The Effect of Various Stress Treatments on the Coagulase Test in Staphylococcus aureus

by H. Korkela and Varpu Hirvelä

False-negative coagulase tests were observed in Staphylococcus aureus strains stressed by low pH, heat treatment or repeated freezing and lyophilization carried out directly on Baird-Parker agar on which the strains were plated after stress treatments.

The processing of foods in modern food technology causes a number of problems to the food microbiologist, since many of the surviving bacteria may be damaged and their recovery and growth impaired (e.g. Busto 1978, Roy 1979). The debilitating effects of physical and chemical stress on staphylococcal cells have been well documented (Baird-Parker & Davenport 1965, Brewster et al. 1977, Flowers et al. 1977, Andrews & Martin 1979, Korkela 1980).

In carrying out the coagulase test, the recommended procedure is by subculturing the suspected Staphylococcus aureus colonies from the primary isolation agar in brain heart infusion broth before the cultures are inoculated to plasma to examine for coagulase production (Food and Drug Administration 1976, Bear et al. 1978, The International Commission on Microbiological Specifications for Foods 1978). The purpose of the present study was to find out whether the coagulase test can be performed directly from the colonies from the primary isolation medium, particularly when the bacteria have previously been subjected to various stress treatments.

Material and methods

The test organisms

A total of 77 coagulase-positive strains of S. aureus were used in these experiments, of which 57 were enterotoxin-producing and 20 were not. The strains were obtained from A. Nikkanen, D.V.M. and S. Lindroth, Ph.D., Technical Research Centre of Finland, Food Research Laboratory, Espoo, Finland.

Treatments

Every staphylococcal strain was inoculated into brain heart infusion (BHI) broth (Difco Laboratories, Detroit, Mich., USA). From the overnight culture, 0.1 ml of each staphylococcal suspension was inoculated into 5 ml of skim-milk for the purpose of stress treatments. Each stress treatment was studied with the same strain. After treatment one loopful of cells was spread on Baird-Parker agar (Difco) and incubated for two days at 35°C.

Low pH: The pH of the skim-milk was adjusted to 5.6 with 4 N-HCl. The inoculated tubes containing skim-milk were incubated for 24 h at 35°C.

Heat treatment: The inoculated tubes containing skim-milk were incubated for 24 h at 35°C. After the incubation the tubes were heated for 15 minutes at 52°C.

Freezing: The inoculated tubes containing skim-milk were incubated for 24 h at 35°C. Thereafter the tubes were frozen and kept two weeks at −20°C.

Repeated freezing and lyophilization: The inoculated tubes containing skim-milk were incubated for 24 h at 35°C, frozen and kept one week at −20°C. Then the cells were thawed, refrozen and kept one week at −20°C, refrozen and lyophilized. The dried cells were rehydrated with 5 ml of physiological saline and spread on Baird-Parker agar.

Coagulase test

The production of coagulase was measured by the tube method with pig plasma. Each strain studied after the various treatments was inoculated into BHI broth from Baird-Parker agar, using either a single colony or a heavy inocu-
Table II. Coagulase production of *Staphylococcus aureus* strains after heating in skim-milk 15 minutes at 55°C and spreading on Baird-Parker agar.

<table>
<thead>
<tr>
<th>Strain of inoculum</th>
<th>Number of strains tested</th>
<th>Positive reactions as function of time (h) expressed as percentage</th>
<th>Insolubility from BHI broth (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% 1 2 3 4 24 1 2 3 4 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entero-toxicogenic strains</td>
<td>A single colony Heavy inoculum</td>
<td>33 0 82 100 100 100 100 0 52 94 97 100 100</td>
<td>2.4-9 reaction(9)</td>
</tr>
<tr>
<td></td>
<td>A single colony Heavy inoculum</td>
<td>19 0 26 63 74 84 100 0 16 42 68 84 100</td>
<td>2.4-9 reaction(9)</td>
</tr>
<tr>
<td>Non-toxicogenic strains</td>
<td>A single colony Heavy inoculum</td>
<td>33 0 27 45 45 70 0 0 9 36 39 67</td>
<td>2.4-9 reaction(9)</td>
</tr>
<tr>
<td></td>
<td>A single colony Heavy inoculum</td>
<td>27 0 30 48 67 67 100 0 19 44 59 67 95</td>
<td>2.4-9 reaction(9)</td>
</tr>
<tr>
<td></td>
<td>A single colony Heavy inoculum</td>
<td>10 0 0 60 100 100 100 0 0 40 50 70 100</td>
<td>2.4-9 reaction(9)</td>
</tr>
<tr>
<td></td>
<td>A single colony Heavy inoculum</td>
<td>19 0 0 11 63 79 89 100 0 5 53 74 79 100</td>
<td>2.4-9 reaction(9)</td>
</tr>
</tbody>
</table>

(a) strains were first subcultured into BHI broth from Baird-Parker agar. 
(b) small organized clot. 
(c) entire content of tube coagulates and is not displaced when tube is inverted.

Table III. Coagulase production of *Staphylococcus aureus* strains after freezing in skim-milk two weeks at −25°C and spreading on Baird-Parker agar.

<table>
<thead>
<tr>
<th>Strain of inoculum</th>
<th>Number of strains tested</th>
<th>Positive reactions as function of time (h) expressed as percentage</th>
<th>Insolubility from BHI broth (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% 1 2 3 4 24 1 2 3 4 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entero-toxicogenic strains</td>
<td>A single colony Heavy inoculum</td>
<td>33 0 88 100 100 100 100 0 12 76 85 85 97</td>
<td>2.4-9 reaction(9)</td>
</tr>
<tr>
<td></td>
<td>A single colony Heavy inoculum</td>
<td>27 0 81 89 100 100 100 0 59 89 89 96 100</td>
<td>2.4-9 reaction(9)</td>
</tr>
<tr>
<td>Non-toxicogenic strains</td>
<td>A single colony Heavy inoculum</td>
<td>10 0 50 100 100 100 100 0 10 70 100 100 100</td>
<td>2.4-9 reaction(9)</td>
</tr>
<tr>
<td></td>
<td>A single colony Heavy inoculum</td>
<td>20 0 80 100 100 100 100 0 45 90 100 100 100</td>
<td>2.4-9 reaction(9)</td>
</tr>
</tbody>
</table>

(a) strains were first subcultured into BHI broth from Baird-Parker agar. 
(b) small organized clot. 
(c) entire content of tube coagulates and is not displaced when tube is inverted.

Jum. From each culture, grown overnight in BHI broth at 35°C, 0.1 ml was added to 0.5 ml of plasma. For purposes of comparison, the test was also carried out directly from Baird-Parker agar, using either a single colony or a heavy inoculum. The tubes containing plasma were incubated at 35°C and examined after 24, 1, 2, 3, 4 and 24 h. Two parallel tests were done in each case. The results were interpreted according to the guidelines given by The International Commission on Microbiological Specifications for Foods (1978). A '2.4-' reaction or greater was considered positive evidence of coagulase production. If the parallel tubes did not show the same coagulase production the result was recorded according to the slower reaction. When no coagulase production was observed, both parallel tubes always gave a negative coagulase result.

**Results**

The effects of different stress treatments on the coagulase production of *S. aureus* strains carried out after plating on Baird-Parker agar, either 1) subculturing first in BHI broth or 2) directly from the agar are shown in Tables I, II, III and IV. One non-toxicogenic strain did not grow on Baird-Parker agar after heat treatment.

**Discussion**

The different stress treatments had no effect on coagulase production in the tests carried out with BHI broth (Tables I—IV). The repair after stress occurred during the growth of cells on Baird-Parker agar and in the BHI broth. Positive coagulase reactions were seen after four h incubation at 35°C. In a few cases 24 h incubation was needed for the positive reaction.

The reduced pH, the heat treatment and the repeated freezing and lyophilization caused false-negative coagulase reactions when carried out directly from Baird-Parker agar (Tables I, II and IV). Increasing the size of the inoculum into the plasma reduced the false-negative
Table IV. Coagulase production of Staphylococcus aureus strains after repeated freezing at —25°C and lyophilization in skim-milk and spreading on Baird-Parker agar.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Positive reactions as function of time (h) expressed as percentage of inoculum from BHI broth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Entero-toxicogenic strains</td>
<td>24</td>
</tr>
<tr>
<td>A single colony</td>
<td>Heavy inoculum</td>
</tr>
<tr>
<td>Non-toxicogenic strains</td>
<td>10</td>
</tr>
<tr>
<td>A single colony</td>
<td>Heavy inoculum</td>
</tr>
</tbody>
</table>

(a) Strains were first subcultured into BHI broth from Baird-Parker agar.
(b) Small organized clot.
(c) Entire content of tube coagulates and is not displaced when tube is inverted.

The Effect of Various Stress Treatments

The authors wish to thank Atto Niskanen, D.V.M. and Seppo Lindroth, Ph.D., Technical Research Centre of Finland, Food Research Laboratory, Tampere, Finland, for supplying the S. aureus strains.

References


Summary
Coagulase production of 77 coagulase-positive Staphylococcus aureus strains, stressed before plating on Baird-Parker agar, were studied directly from Baird-Parker agar and from BHI broth on strains subcultured first from Baird-Parker agar.

Reduced pH, heat treatment, and repeated freezing and lyophilization caused false-negative coagulase reactions carried out directly from Baird-Parker agar. No false-negative reactions were observed after simple freezing. The different stress treatments had no effect on coagulase production carried out from BHI broth. Coagulase tubes inoculated directly from Baird-Parker agar have to be incubated for longer time for a positive reaction than tubes inoculated from BHI broth.

In the case of foods not heavily processed, it is possible to reduce the time of identification of S. aureus by performing the coagulase test directly from Baird-Parker agar.

Descriptors: low pH, heat treatment, freezing, repeated freezing and lyophilization.

From the College of Veterinary Medicine, State Veterinary Medical Institute, Helsinki, Finland.

Occurrence of Campylobacter fetus subsp. jejuni and Yersinia enterocolitica in Domestic Animals and in Some Foods of Animal Origin in Finland

by Marjo-Liisa Hänninen and Markku Reesmori

This paper deals with the occurrence of Campylobacter fetus subsp. jejuni and Yersinia enterocolitica in fecal samples of some domestic animals and in samples of raw milk and ground meat.

Campylobacter fetus subsp. jejuni has recently become recognized as a common bacterial cause of diarrheal disease in man (Butzler et al. 1973, Skilton 1977, Lindquist et al. 1978). Reservoirs of infection are not well known. Organisms, indistinguishable by current criteria from strains of C. fetus subsp. jejuni which affect humans, have been isolated from many mammalian and avian species (Smith 1978). Chickens have often been suspected to be sources of Campylobacter infection in humans (King 1967, Butzler et al. 1972, Enskvist et al. 1978). Milk has also been an incriminated vehicle in food-borne campylobacteriosis (Lug 1945, Robinson et al. 1979). A thermophilic campylobacter, earlier known as V. coli, has frequently been isolated from the intestinal contents of the pig. Campylobacter enteritis is also a recognized disease in Finland (Rosinen 1978). Pigs are generally considered to be the most important reservoir of human yersiniosis (Essenberg & Goudswaard 1973, Toma & Dijkstra 1976, Hurrell et al. 1977). The organism has also been isolated from meats originating from various animals (Leitner et al. 1975) as well as from milk products (Schiemann & Toma 1978, Schieman 1978, Hughes 1979).

A survey was made in order to investigate the occurrence of C. fetus subsp. jejuni in rectal swabs of cattle and in the caecal contents of chickens. The occurrence of C. fetus subsp. jejuni and Y. enterocolitica in samples of porcine caecal contents, raw and pasteurised milk and ground meat was also investigated.

Materials
The 200 samples of rectal swab samples from cattle were taken at the municipal slaughterhouse of Helsinki in May and June 1979. The 100 samples of chicken caecal contents from seven breeding farms were collected at a slaughterhouse, 400 km north of Helsinki, between September and November. The samples were transported in Stuart transport medium (Oxoid) to Helsinki. In total 81 unpasturised samples of tank milk were taken in August and September. The 17 samples of pasteurised milk and the 16 samples of ground meat (12 samples of beef, 2 samples of mixed pork and beef) were taken from retail stores in Helsinki in October. The 20 samples of porcine caecal contents were collected at the Helsinki municipal slaughterhouse in October.