea has recently lost much of its popularity. With more attention being paid to the disincentive effects of progressive taxes, the trend in capital income taxation is towards proportional taxes (accordingly, progressive forest taxation has been ignored throughout the study).

A fundamental question is the proper definition of an individual's taxable capacity or ability to pay. The view adopted here is that an equal taxable capacity should be judged by the similarity of opportunity rather than similarity of outcomes, which depend on the individuals' own decisions (see The Structure ... 1978, Rosen 1985). In terms of the income concept, this is consistent with the Haig-Simons comprehensive definition (see e.g. Badoway & Wildasin 1984, Musgrave 1985). A person's income is the money value of net accretion to his/her "economic power"; more specifically, it is the value of what he/she could consume during a year (A) without diminishing his/her capital, or (B) while being left with capital and maintaining the same level of consumption indefinitely in the future (The Structure ... 1978). In other words, income can be defined as the sum of current consumption plus capital gain or loss.

8.2.1 Horizontal and vertical equity

As applied to forestry, the above view implies that whether two forest owners should bear an equal tax burden or whether one of them should bear a greater tax should be judged by their harvest potential and changes therein, rather than realized income. In other words, an equitable forest taxation should take into account the individual forest property's income-earning capacity as reflected in the woodlot's harvest potential. The tax burden would accordingly increase in proportion to the owner's forest-related wealth and ability to pay (while tax progression and the owner's overall wealth are omitted). As regards the correct income concept for forestry, this leads to the comprehensive concept of accrual income, which defines a period's income as the realized income plus any change in the value of standing stock. Naturally enough, equity, in the sense defined above, would be
met by an accrual income tax. Consider next its common substitutes.

Site productivity taxation

Conceptually, the site productivity tax is consistent with definition B of the comprehensive income above (the mean annual value increment representing the accrual income as an average). However, annual site productivity taxes are frequently criticized because taxes are paid continuously while cash income is only obtained at harvest time. On properties that are previously heavily cut, the computational average income may then overestimate the actual harvest potential in the short term, or even for an individual owner's life-time. Generally, this applies where the owner's forest-related wealth mainly consists of immature stands (in Finland, for example, final cutting is not allowed below a specified minimum age). On the other hand, taxable income will be underestimated on properties with high initial endowments of mature timber. This is a potential problem with the modified site productivity tax, where an equal tax rate is levied on all age classes. In the modified site productivity tax in Finland (since 1980 and 1991 reforms), these problems are alleviated by implicitly recognizing the age distribution via tax exemptions on regeneration areas and seedling stands.

Realized income taxes

It is sometimes suggested that the problem of taking the individual woodland's harvest potential into account would be resolved by realized income taxation. Indeed, it eliminates the possibility of taxes being levied for assumed income that never was or could not be realized. In fact, however, realized income taxation involves several drawbacks with respect to horizontal as well as vertical equity. The basic reason is that the concept of realized income fails to consider the woodlot's value at all. Thus, of two woodlots with an equal initial harvest potential (income-earning capacity), one may be cut and thereby taxed heavily while the other may be completely exempted if the owner abstains from cutting. As for vertical equity, the tax burden is by no means proportional to the initial or remaining forest-related wealth.

On the other hand, realized income taxation fails to recognize the capital gains aspect. The concept of realized income is consistent with the comprehensive definition only if the annual cut remains close to the annual timber growth. If the harvest significantly exceeds the relevant period's growth, the remaining timber inventory or forest-related wealth declines. Taxing the entire realized and unrealized income at the rate of growth, therefore implies taxing what represents a transformation of one's capital into another asset rather than real income. If the harvest is less than growth (or zero), the unrealized capital gain in the standing stock remains untaxed, even if it represents an increase in the owner's wealth. (Of course, the uncertainties involved in the growth function and future timber prices must be held in mind while estimating the capital gain).

Ad valorem property tax

Based on the potential harvest value of the standing stock, the tax burden under ad valorem property taxation is proportional to the woodland's harvest potential and thereby the owner's forest-related wealth. Given that the timber resources are finite, the tax also represents the forest owner's ability to pay. Note that the ad valorem property tax is defined as a tax on the market value of the standing stock; thus, if properly applied, juvenile stands with or little merchantable timber are exempted by definition or only lightly taxed. Even if simplified tax schedules need to be used in practice (see section 8.3), the ad valorem property tax seems to outperform both site productivity and realized income taxes in terms of horizontal and vertical equity.

8.2.2 Realization possibilities for timber

The argument that annual site productivity or property taxes on the forest are "unfair" seems analogous with the fear that, more generally, taxing capital gains on accrual rather than realization might force the owners to sell assets prematurely to raise revenue for the taxes (e.g. Badoway & Wildasin 1984). In the case of forestry, however, such liquidity problems, with related premature harvesting, are in most cases unlikely to be a real issue. As age classes usually coexist, cash income can be received more or less regularly. Problems may appear — i.e., the computational value increment or taxable property value may overestimate the forest owner's real income-earning capacity in the aggregate — if there is no demand for all the timber grown. The potential for such a problem exists in Finland, for example, where the annual timber growth exceeds the foreseeable wood-using capacity and the demand may be limited for stands with less favorable locations and lower grade timber assortments.

With realized income taxation, based on actual transactions, the unit value of the timber and potential limitations to its realization possibilities are automatically correctly recorded. Thus, the realized income tax can flexibly adjust to changes in the demand situation and stumpage prices. The annual taxes based on the potential income has a bias as they require special adjustments to allow for a potential excess supply. While not without difficulty, the problems should not be overstated. (In Finland's forest taxation, for example, a "safety margin" has been applied to guarantee that no one is taxed too heavily. Since 1991, the determination of taxable income was further adjusted to allow for the pervasive excess of aggregate timber growth over the annual harvest levels).

8.3 Administrative simplicity and costs

Most literature on optimal taxation has implicitly assumed that collecting taxes is costless. So far, the present study has similarly ignored the administrative feasibility and costs of forest taxes. However, the total cost of collecting tax revenue is in fact the sum of the excess burden and administrative costs (Rosen 1985, p. 321-322). As alternative tax systems may differ in the cost of their application, as emphasized by Slemrod (1990), administrative simplicity and costs of alternative criteria for the choice of a tax base. While providing gains in terms of production efficiency, implementing a more sophisticated tax system is likely to call for a larger administration and incur greater costs. While both of the factors for the forest tax administration is beyond the scope of this study, some general notes will be made below. In the first place, the administrative simplicity and costs of alternative forest tax regimes have to do with their informational requirements and the gathering and updating of data for implementation.

Technical and administrative simplicity is frequently considered to be a major advantage of realized income taxation. For a realized income tax with immediate expensing and no individual based management age (the gross yield tax in the present study), this is undoubtedly true. Collecting a fixed per cent of tax on the gross sales revenue at source, no site type classifications, records of tax exemptions, or verification of management requirements would be needed. However, it is not that simple if actual management costs are taken into account on an individual basis, as recently suggested in Finland (costs of profit tax in the present study). Source costs are incurred. Administrative costs must be verified and recorded by the authorities to determine the final tax liability.

For site productivity taxation, a comprehensive classification of forest land is required to estimate the annual taxable income (mean annual value increment) by site type. Establishing and periodically updating such a data base incurs a significant cost. In the unmodified form, however, this is about all, since a schematic deduction for the average management costs will suffice. The modified site productivity tax in Finland involves a number of complications (exemptions for regeneration areas and seedling stands is a liquid asset, the latter also reflects the forest reforestation and brush control, etc.), which incur additional administrative work.

The ad valorem property tax, literally, is a tax levied on the market value of the standing stock. Its application calls for a reasonably up-to-date record of the age class distribution of individual woodlots. The dominant tree species and site productivity also need to be known stand by stand in order to estimate the commercial value of the stock and its growth rate. In practice, simplified schedules should be used. In Finland, where a site type classification exists, a suggestion has been made that the "flat" site productivity tax could be weighted by stand age that is, the per hectare tax burden would be determined by the development stage of the stand (Rithinen 1982, Pusuhollon ... 1985) or e.g. three broad classes of stand age. (In fact, this would amount to taxing forest values means maintaining for tax purposes. According to Leikas (1990), mandatory forest management plans are used to determine the woodlot's sustainable harvest in the forest taxation in Germany and Austria). In any case, the informational requirements and costs exceed those for the site productivity tax.

Two concluding remarks on the evaluation of the relative administrative merits of forest taxes
should be made. First, for a relevant comparison between the realized income vs. site productivity taxes, it seems decisive which specific applications are compared, and whether a site type classification initially exists. Where such a classification does not previously exist, especially the simplest types of realized income taxation obviously outperform site productivity taxation in terms of operational costs. However, where a site type classification exists, this is not clear. Especially an unmodified site productivity tax, with few or no adjustments, might well be competitive with the more sophisticated types of realized income tax (the profit tax).

Secondly, the gains in administrative costs attainable by a simpler tax system must be weighted against the efficiency gains that a more sophisticated tax system might provide. In the present context, efficiency gains could be achieved by choosing forest taxes so as to offset the management distortions from capital income taxation. Now, if the operation costs of the profit tax and site productivity taxation do not differ significantly, the qualitative conclusions on their relative efficiency (see the study in section 6.5) will not change even if costs are taken into account.

The ad valorem property tax makes a difference due to significantly higher resource costs. Therefore, even if the management distortions from capital income taxation are significant, it is not a priori clear whether it is pays to try and eliminate them through a more resource-consuming forest tax system. (Neither can this be ruled out a priori. Collecting sufficiently accurate data on individual properties is becoming technically feasible, at least, with recent developments in remote sensing techniques). To evaluate the net gains, a computable general equilibrium model is required to estimate the economy-wide effects and attainable benefits of removing the tax-induced lock-in effect on the realization of timber. For an outline for such an analysis, one may refer to Boyd & Daniels (1985) or Boyd & Hyde (1989).

Notes to Chapter 8

1The assumption means that stumpage prices adjust to changes in supply and demand so that the timber market equilibrates every period. Price adjustment may be hindered or rendered sluggish by agreements on recommended prices between the sellers and buyers' organizations (e.g. Finland, Sweden). While no decisive evidence exists (see Kuuluvainen et al. 1988), downward price rigidity may be generated by such arrangements.

2Following Johansson & Lilgren (1985), a competitive firm's short-run timber demand can be modeled as the maximization of the profit function of the form: \(P = \frac{c + \omega}{p - w} \), where \(w = \frac{c}{p} \) is the firm's production as a function of roundwood and labor inputs, respectively. \(p \) is the price of end products, \(w \) the stumpage price and unit wage. The demand function will be the solution with respect to \(c \). In the long run, the capital stock and the level of technology are also variables and the production function can then be written as \(y = f(K,c,\ell,L) \), where \(K \) is the capital input and \(T \) denotes the (exogenous) level or change of technology (e.g. Hetemäki 1990, Hetemäki & Kuuluvainen 1991).

3In contrast, timber supply can be taken to be more price elastic in the short than in the long run (Chapter 3 and Appendix 1). Typically, then, the short-run case can be characterized by a relatively elastic supply and inelastic demand, while in the long run the opposite is true as far as theory is concerned. For empirical evidence on short-run timber supply and demand, see Brännlund et al. (1985), Kuuluvainen (1985, 1986), Tervo (1986), Newman (1987), Kuuluvainen et al. (1988), Aronsson (1990a), and Hetemäki & Kuuluvainen (1991). For long-run timber supply, no empirical evidence is available. However, several studies on the short-term supply (Brännlund et al. 1985, Kuuluvainen et al. 1988, Hetemäki & Kuuluvainen 1991) have included the previous period's price, representing expected future price, and reported negative elasticities with absolute values close to those for the current price. This suggests that the total "medium-term" or "long-term" price elasticity is close to zero.

4It is implicit here (cf. section 5.2.2) that immediately after the new regime has been imposed, the sellers only perceived the current tax. Due to a stock effect, however, the supply schedule will shift to the left at stage (2) irrespective of this assumption. Thus, even if the supply schedule shifted with its slope unchanged, the qualitative results would be the same.

5Even more, the tax burden may be inversely related to the forest owner's ability to pay. A forest owner with high enough overall wealth to abstain from cutting may completely escape the tax, while a low-income forest owner who depends on the timber revenue is taxed for the entire realized income.

6Owner-occupied housing is a perfect example of illiquidity with no cash receipts at all (therefore, its imputed income is rarely taxed). For assets which do provide cash income, liquidity problems do not appear if there are well-developed capital markets with no major constraints on borrowing against future income.

9 Summary and conclusions

The final chapter summarizes the main theoretical results and policy implications of the study. The results on the effects and relative efficiency of common forest taxes (Chapters 4, 5, and 6) are first discussed Chapter 1 by Pfaffel, as well as the more specific forest tax issues in Finland (Chapter 7). Besides production efficiency, the additional aspects of equity and administrative costs (Chapter 8) are finally incorporated for an overall evaluation of alternative forest taxes.

The model

After a review of earlier forest tax literature (Chapter 2), the analytic tool for the study was developed in Chapter 3. The now frequently used two-period model of consumption and timber harvesting was extended by incorporating the management intensity decision. In addition to short-run timber supply, the generalized model can be used to analyze the long-run steady state timber supply and proves to be a discrete time counterpart of the well-examined models for renewable resources.

The effects of common forest taxes

In the positive analysis of forest taxes in Chapter 4, as well as Chapter 5, only the income from timber production was assumed to matter. Perfect capital markets and perfect foresights were assumed to exclude income effects which are irrelevant from the efficiency point of view. Under these assumptions, lump-sum taxes, such as the modified site productivity tax, are neutral with respect to short-run supply, management intensity and long-run timber supply. For the realized income (yield) taxes, the temporal variations in the tax rate matter. However, the profit tax, with full deductions for costs, is neutral if the tax rate is perceived to be constant over time. The ad valorem property tax unambiguously encourages timber harvesting. The impacts on management intensity and long-run supply are respectively ambiguous or negative.

As noted in Appendix 1, the results for the stationary case are rather similar to those which could be indirectly concluded from the rotation model (the timing effects cannot be considered in the latter).

The relative efficiency of forest taxes

As the core of the study, Chapter 5 considered the normative question of the appropriateness of alternative forest tax regimes from the standpoint of production efficiency. The conclusions differ from the suggestions made (frequently based on implicit arguments only) in most of the earlier forest tax literature. This is because, with the notable exceptions of Kovenock & Rothschild (1983) and Kovenock (1986), earlier discussions have explicitly or implicitly assumed an initially undistorted, taxfree economy or failed to consider the tax system as a whole. In that case neutral forest taxes, such as the site productivity or profit tax, do appear desirable. Criticism of the nonneutrality of ad valorem property taxes would also be justified.

Following Kovenock & Rothschild (1983), Kovenock (1986) and Chisholm (1975), the present study adopts a different view. Noting that the assumption of no pre-existing taxes and tax distortions is unlikely to approximate any real economy , the policy implications based on such an assumption tend to be misleading. Once the effects of a capital income tax levied on other assets (interest charge deductions) are recognized, neutral forest taxes may no longer be desirable. Rather, the two in combination induce a lock-in effect on the realization of timber. As a nonneutral forest tax need not imply social undesirability, the adverse effects of the capital gains taxation of forests seem ill-argued (for reviews of the U.S. forest tax debate, see Klemperer 1977, Boyd 1986). Rather than forcing forest owners to cut prematurely, a properly set ad valorem property tax might just restore efficiency by offsetting the lock-in effect from the tax-induced reduction in the opportunity cost of capital. Efficiency can be met by an income tax if (but only if) levied on an accrual rather than realization basis.

The role of nontimber benefits

To see whether the tax conclusions are sensitive to the assumptions concerning the forest owner's and/or policy-maker's objectives, the imputed utility from the forest's nontimber services was incorporated in Chapter 6. Due to income effects, even lump-sum taxes prove to be
nonneutral, and the stable profit tax is no longer without substitution effects. The efficiency criterion now involves the marginal valuation of the standing stocks it represents to the production of amenities. However, the main conclusions on the relative efficiency of forest taxes are rather robust (see section 6.5 for a summary).

If there is no need to subsidize or discourage the production of amenity services through taxation, lump-sum taxes are efficient in the absence of pre-existing tax distortions. Given the capital income tax, the ad valorem property tax is optimal with exactly the same rate as without non timber considerations. Where the private forest owners tend to underproduce non timber services, the property tax rate in the latter case should be adjusted downwards for a greater standing stock. Notably, realized income taxation – as far as the profit tax is concerned, at least – does not appear to be an appropriate way to allow for the production of external benefits. For reasons discussed in Chapter 6, this conclusion contrasts with earlier suggestions (e.g. Heaps & Hellwell 1985, Gamponia & Mendelsohn 1987).

Forest taxation in Finland

Chapter 7 considered both the modified site productivity taxation applied in Finland and the realized income tax, which is to replace the present system. The capital income tax on other assets, the appropriate forest tax should take into account the harvest potential and/or changes therein, if taxation as a whole is to be neutral with respect to forest management decisions. That is, efficiency calls for the capital gains taxation of forestry.

The recent forest tax reform made an attempt to encourage the realization of timber by more extensively exempting regeneration areas and seedling/sapling stands. Unfortunately, it is not completely clear whether the harvest subsidy has the desired effect on harvest timing decisions when available on a permanent basis. On the other hand, realized income taxation is to be introduced by extending the uniform capital income tax rate to the net realized income from forestry. Based on considerations such as apparent uniformity with the taxation of other assets and perceived administrative simplicity, the proposal fails to recognize the overall effects on the realization of timber. While neutral as such, the realized income tax thus implies efficiency losses over time (illustrative examples are given in Appendix 9).

An outline for overall evaluation

In Chapters 5 through 7, forest taxes were considered from the efficiency point of view. However, other criteria matter in the choice of a forest tax base. Both horizontal and vertical equity were considered in Chapter 5, based on the view that an equitable forest tax should take into account (be proportional to) the property’s income earning capacity as reflected by the harvest potential. General notes were made in detail concerning the informational needs and related administrative costs of the tax alternatives. A brief outline for an overall evaluation of the common forest taxes, considering both production efficiency, equity and administrative aspects, can be given as follows.

(1) The unmodified site productivity tax is consistent with production efficiency only in the absence of any exogenous tax distortion, as the economic analysis of landowners behavior. Yale University, School of Forestry and Environmental Studies. Bulletin 92. p. 97.

References

Metsäverotus, puun tarjonta ja taloudellinen tehokkuus

Johdanto

Eri maissa käytetyt metsäverojärjestelmät voidaan luokitella kolmeen pääryhmään. Metsäverotus perustuu joko kasvupaikan tuototyypeen eli keskimääräiseen tuloon (pinta-alaverotus), realisoituaan tulon eli aktuaalisiin metsäyhtiöillisiin (myyinytaverotus) tai metsäomaisuuden - eli ennen kaikkea puuvaranon - markkina-arvoon (ad valorem -omaisuusverotus). Varhaisessa tutkimuksessa metsäveroji vertaillit käyttäen mm. site berden -mitattua, jolla tarkoitetaan verojen suhteellista vaikutusta maan arvoon. Myöhemmän tutkimuksen tärkeimmän ongelma on ollut metsäveron ajankohtaisuus optimaaliseen kierto- ja metsänhoitoinvestointeihin. Perustelutosta mu- kaan arvoon perustuvat omaisuusveron kiertoajoiksi lyhentäviä vuosia

Seloste

Metsäverotus, puun tarjonta ja taloudellinen tehokkuus

Metsäveropolitiikka kosksee keskeisimpiä kattelusokus. Keskus- telun ongelmana on ollut selkeä käsityksen puuttuminen

metsäverojärjestelmien suhteellisen tehokkuuden (efficiency). Käsi- teltävät pääytyvät ovat pinta-alaverotus, myynniväten sekä ad valorem -omaisuusverotus. Lisäksi kertakulutauksen

tekijänä oleva kertyminen ja omakotouttaminen

1. Alsoko kohdistettavaksi sanotaan puun tarjon- nan teoreettinen malli. Fisherin kulutus- ja säästämis- malleja perustuvaa kahden periodin mallia laajenee-

Strang, W. J. 1983. On the optimal forest harvesting
 p. 61–124.
Total of 142 references
Metsäverojen vaikutukset: positiivinen analyyti

Analyyssissä metsäverojen vaikutukset luuvassa 4 ja 5 tavoitefunktion argumentina on voina kultrus, ts. puun
puumattoman suunta vastaavan tulos. Veehkuuunikkaan
relevanten taloudestuksen eliminoinimiseksi ja analyysi
s yksinkertaisemmin oletetaan täydelliset pääomastauk
markkinat ja tulevat onnanottoj.

Näiden oletusten vallitessa hakkuut ja puustooppaa
puumattoin "pahdas" pinta-alavero on negatiivinen. Myy
verojen vaikutukset ovat verrattavissa ko. periodin kan
tohoina muutoksiin. Veroasteen ajalliset vaihtelut vai
tuututtavat pääkohtien. Suhteellinen myynti voi kuiten
kin olona neutraali siinä tapauksessa, että metsä-, metsäri
tuksen säätelyä ja pöytä ajan tarjontaan ovat epäselviä
ja negatiivisia. Pitkän aikavälin tulokset ovat jokseenkin
samoin kertoootaan epäsuorasti saatavat (vero
taukseen aikavaihtoeiksi ei oikeudenmukaisista

Metsäverojen suhtelinen tehokkuus: normatiivinen analyyti

Vaihtoehtoisten metsäverojen haluttavuutta taloudisell
sen tehokkuuden näkökulmasta tarkastellaan luuvassa 5.
Lähtökohtana on, että pääomamarkkinoiden ollessa te
hokkaat ja voinnuttavien verojen puuttuessa yksityisen
metsäomistajan optimoituja pääkohtia vastaavat myös
koko talouden kannalta optimalisointia ratkaista.
Pitkäpäätökset eroavat aina minun esitystään
monesti vain epäsuorasti perustelussa – käsityksissä.
Aikuiseen luuvuksiin olette eräänä poliittisissa
luvuissa 4 ja 5. Lähtökohtana on, että pääomamarkkinoiden
ollessa tehokkaat ja voinnuttavat verotukset puuttuvat
myös metsäomistajan optimoituja pääkohtia vastaavat. Tässä
voimassa on useita kielellistä ja metsäomistajan

Metsäverojen ja pitkän aikaviljan tarjonta- ja väestö

Metsäverojen ja pitkän aikaviljan tarjonta- ja väestö
Appendix 1. Comparison of the results with the rotation model

For a meaningful comparison, the assumptions of both models should be made as similar as possible. First, assume forest growth depends only on stand age or the growing stock (for example, E is institutionally fixed at a given level). Using the same notation as in end notes 1 and 3, Chapter 2, the basic Faustmann formula can be written as $E(t) = [P(t)e^{-r} - C]/[1 - e^{-r}]$. The optimal rotation is given by

$$t^* = t^*(p, r, C)$$

(e.g. Johansson & Löfgren 1985). Given that long-run timber supply is determined by $h^* = f(t^*)y^*$ (Clark 1976, Hyde 1980) and using the graphical argument by Jackson (1980) for long-run results, the implied short and long-run supply (H^* and h^*, respectively) can be characterized as

$$H^* = H^*(p, r, C), h^* = h^*(p, r, C)$$

Note that the rotation model assumes that a regeneration cost occurs every time the stand is clearcut. In the two-period model, an equivalent assumption incorporates a regeneration cost proportional to the current harvest volume. Then, the first-period budget constraint becomes $c_1 = p_1H_1 - w_1H_1 - S = p_1 - w_1H_1 - S$, where w_1 is a proportionality parameter. For short and long-run supply (long-run supply now defined as $h = F(Q - H)$, this implies

$$H = H(p, r, w; p_1, p_2, Q), h = h(p, r, w)$$

Secondly, consider management intensity as a choice variable. Following Chang (1983), the generalized rotation model $E(t) = [P(t)e^{-r} - w_m]/[1 - e^{-r}]$ implies

$$(A.14) \quad t^* = t^*(p, r, w), m^* = m^*(p, r, w)$$

where w represents Chang's planting cost (the site preparation cost would make little difference). For short and long-run supply, $h^* = f(t^*, m^*)/t^*$, $(A.14)$ implies

$$(A.15) \quad H^* = H^*(p, r, w), h^* = h^*(p, r, w)$$

(Hyde 1980, Jackson 1980). Ambiguities arise because the signs depend on $\text{sgn}(F_{Q1})$ and $\text{sgn}(F_{Q2})$ (Chang 1983). On the other hand, the two-period model with endogenous management intensity implies

$$(A.16) \quad E = E(p, r, w; p_1, p_2, Q)$$

$$(\text{see text})$$

The signs depend on $\text{sgn}(F_{Q2})$, uncertain results appearing when $F_{Q2} < 0.$

Appendix 2. Conceptual remarks on the excess burden

Suppose the “small” individual forest owner initially faces a horizontal demand curve D, i.e., a given stumpage price p_0 (Fig. A2.1). With the short-run timber supply curve depicted by S, the quantity sold will be q_0. This implies that the seller’s surplus is the triangle p_q. After a proportional yield tax τ is imposed, the forest owner will receive $(1 - \tau)p_0$ for a unit of timber sold at p_0 per unit, i.e., the demand curve perceived after the tax becomes D'. While the buyer’s price remains at $p_0 = p_s$, the seller’s effective price will be p_q and the quantity sold is reduced to q_1. Consequently, the seller’s surplus is reduced to $p_qe^{-r}p_q$. While the amount collected as tax revenue is $\tau p_qe^{-r}p_q$. As the reduction in the seller’s surplus $(p_qe^{-r}p_q)$ is greater than the tax revenue, the excess burden of the yield tax is the shaded triangle ΔE (cf. Rosen 1985, p. 285).

To illustrate the first contention – that the excess burden does not flow only from a reduction in output but even a subsidy generates a positive burden – suppose a proportional subsidy at rate σ is introduced

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{A2.1.png}
\caption{The excess burden of the yield or sales tax (shaded area).}
\end{figure}
Appendix 3. A switch between gross yield and ad valorem property taxes

As both taxes are nonneutral, the comparison is not as simple. Denoting the target level of steady state tax revenue by T^* and setting $d = 0$ for simplicity, it can be written

\[(A3.1) \quad T^* = y p r^* + \alpha p K^* + b h \Phi(h/E) \Phi_r^* \]

By $h = F(E)$, the growing stock has been replaced by writing $K = 0 = (h, E)$, where Φ is the inverse function of $F(E)$. As $F_E > 0$, i.e. F is monotonic in E, over the relevant range $K = \Phi$ the inverse function is unique with $\Phi_E > 0$ for all $K > M$. Totally differentiating w.r.t. y, α and h with T^* unchanged gives

\[(A3.2) \quad dT^* = y p r^* dy + \alpha p \Phi (h/E) \Phi_r^* d\alpha + [y p r^* + \alpha \Phi(t_r)^*] dh \]

Solving for $d\gamma$, substituting into $dh = b h dy + b h d\alpha$ and solving, the effect on long-run timber supply of a compensated switch between α and γ is obtained as

\[(A3.3) \quad \frac{dh}{d\gamma} = \frac{\Phi_E}{\Phi} \left(1 + \frac{b h}{\Phi(r)} \right) > 0 \]

Regarding direct effects only, reducing γ will have a positive effect on h via E, while increasing α will have a negative effect via K. Thus, the total effect is a priori indeterminate.

Appendix 4. The expenditure tax

The expenditure tax implies choosing an individual’s consumption expenditure, rather than income, as the base for direct taxation. For the lengthy debate on the relative merits of income vs. consumption as the tax base, the reader is referred to e.g. Margrave (1987). In the present context, the expenditure tax will be defined as a given per cent of the relevant period’s harvest revenue, net of management costs, minus net savings. That is, savings are excluded from the tax base, while borrowing is included. Interest income from the assets will be taxed only when withdrawn for consumption. The usual way to define a proportional tax-exclusive expenditure tax rate τ (e.g. Koskela 1988) is by writing

\[(A4.1) \quad \tau = \frac{p h E + w E - S}{p h E + w E + S} \]

which is equivalent to

\[c_1 = (1 + \tau)^* \left[p h E + w E - S \right] \]

\[c_2 = (1 + \tau)^* \left[p h E + w E + S \right] \]

For notational simplicity, the expenditure tax rate will be represented by $\tau = (1 + \tau)^*$, which is defined as follows:

\[(A4.2) \quad \tau = \frac{(1 + \tau)^*}{(1 + \tau)} \]

Inserting the definition in (A4.2) into the budget constraints in (A4.1), the intertemporal budget constraint becomes

\[c_2 = (1 + \tau)\left[p [Q + H + F(Q - H/E)] + (1 + \tau)^* [H - W - (1 - \tau)^* c_1] \right] \]

and the first-order conditions for an interior solution are

\[82 \]

Ovaskainen, V.

Acta Forestal Fennica 233 83
Appendix 5. Ad valorem property tax with inflation: solution and numerical examples

To explicitly consider an economy with inflation, write the future real stampe tax rate and real interest rate in terms of the nominal price/interest rate and the rate of inflation. The undiscounted solution, first, involves

\[r = r^* - t, \quad p_t = p_t(1 + \frac{1}{r^* - \xi}) \]

where \(r^* \) is the nominal interest rate, \(p_t^2 \) is the nominal future price, and \(\xi \) is the rate of inflation by which \(p_t^2 \) is to be deflated. Inserting these into the second-period budget constraint, the socially optimal allocation will be characterized by

\[(A5.2a) \quad 1 + F_t(1 - \frac{p_t}{t^2}) = \frac{w}{1 + (r^* - \xi)} \]

\[(A5.2b) \quad F_t = \frac{w}{1 + (r^* - \xi)} \]

To get the private solution, next introduce the capital income tax and ad valorem property tax. As the capital income tax is paid and deductions are made from the nominal interest, inflation has to be taken into account after the tax/accumulation. The intertemporal constraint for real consumption then becomes

\[(A5.3) \quad c_t = p_t^2(1 + \frac{1}{r^*} + H_t(1 + t^2S) - \pi^*S - t(1 + t^2S) \]

\[+ p_t^2(1 + \frac{1}{r^*} - t^2S) - t + \frac{1}{r^*} - t) - \pi^* + t^2S - t(1 + t^2S) \]

where a small term \(-\pi^* \) has been dropped for clarity. That is, the private effective, after-tax real interest rate will be approximately equal to \(t^* \) as both \(r^* \) and \(-\pi^* \) are small. The second-period property tax (its real burden), on the other hand, is \(\alpha p_t^2(1 + \frac{1}{r^*} - t) \).

Inserting both \(r^* \) and \(\alpha \), the private optimum will be

\[(A5.4a) \quad 1 + F_t(1 - \frac{p_t}{t^2}) = \frac{w}{1 + (r^* - \xi)} \]

\[(A5.4b) \quad F_t = \frac{w}{1 + (r^* - \xi)} \]

The appropriate property tax rate \(\alpha \) can be solved by equating the RHS's of (A5.2a) and (A5.4a) (note that the deflated price terms vanish as the public and private inflationary expectations are implicitly assumed to be equal). As a result, the latter equality implies \(\alpha = t^* - t \), which is untrue. The former equality alone gives

\[(A5.5) \quad \alpha = t^* - t \]

As an approximation, \(t^* - t \). That is, the efficient ad valorem property tax rate in an economy with inflation equals the nominal, rather than real, pre-tax interest rate multiplied by the capital income tax rate. With \(\alpha \) in (A5.5) reduces to (A5.2). To give an idea of the magnitude of the required property tax rate, numerical examples of the effective interest rate and the property tax rate are given for some typical values of \(r^* \) and \(t \). They are based on the following assumptions.

- A nominal interest rate at 10% is used to represent an average "market interest rate." For the capital income tax rate, 15% and 30% are used. (The former coincides with the 1992 level of the income tax on savings in Finland. The later is close to the impact of interest charge deductions in the early 1990's, with 75% deductible, at a 40% marginal tax rate).
- The average rate of inflation is assumed to be 6%/yr. With a 10% nominal interest rate, this implies that the real, before-tax market rate of interest is 4%. This coincides with a reasonable estimate of the risk-free social discount rate (for the main approaches, see Dasgupta & Pearce 1978). In the case of Finland, such a rate can be taken to fall within the range of 3-5% (Börje 1984). The social time preference rate can be estimated to be 3-4%. The private rates of return have been 6-7%, from which the private risk premium (e.g. 2%) must be deducted to arrive at the social opportunity cost of capital (Arrow & Lind 1970).
- To allow for a difference between saving and borrowing rates in the capital market, assume that the nominal savings rate \((r_s) \) is 8% with \(r \) at 15% or 30%, while the borrowing rate \((r_b) \) is 12% with \(r \) at 30%. In this case, it must be noted that the optimal property tax is a rate that effectively restores the equality of the private, after-tax real saving/borrowing rate with the social discount rate (here, 4%), now different from the untaxed private interest rates. By (A5.2a) and (A5.4a), this can be solved from the equality

\[1 + (r^* - \xi) = 1 + (r^* - \xi) \]

The results are given in Table A5.1. First, comparing the lines A and B shows that the distortions in the effective interest rate caused by the capital income tax are significant. For example, a 10% nominal interest rate with a 6% rate of inflation implies only a 1%, rather than 4%, effective interest rate if interest charge deductions at 30% are imposed. Secondly, the values for \(\alpha \) vary significantly, ranging from 1.5 to 4.4%. In some cases, the "fully corrective" tax rates would obviously lead to unrealistically high tax burdens (see end note 7, Chapter 7).

Table A5.1. Undiscounted and after-tax private real interest rate and efficient property tax rate for varied rates of capital income tax (\(r \)) and nominal interest rate (\(r^* \)).

<table>
<thead>
<tr>
<th>(r^*)</th>
<th>0.10</th>
<th>0.15</th>
<th>0.20</th>
<th>0.30</th>
<th>0.33</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r) (%)</td>
<td>0.05</td>
<td>0.10</td>
<td>0.15</td>
<td>0.20</td>
<td>0.25</td>
</tr>
<tr>
<td>(c_t) at 0.01</td>
<td>0.04</td>
<td>0.02</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c_t) at 0.12</td>
<td>0.04</td>
<td>0.02</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Undiscounted</td>
<td>0.04</td>
<td>0.02</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. After-tax</td>
<td>0.025</td>
<td>0.039</td>
<td>0.052</td>
<td>0.04</td>
<td>0.032</td>
</tr>
<tr>
<td>C. Optimal tax rate</td>
<td>0.015</td>
<td>0.03</td>
<td>0.032</td>
<td>0.044</td>
<td>0.016</td>
</tr>
</tbody>
</table>

\(* \) At 6% rate of inflation and 4% real social discount rate

Appendix 6. Optimal management intensity with non timber benefits

With the management intensity E included in the model of section 6.2, the second-period standing stock becomes

\[K_2 = Q - H_1 + Q + (H_2 - H_2) - H_2 \]

and the first-period budget constraint will be \(c_1 = p_1 + 1 - S = wE \). The problem will be maximizing the relevant objective function w.r.t. \(c_1, H_1, E_1, \) and \(H_1, E_2 \) (similarly to the separation case as it is not assumed to affect the second-period stock). The solution becomes

\[(A6.1a) \quad V_1 = u(c_1 - p_1 \beta) + \rho \frac{1}{1 + \rho} \frac{1}{1 + \rho} \]

\[(A6.1b) \quad V_1 = u[c_1(1 + \rho) + \beta(1 + \rho) K_1] \]

\[(A6.1c) \quad V_1 = u[c_1(1 + \rho) + \beta(1 + \rho) K_1] \]

\[(A6.1d) \quad V_1 = u[c_1(1 + \rho) + \beta(1 + \rho) K_1] \]

Solving (A6.1d) for \(V(K_1) \), substituting into (A6.1b) and rearranging, the cutting rule becomes \(\beta u(c_1 - p_1 \beta) = \frac{1}{1 + \rho} \beta \frac{1}{1 + \rho} \frac{1}{1 + \rho} \]

\[(A6.2a) \quad u(c_1)p_1 \]

\[(A6.2b) \quad u(c_1)p_1 \]

Clearly, (A6.3) holds if and only if \(\beta = p_1 \).

Appendix 7. Decomposition of comparative statics results with non timber benefits

The first-order conditions (6.5) of the utility maximization problem implicitly define uncompensated reaction equations which express \(c_1, H_1, \) and \(H_2 \) as functions of the exogenous variables: \(c_1 = c_1(p_1, p_2, p_3, Q, H_1, E_1, H_2, E_2) \). Substituting these into the objective function V, an indirect utility function \(Y \) is obtained which indicates the maximum attainable utility \(V \) under given values of the exogenous variables.

\[(A7.1) \quad V = Y(p_1, p_2, p_3, Q, u(c_1), u(K_1)) \]

By the envelope theorem (e.g. Varian 1978), the effects on the maximum attainable utility of changes in exogenous variables can be written as

\[Y_1 = \beta u(c_1(1 + \rho) + \rho) \]

\[Y_1 = \beta u(c_1(1 + \rho) + \rho) \]

\[(A7.2) \quad Y_1 = \beta u(c_1)p_1 + \beta(1 + \rho) S + wE \]

By definition the compensated reaction equations which correspond to the solution of the dual problem, i.e. the minimum level of exogenous income which can retain the constant utility level \(V \) at given values of other exogenous factors. Substituting \(G_0 \) for \(I \) into the uncompensated equations gives the following relationa:
Appendix 8. Long-run steady state effects of the modified site productivity tax

Setting \(p_t, \gamma, \) and \(\Gamma \) constant over time to represent the stationary case, \(p_t = \gamma = \Gamma = \gamma \) and the terms \(p_x \times \gamma \) in (7.4a) cancel out. According to

\[
\begin{align*}
\frac{\partial H}{\partial \tau} &= 0 = \frac{F_x}{(F_x)} \\
\frac{\partial V_j}{\partial \tau} &= 0 = \frac{F_x}{(F_x)} \\
\frac{\partial V_j}{\partial \Gamma} &= 0 = \frac{F_x}{(F_x)}
\end{align*}
\]

The permanent option for a tax exemption encourages final fellings only indirectly through the profitability of reforestation investments (the direct effects with \(F_x = \tau \) vanish). The impacts of \(\delta \) and \(\tau \) remain qualitatively unchanged. Using Eq. (4.19) and the results for \(H \) and \(E \), the impacts on long-run timber supply become

\[
\begin{align*}
\frac{\partial F_x}{\partial \tau} &= 0 = \frac{F_x}{(F_x)} \\
\frac{\partial F_x}{\partial \Gamma} &= 0 = \frac{F_x}{(F_x)}
\end{align*}
\]

which may be compared with Kasanèn’s (1984) estimate for NFI I through VI (units are mill. cubic meters, \(R_t = 0.9999 \), and \(\Gamma \) values in parentheses). To obtain the marginal productivity with respect to the growing stock at the current (1990) growth level, the coefficient of the dummy variable was used to shift the data points representing NFI I-VI to the current level. The growth figures from NFI I-VI were added by 10.0 mill. m³ and NFI VII by 20.0 mill. m³. The (hypothetical) fitted curve at the second stage became

\[
F(\text{K}) = 0.078 K - 0.000019 K^2
\]

and

\[
F(\text{K}) = 0.078 K - 0.000019 K^2
\]

Appendix 9. Management distortions from capital income taxation: numerical examples

An aggregate size dependent growth function was estimated using the data from the National Forest Inventories (NFI I) through VII (Kaulaopa 1972, Yearbook of 1989) and the updated data on the growing stock and timber growth in 1990 (Suomen Metsätieto 1990, Suomen Metsäst. 1990). The generalized logistic growth function (e.g. Clark 1976), augmented by a dummy variable, was employed in the form

\[
F(\text{K}) = p_0 K - \frac{p_1 C}{C + \text{K}^2} + \text{G},
\]

where \(\text{K} \) is the growing stock, \(p_0 \) is the intrinsic growth rate, and \(C \) is the maximum attainable stock (saturating level). The dummy variable \(D \), with the values \(D = 1 \) for NFI VII, \(D = 2 \) for 1990 and \(D = 0 \) otherwise, was included to capture the distinct shift of the growth level indicated by the last two observations owing to the extensive forest improvement programs since mid-1960's (especially drainage of peatlands). The ordinary least squares (OLS) estimate at the first stage was

\[
F(\text{K}) = 0.006 K - 0.000016 K^2 + 11.73 D
\]

which may be compared with Kasanèn’s (1984) estimate for NFI I through VI (units are mill. cubic meters, \(R_t = 0.9999 \), and \(\Gamma \) values in parentheses). To obtain the marginal productivity with respect to the growing stock at the current (1990) growth level, the coefficient of the dummy variable was used to shift the data points representing NFI I-VI to the current level. The growth figures from NFI I-VI were added by 10.0 mill. m³ and NFI VII by 20.0 mill. m³. The (hypothetical) fitted curve at the second stage became

\[
F(\text{K}) = 0.078 K - 0.000019 K^2
\]

and

\[
F(\text{K}) = 0.078 K - 0.000019 K^2
\]

Instruction to authors — Ohjeita kirjoittajille

Submission of manuscripts

Manuscripts should be sent to the editors of the Society of Forestry as three full, completely finished copies, including copies of all figures and tables. Original material should not be sent at this stage.

The editor-in-chief will forward the manuscript to referees for examination. The author must take into account any revision suggested by the referees or the editorial board. Revision should be made within a year from the return of the manuscript. If the author finds the suggested changes unacceptable, he can inform the editor-in-chief of his differing opinion, so that the matter may be reconsidered if necessary.

Decision whether to publish the manuscript will be made by the editorial board within three months after the editors have received the revised manuscript.

Following final acceptance, no fundamental changes may be made to manuscript without the permission of the editor-in-chief. Major changes will necessitate a new submission for acceptance.

The author is responsible for the scientific content and linguistic standard of the manuscript. The author may not have the manuscript published elsewhere without the permission of the publishers of Acta Forestalia Fennica. The series accepts only manuscripts that have not earlier been published.

The author should forward the final manuscript and original figures to the editors within two months from acceptance. The text is best submitted on a floppy disc, together with a printout. The covering letter must clearly state that the manuscript is the final version, ready for printing.

Form and style

For matters of form and style, authors are referred to the full instructions available from the editors.

Käsikirjoitusten hyväksyminen

Metsätutkimuslaitoksesta lähtöisin olevien käsikirjoitusten hyväksymisen menetelystä on ohjeet Metsätutkimuslaitoksen julkaisuohjeen mukaan.

Muista käsikirjoituksista lähetetään Suomen Metsätieteilijälle luku 1-4 perustuessaan kolme täydellistä, viimeistelystä kopiota, joihin sisältyvät myös kopiot kaikista kuvista ja taulukoista. Omaa maailmaineistoa ei tässä vaiheessa lähetetä.

Tekijän tulee antaa omaa käännöksiä ja muutoksia käännöksiin saaten käännöksiä vastauksenaan. Käännöksellä on oltava selvä ja selkeä, että käännökset ovat oikea ja toimipaikalla ilman mitään muutoksia.

Käsikirjoitusten ulkoasu

Käsikirjoitukset, vastaukset ja muut ohjelmaan liittyvät materiaalit tulevat sisällyttää kirjoitukseen ja sen takia on vastuut ymmärtämään käännöksellä ja materiaalilla. Metsätutkimuslaitoksen julkaisuohje on sisällyttävä alla olevaan käännöksiin ja materiaaleja.

233 Ovaskainen, Ville. Forest taxation, timber supply, and economic efficiency. Seloste: Metsäverotus, puun tarjonta ja taloudellinen tehokkuus.