

Bank of Finland Research Discussion Papers
27 • 2017

Gur Huberman – Jacob D. Leshno – Ciamac Moallemi

 Monopoly without a monopolist:
An Economic analysis of the bitcoin
payment system

Bank of Finland
Research

Bank of Finland Research Discussion Papers
Editor-in-Chief Esa Jokivuolle

Bank of Finland Research Discussion Paper 27/2017
5 September 2017

Gur Huberman – Jacob D. Leshno – Ciamac Moallemi:
Monopoly without a monopolist: An Economic analysis of the bitcoin payment system

ISBN 978-952-323-186-3, online
ISSN 1456-6184, online

Bank of Finland
Research Unit

PO Box 160
FIN-00101 Helsinki

Phone: +358 9 1831

Email: research@bof.fi
Website: www.bof.fi/en/research

The opinions expressed in this paper are those of the authors and do not necessarily reflect the views
of the Bank of Finland.

http://www.bof.fi/en/research

Monopoly without a Monopolist: An Economic

Analysis of the Bitcoin Payment System∗

Gur Huberman Jacob D. Leshno Ciamac Moallemi

Columbia Business School

August 30, 2017

Abstract

Owned by nobody and controlled by an almost immutable protocol the Bitcoin

payment system is a platform with two main constituencies: users and profit seeking

miners who maintain the system’s infrastructure. The paper seeks to understand

the economics of the system: How does the system raise revenue to pay for its infras-

tructure? How are usage fees determined? How much infrastructure is deployed?

What are the implications of changing parameters in the protocol?

A simplified economic model that captures the system’s properties answers these

questions. Transaction fees and infrastructure level are determined in an equilib-

rium of a congestion queueing game derived from the system’s limited throughput.

The system eliminates dead-weight loss from monopoly, but introduces other in-

efficiencies and requires congestion to raise revenue and fund infrastructure. We

explore the future potential of such systems and provide design suggestions.

∗We are grateful to Campbell Harvey, Refael Hassin, Seth Stephens-Davidowitz and Aviv Zohar for
helpful conversations and to seminar participants at the Central Bank of Finland, Columbia, EIEF,
MSR-NYC, NYCE and Stanford for helpful comments.

1

Keywords: Bitcoin, blockchain, queueing, two-sided markets, market design, cryptocurrency

JEL Classification: D40, D20, L10, L50

1 Introduction

A crypto-currency is a digital currency stored on an open and decentralized electronic

payment system. Following Nakamoto (2008), crypto-currencies have caught the atten-

tion of industry, academia and the public at large, with Bitcoin being the most prominent.

There are hundreds of such crypto-currencies, many running on large and reliable decen-

tralized networks of anonymous computers. This wave has been enabled by an innovative

computer science design named “blockchain”. The blockchain supports the creation of a

decentralized electronic payment system that can be trusted, although none of the sys-

tem’s servers is individually trusted. The novel blockchain design relies on a combination

of cryptography and game theory-based incentives. It has received much public interest

on its own right.

The blockchain design enables Bitcoin and other crypto-currencies to function similarly

to conventional payment systems such as Fed Wire, Swift, Visa, and PayPal. These

payment systems are natural monopolies in that they enjoy economies of scale and network

effects. Each of them is operated by an organization that determines its rules and modifies

them as circumstances change. These rules include how and how much participants pay

for using the system. The governing organization ensures the system is trusted and is

responsible for maintaining the required infrastructure for the system. Payment systems

are often regulated (or outright owned by government agencies) in order to mitigate the

welfare loss associated with their monopolistic positions.

The innovation in Bitcoin’s blockchain design is in the absence of a governing or-

ganization. Rather, a protocol sets the system’s rules, by which all constituents abide.

Absent is a central entity that maintains the infrastructure. Rather, Bitcoin’s infrastruc-

ture consists of computer servers (called “miners”) which enter and exit the system at will,

responding to perceived profit opportunities.1 Participants follow the protocol because

it is in their best interest to do so, assuming the other participants follow the protocol.

Thus, the protocol-derived rules are practically fixed and binding on all parties.

The blockchain design carries an economic innovation. Unlike other payment systems,

Bitcoin is a two-sided platform with rules that are pre-specified by a computer proto-

col. No participant has power to set or modify fees or rules of conduct or otherwise

control the system. Each participant in the market place, users and miners alike, is a

price taker. Users are provided protection from monopoly pricing: even if the system

becomes a monopoly, there is no monopolist who charges monopolist fees. However, for

1Mining is permissionless in Bitcoin, i.e., any computer can serve as a miner.

2

the system to function properly it must raise sufficient revenue from the users to fund the

required infrastructure. We aim to understand how fees, system revenue and amount of

infrastructure are determined in equilibrium, and how these are affected by the rules set

by the Bitcoin protocol.

In order to analyze the system, we first construct a simplified model that captures the

economic environment generated by the Bitcoin protocol. We provide a simple description

of the blockchain protocol and the Bitcoin system in Section 3, illustrating how the Bitcoin

system is enabled by a combination of cryptographic tools that enable verification of the

ledger, together with game theoretic structure that sets incentives to reach consensus on

a legal ledger. Abstracting away from much of the technical detail, we translate this

description to a simplified economic model.

The Bitcoin system’s two main constituencies are users, identified with the transactions

they send, and servers, called miners. The miners collectively maintain a ledger of all

transaction in a format called the blockchain, where transactions are arranged in blocks.

Each transaction is a cryptographically verified message. Every 10 minutes (on average)

the Bitcoin system randomly selects one miner to add a block of transactions to the

ledger, processing all the transactions within that block. The selected miner is said to

have “mined the block”. Equilibrium between many small miners ensures that all miners

maintain consensus on the same ledger, and only legal transactions are processed. The

protocol limits each block to no more than approximately 2,000 transactions.2 Therefore

the system’s throughput is bounded, and does not depend on the number of miners.

To provide proper incentives, the system compensates miners for their effort by re-

warding miners when they are selected to mine a block. The reward consists of newly

minted coins and the transaction fees paid by the transactions processed in the block.

The protocol specifies how many newly minted coins are awarded in each block. This

number is cut in half approximately every four years. In contrast, transaction fees are

not fixed by the protocol, and users choose the transaction fees they pay.

The simplified economic model captures these features of the system.

Two sets of seemingly disparate questions are the starting point of the analysis: (i) in

the long run, who will pay the miners and why? (ii) if the system becomes popular how

will it manage its limited throughput? Hpw will service priority be assgined? The absence

of a Bitcoin-controlling organization renders both questions non trivial. The model asserts

a single answer to both questions: The system’s congestion due to its limited throughput

2The protocol limits each block to 1MB of data, and the average transaction requires 0.5KB of data
(Zohar 2015).

3

leads users to pay transactions fees to gain processing priority. These very fees fund

the miners. This answer raises follow up questions regarding social efficiency, stability,

robustness and improved parameter choice.

The model allows us to analyze the long run behavior of the system, when miners are

compensated solely from transaction fees. Throughout our analysis we assume that the

system is operating reliably. We derive equilibrium behavior of users and miners to obtain

expressions for equilibrium transaction fees, revenue and infrastructure. The structure of

the system enables a separate analysis of the miners and the users, as follows.

Many small miners can enter or exit the system. Active miners compete to get selected

and collect transaction fees. Transaction fees are chosen by users, and small miners cannot

affect the choices of users. Therefore, every miner maximizes his reward by processing the

block of transactions with the highest fees. Miners decide whether to enter the system by

comparing their cost of operating to their expected revenue given the block reward and

their chances of being selected. It follows that each miner’s expected profit is zero, and

the amount of revenue determines the number of miners through miners’ entry decision.

This is remarkable since the system as a whole is a monopolist, yet it provides its service

at cost.

The analysis of miners implies that user decisions are independent of the number of

miners, as long as there is a sufficient number of miners for the system to operate reliably.

The system’s throughput is fixed by the protocol. Higher fee transactions are prioritized

by any miner. Therefore, users can choose to pay a higher transaction fee to avoid costly

delays.

To understand how users select their transaction fees, we analyze the implied con-

gestion queueing game. The system is stochastic due to random arrival of transactions

and the random mining of new blocks. The stochastic nature of the system implies that

some transaction will be delayed even if the system has sufficient capacity to eventually

process all transactions. A transaction’s delay increases with the overall congestion in the

system. Gaining priority through higher transaction fees reduce delay. Analysis of the

stochastic system allows us to calculate each user’s trade-off between transaction fees and

delay costs, and derive each user’s equilibrium transaction fee. Each user’s equilibrium

transaction fee equals the externality his transaction imposes. Thus, equilibrium transac-

tion fees coincide with the payments that result from selling priority of service in a VCG

auction.

The derived expressions for total delay costs borne by users, total transaction fees paid

to miners, and the equilibrium number of miners in the system have a few implications.

4

Users will pay fees only if the system is sufficiently congested and delays are costly to them.

While the stochastic nature of the system can generate delays even if all transactions are

processed, a system where capacity far exceeds demand will not generate sufficient delays

to generate revenue. Moreover, unless users pay substantial delay costs, the system cannot

raise even small amounts of revenue. While raising revenue through congestion pricing is

a revenue generating mechanism that protects users from monopoly pricing, transaction

fees vary with the congestion level, without regard for their role in determining the number

of miners. Thus, the amount of revenue raised by the system is unlikely to lead to an

efficient amount of infrastructure provision by miners.

Absence of sufficient congestion can be disastrous for the system. Without sufficient

congestion, users pay almost no transaction fees, generating almost no revenue to fund

miners. As miners exit, the system becomes less reliable, leading users to leave the system

thereby reducing congestion further. Because the system’s throughput does not depend

on the number of miners, the miners’ entry and exit choices do not help balance the

system. Without an alternative way to maintain the miners, the system will collapse.

The Bitcoin system offers an alternative to regulating a monopoly or controlling prices

via market competition. Bitcoin can be a monopoly in the sense that all potential users

are using the Bitcoin system, without being priced at the monopoly price. Instead,

transaction fees are determined in equilibrium. Miners compete within the system, and

provide infrastructure at cost. However, maintaining the Bitcoin system requires spending

of real resources. These resources include much of the mining effort as miners duplicate

each other’s effort and participate in a tournament to determine the miner whose block is

next on the blockchain. Moreover, costly delays in transaction processing are a necessity.

These inefficiencies can be lower or higher than the dead-weight loss of monopoly.

Our analysis suggests two simple design modifications to the protocol. First, Instead

the fixed throughput of the current system, the system should adjust the frequency at

which new blocks are added. Making this frequency a function of recent congestion is

possible without raising any incentive problems, as past congestion can be inferred from

the blockchain ledger which is observable to the protocol. This can allow the system to

maintain the desired congestion level as the volume of users varies, keeping revenue and

therefore the number of miners at the desired level.

Second, our analysis shows that raising a target revenue level requires imposing less

delay costs on the users if the maximal block size is lower. Thus, it would be beneficial to

redesign the system with the smallest block sizes possible (given engineering constraints),

and maintaining throughput through frequent small blocks.

5

Finally, we pose the question of characterizing the set of feasible revenue generating

mechanisms for distributed blockchain systems and identifying the optimal one. Revenue

generating rules must provide proper incentives for miners to process transaction, and

transaction fees must verifiable by third parties. We discuss some possible mechanisms

that can be implemented by the protocol.

Organization of the paper

Section 2 provides a review of related literature. Section 3 provides a simplified explana-

tion of the Bitcoin system and the underlying blockchain technology. Section 4 introduces

our economic model and includes most of the technical analysis. The implications of the

analysis for the current design of the Bitcoin system are discussed in Section 5. Section 6

discusses alternative design suggestions. Section 7 provides some final remarks. Omitted

proofs are in the appendix.

2 Related Literature

2.1 Engineering of Bitcoin

Famously, a white paper by Nakamoto (2008) coined the term and described the Bitcoin

system. Eyal & Sirer (2014), Sapirshtein et al. (2016) analyze the equilibrium between

miners and show that proper design of the blockchain protocol produces a reliable system

in equilibrium if all miners are sufficiently small. Babaioff et al. (2012) analyze the

incentives to propagate information in the Bitcoin system. Narayanan et al. (2016) offer

an elaborate description and analysis of the system. Croman et al. (2016) provide cost

estimates for the Bitcoin system and analyze the potential for transaction throughput.

Eyal et al. (2016) suggest an alternative design aimed to construct a system with a higher

transaction throughput. Carlsten et al. (2016) analyze how incentives for miners changes

when miners are rewarded with transaction fees instead of newly created coins. Chiu &

Koeppl (2017) evaluate the welfare implications of printing new coins. Adopting a mostly

empirical orientation, Easley et al. (2017) is a contemporaneous piece. Some of their

results echo those reported here.

Kroll et al. (2013) offer an analysis of the incentives faced by participants in the

system, and especially the incentives faced by miners. They conclude a brief discussion

of transaction fees by stating, ”We therefore do not expect transaction fees to play a

6

significant long-term role in the economics of the Bitcoin system, under the current rules.

We believe that a rules change would be necessary before transactions fees can play any

major role in the Bitcoin economy.”

The present paper shows otherwise, i.e., that transaction fees have dual and crucial

roles in the Bitcoin system: (i) They are supplanting newly minted coins as the funding

source of the mining community; (ii) They are the arbiters of priority in the congestion

of messages to be processed by the miners, i.e., they determine priority in the message

queue.

2.2 Bitcoin usage as a currency and the crypto-currency market

Ron & Shamir (2013), Athey et al. (2016) provide analysis of the usage of Bitcoin and

its value as a currency. Yermack (2013) reviews the history of Bitcoin and the statistical

properties of its price history to ”argue that bitcoin does not behave much like a cur-

rency according to the criteria widely used by economists. Instead bitcoin resembles a

speculative investment similar to the Internet stocks of the late 1990s.”

Gandal & Halaburda (2014) analyze competition between the different crypto-currencies.

Halaburda & Sarvary (2016) review the crypto-currency market, its development and fu-

ture potential of blockchain technology. Gans & Halaburda (2015) analyze the economics

of digital currencies, focusing on platform sponsored credits. Catalini & Gans (2016)

discuss possible opportunities that can arise from blockchain technology.

2.3 Related work in queuing theory

Lui (1985), Glazer & Hassin (1986), and Hassin (1995) study a queuing system in which

users with different waiting costs volunteer to pay transaction fees (termed bribes in Lui

(1985)) to gain priority in a queue to single service station which serves customers one at

a time. The main observation of Lui (1985) is that the server may increase its profits by

increasing the speed of service. Hassin (1995) shows that the service rate that maximizes

the server’s profits is always slower than the socially optimal service rate. Hassin & Haviv

(2003) provides an summary of the results.

The present analysis considers a queuing system in which transaction arrival and

service arrival is stochastic, but the service is done is batch mode of fixed maximal size.

The prior work corresponds to a batch size of one. The interaction among the arrival and

service rates and the maximal batch size and their impact on the transaction fees and

server’s revenues are of major concern.

7

Separately, Kasahara & Kawahara (2016) analyze delays in a priority queueing system

with batch service inspired by Bitcoin, but do not consider user incentives or equilibrium

considerations.

2.4 Work on competition, monopoly and its regulation

The social welfare implications of monopolistic vs. competitive provision of a good or

service are of central concern to economic analysis, often leading to a debate regarding

the extent to which regulation is desired and the best means through which to accomplish

it.

Posner (1975) offers a clean position, “This paper presents a model [...] of the social

cost of monopoly and monopoly-inducing regulation [...] [I]t assumes that competition to

obtain a monopoly results in a transformation of monopoly profits into social costs. A

major conclusion is that public regulation is probably a larger source of social cost than

private monopoly.”

A Posner-inspired interpretation of mining is that when a block is completed – i.e.,

the hard puzzle has been solved by one of the miners – the solving miner is a monopolistic

winner who takes all the revenues associated with the completion of that block. The social

cost of one miner’s winning is the amount spent by the community of miners to try to

solve the hard puzzle. Noteworthy is that the monopolist is not a price-setter, in contrast

with standard monopoly models, including Posner’s.

3 A Brief Description of the Bitcoin System

This section provides a simplified explanation of the permissionless blockchain protocol

that underlies the Bitcoin system and is the basis of many other crypto-currencies. The

description focuses on the economic elements.3 In order to describe what the Bitcoin

system does, it is useful to first explain what is needed for a payment system such as

FedWire, or the maintenance of electronic balances in a modern bank.

An electronic payment system functions as a record (or a ledger) of accounts. Each

account is associated with a user and his balance. It allows users to check their balances,

and allows a user to debit his balance and credit the debited amount to another account.

Only an account owner can debit the account. Balances do not change without a legal

transfer, i.e., a transfer that conforms to the system’s stated rules.

3For further details and an explanation of the cryptographic elements of the system please refer to
Narayanan et al. (2016).

8

One simple implementation is just a spread-sheet (or another bookkeeping device)

that only a trusted authority can modify. Allowing multiple computers to maintain and

update the ledger requires a more elaborate structure. This distributed ledger structure

requires synchronization across the servers, but is, in principle more robust than a single

server system. Maintaining consensus in a distributed computer system has been known

to be straightforward, as long as the computers are trusted (see Tanenbaum & Van Steen

(2007)).

The Bitcoin system is designed for an environment which lacks a trusted authority.

Therefore, its ledger must be maintained and updated by a collection of computer servers,

called miners, none of which is trusted. They are assumed to be selfish, i.e., to respond

to incentives in a profit maximizing way. Moreover, they offer or withdraw their services

according to profit opportunities they perceive.

Although legal transactions are processed by untrusted miners, the system as a whole

is secure, i.e., it processes all legal transactions, and no other transaction. The collection of

miners jointly holds a single ledger, meaning that there must be consensus among miners

about current balances. Moreover, consensus must be maintained as balances change.

Bitcoin’s ledger is a public database called blockchain, which can be verified by third

parties through cryptography. The system arranges for the miners to be compensated for

their services in such a way that when each of them maximizes his profit and believes

that other miners similarly maximize their profits, the system has the properties sketched

above.

Initially all balances are at zero. Over time the protocol mints new coins which it adds

to the balances of successful miners. The system holds the record of all balance changes.

The manifestation of a transaction is a message which a sending account transmits to

all the miners. It states the sending account, receiving account, amount transferred,

transaction fee, and a cryptographic signature by the sending account. A transaction is

processed by adding the appropriate message to the end of the ledger. The cryptographic

signature allows any third party to verify that the transaction was indeed authorized by

the holder of the sending account. Since the ledger is public, any third party can verify

that the sender indeed held a balance sufficient for the transfer.

The public ledger is saved in the distributed blockchain format, in which the transac-

tion data is partitioned into a sequence of blocks. These blocks are periodic updates to

the ledger. Notably, the ledger does not update instantly following the appearance of a

new transaction. Rather, it updates on average every ten minutes with a block summariz-

ing a subset of the recent pending transactions which hadn’t been included in a previous

9

block. The maximal block size is 1MB. (The need to address network latency motivates

this structure.)

New transactions are processed when they are included in a block that is added to

the ledger, which happens as follows. Each miner holds a copy of the current ledger

i.e., all previous blocks. All transaction requests are broadcast to all miners. The set

of pending transactions that reach each miner may vary slightly across miners due to

network imperfections, rendering non-trivial the choice of a universally agreed upon record

of transactions. To ensure that Bitcoin maintains a unique record of transactions, a single

miner is selected to add a block of transactions to the ledger. Since there is no trusted

authority to make the selection, a tournament is used to randomly select a winning miner.

To participate in the tournament miners exert effort4 (known as proof of work) that is

useful only for generating a verifiable random selection of a miner without the need of a

trusted randomization device.

Periodically (currently, approximately every 10 minutes), the tournament randomly

selects one miner as the winner, assigning his block as the next in the chain, thereby

making that block a mined block. The mined block is transmitted to all the other miners,

who verify the legality of that block and vet all transactions included in the block. Miners

add a newly mined legal block to their copy of the ledger and proceed to add new blocks

on top of it. Miners ignore mined blocks that are not legal.

The tournament-winning miner is paid when he mines a new block, but only after

newer blocks augment the chain on top of his block. Other miners will build on top of

his block only if they consider it legal. Hence the incentive to assemble and create legal

blocks. Consensus forms on a ledger that includes the new block. The process continues

4The tournament selects a random winner without the need of a trusted authority through use of
a hash function. The hash function is a deterministic one-way function that produces a hash value,
interpreted as a pseudo-random real number between 0 and 1. A block is said to be a winning block if it
is a legal block and its hash value is below a target value. A legal block contains, in addition to transaction
data, an unrestricted “nonce” field for which the miner can input any numerical value. The cryptographic
properties of the hash function imply that finding such a block requires a brute-force search, iterating
over numerical values for the nonce and computing the hash value for each of them. Roughly speaking,
each attempt for a value of the nonce generates an independent random draw of a hash value, distributed
uniformly between 0 and 1.

To participate in the tournament, miners assemble their blocks and use their computational power
to iterate over values of the nonce. Each attempt for a nonce value has an independent probability of
generating a winning block, with probability equal to the target value. Because the target value is very
small, a miner’s chance to win the tournament within a time period is proportional to the number of
nonce values attempted within the period. A miner with a winning block is said to “mine the block”,
and the winning block can be verified by any third party by recomputing the hash.

The target value adjusts over time so that a block is mined every 10 minutes (on average). For example,
if the overall computational power of miners doubles, then the target value is halved and twice as many
attempts (on average) are required to find a winning block.

10

in the same manner for the following ten minutes (on average) and so on.5

The miner that created a block is paid from two sources. One consists of newly

minted coins the exact number of which is protocol-determined and is decreasing with

time. (Crediting successful miners with newly minted coins moves the system early on

from having zero balances to having positive ones.) The second consists of the fees offered

by the transactions in the mined block. This second source is the focus of the paper.

This system will have the following desired properties. All miners are synchronized

to hold the same ledger of processed transactions. No single miner controls the system,

because every 10 minutes the ability to process transactions is given to a randomly chosen

miner. Balances change only with a legal transaction because any transaction that is

added is vetted by other miners to be valid, and transactions cannot be deleted from the

ledger.

4 Economic Model

The description in Section 3 establishes the following attributes of Bitcoin when the system

functions reliably. New blocks are added to the ledger at Poisson6 rate µ (independently

of the number of miners). Each block is mined (created) by a randomly chosen miner, and

vetted by all other miners. A block can contain up to K transactions. A transaction is

deemed processed once it is included in a legal block. Pending transactions not included

in a block wait to be processed in a future block. A miner who mines a new block is

rewarded with the transaction fees of transactions included in that block. In addition,

the model assumes that no new coins are minted. These features are the ingredients of

the model we study.

Identifying users with their transactions, we assume for simplicity that each user sends

a single transaction. Transactions arrive according to a Poisson process of rate λ. Each

transaction specifies a transaction fee b, which the user chooses. The system does not

process transactions immediately, and delays are costly to users. Delay costs per unit

time vary across users, are denoted by c, and are distributed c ∼ F [0, c̄]. The cumulative

distribution function F (·) has a density f(·), and its tail probability is denoted F̄ (c) ,

1−F (c). For tractability, users know the steady state behavior of the system, but do not

5There is a small probability that two or even more blocks are vying to be accepted as the newest
block. This situation is called a fork. Bitcoin’s convention calls for newer blocks to be built on top of
the longest chain. This convention resolves forks. Eyal & Sirer (2014) analyze strategic issues between
miners.

6A Poisson process is the limit of many independent binomial trials. See footnote 4.

11

observe other pending transactions at the time they submit their transaction. Users are

risk neutral and select the fee b to maximizes their expected net reward R−b−c·W , where

R is the reward for having the transaction go through and W = W (b) is the expected

delay. The payoff for users who opt out of the system is normalized to 0.

The community of potential miners is large. Each of its members can join the system

and become an active miner. Active miners employ their computational power in an

attempt to get selected to mine a block, i.e. get selected assemble a block of transactions

that is sent to all other miners and added to the blockchain ledger. Active miners also

observe all pending transactions, keep a copy of the blockchain ledger, and append legally

mined blocks to the ledger as they receive them. All miners maintain consensus on the

same ledger, and the blockchain does not fork.7 For simplicity, all active miners have the

same computing power, and therefore have equal chances of being selected to mine the

next block. Additionally, all miners observe all pending transactions and incur the same

cost of cm per unit time while they remain active.8 Active miners can exit and become

inactive without penalty. We denote the number of active miners by N .

Our main interest is the analysis of the system when it provides reliable service, which

requires the following additional assumptions. The number of miners N is large enough

for the system to be reliable and secure, and for each miner to be small. A large number

of servers N guarantees consistent quality of service even when some servers occasionally

fail or exit the system. Each miner needs to be small to ensure that miners cannot block

or erase transactions from the ledger.9 The system is also secure when its aggregate

computational power is large because then it would be prohibitively expensive to marshal

the computational resources to overtake the system.

The measure of the congestion is given by the load parameter ρ = λ/µK. To guarantee

that all transactions are eventually processed, we assume that ρ < 1. The reward R is

assumed to be large enough for all users to have a positive net reward, and thus to choose

to participate in the system.

7Forks may happen because of communication latency or because of strategic behavior of sufficiently
large miners (see footnote 5). We abstract away from both of these issues.

8The analysis can be naturally extended to miners who differ in their computational power or costs,
as long as each miner remains small. See the discussion in Section 4.1.

9A miner that has strictly more than 50% of the computing power in the Bitcoin system can erase
processed transactions or block transactions. Eyal & Sirer (2014) argue that the Bitcoin system is
guaranteed to be reliable and secure only when every miner is small.

12

4.1 Miner behavior

Active miners use their computational power in an attempt to mine the next block and

receive the reward. By assumption, each miner is small and cannot affect the behavior

of users. Miners observe the current pool of pending transactions and the fees they offer,

and maximize their profit by assembling a block that would deliver the highest possible

reward.10 Therefore, each miner maximizes his profit by assembling a legal11 block that

includes the K transactions offering the highest fees. (If there are fewer than K pending

transactions the block includes all of them.)

All miners observe the same pool of pending transactions, and therefore assemble

identical blocks if selected. Thus, all miners expect to receive the same reward if selected

to mine the next block. Since each miner has equal chance of mining the next block,

each miner in expectation receives a payment of Rev /N per unit time, where Rev is the

total transaction fees from processed transactions per unit time.12 The users determine

transaction fees and therefore Rev which we calculate in Section 4.2. That analysis shows

that Rev is independent of N .

Free entry and exit of miners imply that active miners leave the system if Rev /N < cm

and non active miners enter if Rev /N > cm. Therefore, in equilibrium the number of

miners satisfies Rev /N = cm.

Proposition 1. Miners’ expected profit is zero. All the revenue generated from trans-

action fees is paid to miners. The total infrastructure employed by the system (i.e., the

number of miners) is

N =
Rev

cm
.

Proposition 1 has several implications for the system. Free entry implies that miners

will provide their service to the system at cost. It also implies that the amount of infras-

tructure in the system is fully determined by Rev, the total amount of transaction fees

paid by the users.

10Miners can alter the block they attempt to mine as new transaction arrive. According to Croman
et al. (2016) the computational costs associated with vetting transactions and arranging the block are
orders of magnitude smaller than the costs associated with the computational efforts spent to be selected
to mine a block. We thus assume that the computational efforts spent on a assembling a block are
negligible.

11If the mined block is not legal (for example, has more than K transactions) the other miners would
ignore it. An illegal blocks is not added to the consensus blockchain, and the miner who creates it is not
rewarded.

12Under our assumptions all arriving transactions are eventually processed, and therefore the total fees
per unit time of incoming transactions is equal to the total fees per unit time of processed transactions.

13

The analysis abstracts away from several aspects of the competition between miners.

The total infrastructure employed by the system will be determined by Rev through a

zero profit condition for the marginal active miner. If miners differ in their cost of mining,

it is possible for miners with a cost advantage to make positive profits. If potential miners

incur fixed costs to become active miners (for example, they purchase dedicated computer

hardware), then the entry decision of miners will depend on their beliefs regarding future

rewards and probability of winning them. In a stationary equilibrium active miners will

make positive profits to allow them to recover the fixed costs of entry. Again, the main

result that the total infrastructure employed by the system is determined by Rev will still

hold, and further examination of such issues is left for future research.

We compare the results of Proposition 1 to empirical estimates given by Croman et al.

(2016) who estimate that the total expenditure of miners during October 2015 was ap-

proximately USD5,840 per block. Croman et al. (2016) attribute the vast majority of the

cost to the costs of electricity and hardware used in the attempts to get selected to mine

the next block. During that period the mining reward per block was 25 bitcoins plus neg-

ligible transaction fees, or approximately USD6,000 - 7,500 (the BTC-USD exchange rate

fluctuated during the month). This back of the envelope calculation suggests that miners

approximately break even. The information provided by websites that offer information

to potential miners about mining profitability of various crypto-currencies13 is consistent

with this observation.

The model assumes that each miner is small, and therefore cannot induce users to

change their behavior. In contrast, a large miner or collection of miners can induce users

to change their behavior by ignoring specific transactions. For example, a single miner

that controls all the infrastructure in the system can impose a minimal transaction fee

b > 0 by ignoring any transaction with a lower fee, leading some users to either increase

their transaction fee or leave the system. However, free entry of small independent miners

implies that such behavior is not profitable even for a large miner. To see that, observe

that entry by small independent miners implies zero profit for a miner who assembles a

block with the K highest fee transactions. The profit of a miner who constrains himself to

assemble blocks with different transactions is strictly lower. Therefore any miner, small or

large, cannot make positive profits in equilibrium and finds it optimal to assemble blocks

with the K highest fee transactions.

13https://www.coinwarz.com/cryptocurrency/, retrieved 6/20/2017.

14

4.2 User behavior and equilibrium transaction fees

Bitcoin’s protocol calls for new blocks to arrive according to a Poisson process of rate

µ. The analysis in Section 4.1 shows that miners’ optimization implies that each block

processes the K pending transactions which offer the highest transaction fees. Therefore

users play a queuing game where capacity is determined by the parameters µ, K and

higher transaction fees imply higher processing priority. In particular, users perceive a

system where the number of miners N is irrelevant (under the assumption that N is large

enough for the system to be reliable and secure).

The expected time until a transaction with transaction fee b is processed is equal to

the expected time until the arrival of a block in which there are fewer than K pending

transactions which offer transaction fees greater than b. Analysis of the stochastic queuing

model gives the following characterization of expected delay.

Lemma 2. The expected time until a transaction is processed is a function of the block

size K, the block arrival rate µ, and the load parameter ρ̂ , λ̂/µK ∈ [0, 1), where λ̂ is the

arrival rate of higher priority transactions (i.e., transaction that offer greater fees), and

is equal to

µ−1WK (ρ̂) =
1

µ

1

(1− z0)
(
1 +Kρ̂− (K + 1)zK0

) .
Here, z0 , z0(ρ̂, K) is defined to be the unique solution of the polynomial equation

zK+1 − (Kρ̂+ 1)z +Kρ̂ = 0,

in the interval [0, 1).

The quantity WK(ρ̂) ≥ 1 is the expected waiting time measured in blocks. It satisfies

W ′
K(ρ̂) > 0, ∀ ρ̂ ∈ (0, 1).

Finally, we have that

WK(0) = 1; lim
ρ̂→1

WK(ρ̂) =∞; W ′
K(0) = 0, if K > 1; lim

ρ̂→1
W ′
K(ρ̂) =∞.

The expected waiting time measured in blocks WK (ρ̂) characterized by Lemma 2

has several features. Delay increases with the load parameter ρ̂. Its minimal value is

WK (0) = 1, which is the expected delay for a transaction that is processed in the next

block. For low values of ρ̂ the delay WK (ρ̂) is low and insensitive to ρ̂. For values of ρ̂

15

close to 1 the delay WK (ρ̂) is high, and WK (ρ̂) varies dramatically with small changes in

ρ̂.

Let G (·) denote the cumulative distribution function of transaction fees in some equi-

librium. Consider a user i with delay cost ci. The user chooses his transaction fee b to

maximize his net reward

R− b− ci ·W (b | G) ,

with W (b | G) denoting the expected delay given transaction fee b and the CDF G. By

Lemma 2 the expected delay is decreasing with b, and standard arguments (see Lui (1985),

Hassin & Haviv (2003)) imply that b (ci) is increasing in ci and b (0) = 0. Monotonicity

of b (·) implies that G (b (c)) = F (c). Thus, for ci we have that

ρ̂ =
λ · (1−G (b (ci)))

µK
= ρ · F̄ (ci) ,

and

W (b | G) = µ−1WK

(
ρ · F̄ (ci)

)
.

Users’ individual optimality implies the following proposition.

Proposition 3. In the unique equilibrium of the queuing game, a user with waiting cost

ci ∈ [0, c̄] chooses a transaction fee b(ci), given by

b(ci) = ρ

∫ ci

0

f(c) · c · µ−1W ′
K

(
ρF̄ (c)

)
dc,

where ρ , λ/µK ∈ [0, 1) is the load.

Payments in the Bitcoin system are determined by the equilibrium of the implied

queuing game. Users with higher waiting costs pay higher transaction fees and wait less.

A user with delay cost ci pays his externality, which is the additional delay cost imposed

on lower priority transactions.14 We therefore have the following immediate corollary.

14To see that b(ci) is the externality imposed by ci, write the expected wait in terms of arrival rate of

higher priority transactions as µ−1W̃K

(
λ̂
)
, µ−1WK

(
λ̂/µK

)
. The transaction sent by ci affects the

waiting time of transactions with lower priority that are sent by users with 0 ≤ c < ci; higher priority
transactions are not affected. Integration over all affected types implies that the externality imposed by
a marginal increase in the volume of transaction from users with ci is∫ ci

0

λf (c) · c · µ−1W̃ ′K
(
λF̄ (c)

)
dc = b (ci) .

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

load ρ

tr
an

sa
ct

io
n

fe
e
b(
c)

($
)

c = 0.1
c = 0.2
c = 0.3
c = 0.5
c = 0.7
c = 0.9

Figure 1: The dependence of equilibrium transaction fees on congestion ρ for fixed user’s delay cost c.
Block size is taken to be K = 2, 000, block arrival rate µ = 1 and delay costs are distributed according to
c ∼ U [0, 1].

Corollary 4. The transaction fees paid in equilibrium coincide with the payments that

result from selling priority of service in a VCG auction.

Without an auctioneer, the Bitcoin protocol indirectly entails a priority auction. Users’

bids have the VCG property that each user bids an amount equal to the externality he

imposes on others. All the auction’s proceeds are dissipated on competition among the

service providers, i.e. the miners. In particular, the equilibrium allocation of priority is

efficient. However, a different design or increased values of µ,K can reduce waiting costs

for all transactions. Note that transaction fees depend on ρ, and therefore a change in

λ, µ,K will affect transaction fees.

Figure 1 and 2 illustrate how transaction fees depend on the user’s delay cost c and the

overall congestion ρ. Both figures display equilibrium fees when c is distributed uniformly

over [0, 1], the block size is K = 2, 000 and µ = 1. Figure 1 shows how the transaction

fees chosen by users in equilibrium vary with the overall system congestion ρ. Transaction

fees are very small when the system is not congested, but can become arbitrarily high as

ρ approaches 1.

Figure 2 shows that the transaction fees increase with the user’s delay cost, but do

not vary much among users with high delay cost. To understand why, observe that the

17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

1

2

3

4

5

user delay cost c ($/time)

tr
an

sa
ct

io
n

fe
e
b(
c)

($
)

ρ = 0.1
ρ = 0.3
ρ = 0.5
ρ = 0.6
ρ = 0.7
ρ = 0.8
ρ = 0.9

Figure 2: The dependence of equilibrium transaction fees on the user’s delay cost c for fixed congestion
ρ. Block size is taken to be K = 2, 000, block arrival rate µ = 1 and delay costs are distributed according
to c ∼ U [0, 1].

expected wait for a user with cost cj is WK(ρ̂) with ρ̂ , ρF̄ (ci) < F̄ (ci). When ρ̂ is

small the expected wait WK(ρ̂) is not very sensitive to variations in ρ̂, and therefore users

with a high c are only slightly harmed when someone gains priority over them. However,

WK(ρ̂) can be very sensitive to changes in ρ̂ when ρ̂ is close to 1, and thus the externality

on users with low delay cost can be substantial. All users with sufficiently high delay cost,

for example c > 0.7, impose the same externality to other users with delay costs [0, 0.7],

plus a relatively small externality to other users with delay costs (0.7, c).

The following corollary of Proposition 3 establishes that all users receive positive net

reward if congestion ρ is below a threshold ρ̄ that depends on R · µ, K, and F .

Corollary 5. The net reward for user i with delay cost ci is

U(ci) , R− ci ·W (b(ci) | G)− b(ci)

= R−
∫ ci

0

µ−1WK

(
ρF̄ (c)

)
dc.

All users receive positive net reward if ρ < ρ̄ where ρ̄ is the unique solution to

R · µ =

∫ c̄

0

WK

(
ρF̄ (c)

)
dc.

18

The possibility that all users are net benefactors of the system highlights its distinction

from a profit maximizing monopolist. Under the latter it is always the case that some

users receive no net benefit.

4.3 Total revenue and infrastructure

The analysis from the previous two subsections allows us to characterize the system under

equilibrium. Theorem 6 establishes the first main result. It gives the amount of miner

infrastructure in the system by calculating the total revenue per unit time. The revenue’s

source consists of users’ transaction fees. The revenue is paid as reward to miners.

Theorem 6. The total revenue per unit time raised from users is

RevK(ρ) = Kρ2

∫ c̄

0

cf(c)F̄ (c)W ′
K

(
ρF̄ (c)

)
dc (1)

= Kρ

∫ c̄

0

(
F̄ (c)− cf(c)

)
WK

(
ρF̄ (c)

)
dc. (2)

The infrastructure available to the system is given by the number of miners

N =
RevK(ρ)

cm
.

The system raises revenue from users by offering them differentiated service quality

based on their transaction fee, where differentiation stems from variation in delay. The

delay function W (b | G) parallels the role of the differentiated quality offered by a price-

discriminating monopolist: users with low valuation (low delay cost) suffer from low

service quality (long delays), forcing users with high valuation (high delay cost) to make

higher payments for high service quality (short delays). Thus, in addition to paying

transaction fees that fund the system’s infrastructure, users incur costly delays. The

following results give the total costs borne by users.

Theorem 7. The total delay cost per unit time incurred by users is

DelayCostK(ρ) = Kρ

∫ c̄

0

cf(c)WK

(
ρF̄ (c)

)
dc. (3)

The total cost per unit time borne by users is

TotalCostK(ρ) , RevK(ρ) + DelayCostK(ρ) = Kρ

∫ c̄

0

F̄ (c)WK

(
ρF̄ (c)

)
dc. (4)

19

The system cannot arbitrarily set the delay WK (·). Rather, the rules embedded in

the protocol determine how miners process transactions in equilibrium. Miner incentives

imply higher priority for transactions with a higher fee. The values µ,K determine the

processing capacity of the system, and together with the arrival rate of users λ determine

congestion ρ = λ/µK. The following corollary shows how delay cost, revenue and therefore

also infrastructure, vary with ρ.

Corollary 8. In equilibrium, if ρ = 0, both revenue and delay cost are zero. For all

ρ ∈ (0, 1),

Rev′K(ρ) = Kρ

∫ c̄

0

F̄ (c)2W ′
K

(
ρF̄ (c)

)
dc > 0,

DelayCost′K(ρ) =
TotalCostK(ρ)

ρ
> 0.

In other words, both revenue (and with it infrastructure provision by miners) and delay

cost are strictly increasing in ρ.

An increase in the block arrival rate µ or a decrease in the transaction arrival rate λ will

reduce the congestion ρ. Corollary 8 shows that this will reduce delay costs, revenue and

therefore also available infrastructure. Proposition 3 shows that the transaction fee paid

by a user also depends on the congestion level ρ. Thus, pricing, revenue and infrastructure

vary with the congestion in the system.

An implication of Corollary 8 is that congestion and delays are necessary for the system

to function. Low congestion ρ leads to low delay costs, as blocks are rarely full and each

transaction is likely to be processed in the next block. But when blocks are rarely full

users have little incentive to pay transaction fees to gain priority, and the system raises

little revenue. Without sufficient revenue the number of miners N can become too small,

making the system unreliable.

Figure 3 shows how delay costs and revenue in the system vary with congestion ρ =

λ/µK. When ρ is low, users do not have to wait long for their transactions to be processed,

regardless of their priority, and delay costs and revenue are low. Delay cost increases with

ρ, but revenue remains small until there is significant congestion in the system. When

the system becomes significantly congested users have larger incentives to gain priority,

and revenue grows quickly with ρ.

Average block size in MB can be used as measure of the actual congestion in the

Bitcoin system. In practice, the Bitcoin limits blocks to 1MB of data per block, which

corresponds to approximately K = 2, 000 transactions per block. In our model the conges-

tion parameter ρ is equal to the average number of transactions per block divided by K.

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

1,000

2,000

3,000

4,000

5,000

load ρ

de
la

y
co

st
,r

ev
en

ue
($
/
tim

e)

DelayCost2000(ρ)
Rev2000(ρ)

Figure 3: Revenue and delay cost for varying congestion level ρ. Delay costs are distributed according to
c ∼ U [0, 1] and the block size is K = 2, 000.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

2,000

4,000

6,000

8,000

10,000

blocksize (daily average, MB)

tr
an

sa
ct

io
n

fe
es

pe
r

bl
oc

k
(d

ai
ly

av
er

ag
e,

U
SD

)

actual
model

Figure 4: A comparison of actual bitcoin transaction fees per block and block size (daily averages,
4/1/2011–7/2/2017) versus model predictions.

21

Analogously, we interpret the average size of a block relative to the 1MB limit as a proxy

for congestion ρ. Each point in Figure 4 corresponds to one day in the Bitcoin system,

displaying daily average transaction fees per block and daily average block size.15 The

plot also includes a solid line generated by our model as follows. We set K = 2, 000, and

normalize time so that a time unit is 10 minutes and set µ = 1. The distribution of users’

delay cost is unknown, and arbitrarily set to F = U [0, c̄] with c̄ = 0.1 USD/10 minutes.

The resulting total revenue per unit time Rev2000 (·) is the expected total transaction fees

per block, which is displayed by the solid black line in Figure 4.

Note that the solid line produced by our model matches the broad patterns in the

data. Figure 4 shows that transaction fees are negligible when congestion is low. As

congestion approaches 1 transaction fees increase rapidly, even though the system has

excess capacity.

4.4 Behavior for large block size K and for small service rate ρ

Subsections 4.2 and 4.3 present closed form formulas for the system’s attributes. This sub-

section considers limiting cases to better understand the dependence of the system’s out-

comes on its parameters. Lemma 9 studies the behavior of expected waiting time for large

values of block size K. Theorem 10 studies the behavior of RevK (·) and DelayCostK (·)
for large values of K. Theorem 11 studies their behavior for small values of ρ. Theorem

12 considers a target revenue level, or equivalently a desired infrastructure level, and asks

what is the required congestion and associated delay costs. For a fixed target revenue

level, delay cost will be unboundedly high as K goes to infinity.

Lemma 9. Holding fixed ρ̂ ∈ (0, 1), as block size K increases, the expected waiting time

measured in blocks converges according to

lim
K→∞

WK(ρ̂) = W∞(ρ̂).

Here, W∞(ρ̂) is the asymptotic expected delay (measured in blocks), defined for ρ̂ ∈ (0, 1)

by

W∞(ρ̂) ,
1

1−
(
1 + α(ρ̂)

)
e−α(ρ̂)

, (5)

15Transaction fee and block size data is from http://blockchain.info. Each point is a daily average
over the interval 4/1/2011–7/2/2017. The starting date 4/1/2011 was selected as this is roughly when
the fees per block started exceeding USD1. In computing the daily average fees per block, we divide the
total transaction fees in a given day by an assumed constant number 24× 6 = 144 of blocks per day.

22

where α(ρ̂) > 0 is the unique strictly positive root of the transcendental algebraic equation

e−α + ρ̂α− 1 = 0.

For ρ̂ = 0, define W∞(ρ̂) , 1 to coincide with the limiting value.

Moreover, the asymptotic expected delay satisfies

W ′
∞(0) = 0; W ′

∞(ρ̂) > 0, ∀ ρ̂ ∈ (0, 1).

To illustrate Lemma 9, fix λ and consider a user i with waiting cost ci. Given block

size K and block rate µ, the expected delay of user i is µ−1WK (ρ̂) for ρ̂ = (λ/µK) F̄ (ci).

Consider a modification to the system that doubles the block size to 2K and reduces the

block rate to µ/2, thereby keeping the system’s load ρ constant. Lemma 9 implies that,

for sufficiently large K, the modification does not change the expected number of blocks

until user i’s transaction is processed. Because the modification doubles the wait for each

block, the delay of user i roughly doubles and becomes (µ/2)−1W2K (ρ̂) ≈ 2·µ−1W∞ (ρ̂) ≈
2 · µ−1WK (ρ̂).

Lemma 9 allows us to give a simple approximate expression for revenue and delay

costs when K is large. The following Theorem is an immediate corollary from Lemma 9,

it shows that both revenue and delay costs grow approximately linearly with block size

K when the congestion ρ is held fixed.

Theorem 10. For a fixed load ρ ∈ [0, 1), as the block size K →∞, we have that16

RevK(ρ) = K · Rev∞(ρ) + o(K),

DelayCostK(ρ) = K ·DelayCost∞(ρ) + o(K),

TotalCostK(ρ) = K · TotalCost∞(ρ) + o(K),

16Given arbitrary sequences {fK} and {gK}, and a positive sequence {hK}, as K →∞, we will say that
fK = gK+o(hK) if lim supK→∞ |fK−gK |/hK = 0, i.e., if the difference between f and g is asymptotically
dominated by every constant multiple of h.

23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

1

2

3

4

5

load ρ

no
rm

al
iz

ed
re

ve
nu

e
R

ev
K

(ρ
)/
K

($
/
tim

e×
bl

oc
ks

iz
e)

K = 20
K = 200
K = 2,000
K = 20,000
K →∞

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

1

2

3

4

5

load ρ

no
rm

al
iz

ed
de

la
y

co
st

D
el

ay
C

os
t K

(ρ
)/
K

($
/
tim

e×
bl

oc
ks

iz
e)

K = 20
K = 200
K = 2,000
K = 20,000
K →∞

Figure 5: Normalized revenue RevK(ρ)/K and normalized delay costs DelayCostK(ρ)/K when c ∼ U [0, 1]
and K ∈ {20, 200, 2, 000, 20, 000}, compared to the limiting values obtained from the approximation using
W∞ (·).

24

where

Rev∞(ρ) , ρ

∫ c̄

0

(
F̄ (c)− cf(c)

)
W∞

(
ρF̄ (c)

)
dc,

DelayCost∞(ρ) , ρ

∫ c̄

0

cf(c)W∞
(
ρF̄ (c)

)
dc.

TotalCost∞(ρ) , Rev∞(ρ) + DelayCost∞(ρ) = ρ

∫ c̄

0

F̄ (c)W∞
(
ρF̄ (c)

)
dc.

Furthermore, for all ρ ∈ (0, 1),

Rev′∞(ρ) = ρ

∫ c̄

0

F̄ (c)2W ′
∞
(
ρF̄ (c)

)
dc > 0,

DelayCost′∞(ρ) =
TotalCost∞(ρ)

ρ
> 0.

In other words, both the asymptotic revenue (and with it infrastructure provision by min-

ers) and the asymptotic delay cost are strictly increasing in ρ.

The expressions Rev∞ and DelayCost∞ depend on ρ and F but are independent of K.

These expressions allow us to approximate revenue and delay costs by a simple function

of K. Figure 5 shows that this approximation is fairly good even for K = 20. We proceed

to characterize the expressions Rev∞ and DelayCost∞ for small ρ.

Theorem 11. As ρ→ 0, we have that17

W∞(ρ) = 1 +
1

ρ
e−1/ρ + o

(
1

ρ
e−1/ρ

)
,

therefore,

Rev∞(ρ) = O
(
e−1/ρ

)
,

DelayCost∞(ρ) = ρ · E [c] + o (ρ) .

In other words, for small values of the load ρ, the delay cost grows linearly, but the revenue

grows slower than any polynomial.

17Given arbitrary functions f(·) and g(·), and a positive function h(·), as ρ → 0, we will say that
f(ρ) = g(ρ) + O(h(ρ)) if lim supρ→0 |f(ρ) − g(ρ)|/h(ρ) < ∞, i.e., if the difference between f and g,
is asymptotically bounded above by some constant multiple of h. Similarly, we will say that f(ρ) =
g(ρ)+o(h(ρ)) if lim supρ→0 |f(ρ)−g(ρ)|/h(ρ) = 0, i.e., if the difference between f and g is asymptotically
dominated by every constant multiple of h.

25

0 5 10 15 20 25 30 35 400

0.5

1

1.5

2

ρ = 0.5

ρ = 0.9

ρ = 0.95

ρ = 0.975

Rev∞(ρ) ($/time × blocksize)

D
el

ay
C

os
t ∞

(ρ
)

($
/t

im
e×

bl
oc

ks
iz

e)

Figure 6: The parametric curve (Rev∞ (ρ) ,DelayCost∞ (ρ)) for ρ ∈ [0, 1), describing (up to a scaling by
blocksize) the achievable combinations of revenue and delay cost in for systems with large blocksize. The
distribution of delay costs is taken to be c ∼ U [0, 1].

Theorem 11 implies that the system must impose significant delay costs on users to

raise revenue. For ρ ≈ 0 all transactions are likely to be processed in the next block

regardless of their priority, because a block is unlikely to reach its maximal size. This

implies that users have little incentive to choose higher transaction fees to buy priority,

and the system raises little revenue. A marginal increase in user arrival rate λ or a

marginal decrease in the block rate µ lead to a marginal increase in ρ. Both do little

to increase revenue, because the chance a block reaches its maximal size is still low, but

increase delay costs, as more transactions wait for the next block to arrive.

Figure 6 shows the possible trade-offs between revenue and delay cost in the system.

It plots the curve composed of the points (Rev∞ (ρ) ,DelayCost∞ (ρ)) for ρ ∈ [0, 1). The

figure shows that raising higher revenue requires imposing higher delay cost, and that

significant delay costs are required for raising even small amounts of revenue.

By Theorem 10, the trade-off between revenue and delay costs for any block size K

is a scaled version of Figure 6. Notice that Figure 6 exhibits an unfavorable trade-off for

small values, implying that using a larger K would yield unfavorable results. We formally

state this as the following theorem. A discussion of its implications is in Section 6.

Theorem 12. Fix a target level of revenue R∗ > 0 and a block size K. Define DelayCost∗K(R∗)

26

to be the delay cost required to achieve revenue R∗, i.e.,

DelayCost∗K(R∗) , DelayCostK
(
Rev−1

K (R∗)
)
,

where

Rev−1
K (R∗) , inf

{
ρ > 0 : RevK(ρ) ≥ R∗

}
is the minimal load required to acheive revenue R∗. Then,

lim
K→∞

DelayCost∗K(R∗) =∞.

5 Bitcoin as a Self Regulating System

The analysis above gives the equilibrium behavior of the system, allowing us to evaluate

its performance and compare the behavior of Bitcoin to that of a monopolist. In this

section we focus on the implications for the system under its current design. Section 6

discusses alternative designs

5.1 Pricing

In the distributed blockchain system, transaction fees are determined in equilibrium, as

discussed in Section 4. In particular, transaction fees are not set by a profit maximizing

firm.

To appreciate the novelty of the economics of Bitcoin as a payment system, compare

it with an alternative owned by a monopolist. Assume that the monopolist can provide

its service at zero marginal cost and at no delay,18 and that users’ benefit from the

service is uniformly distributed [R, R̄] independently of the delay cost c. The profit

maximizing monopolist will then charge each user a fee equal to max
{
R, R̄/2

}
and process

all transactions willing to pay the fee without delay. Two cases are of special interest:

(i) when R = R̄, the fee is equal to the users’ benefit and the users’ surplus is zero; (ii)

When R̄/2 > R the monopolist’s fee is so high that some potential users choose to avoid

the system, and thereby the monopolist’s price is associated with deadweight loss.

In general, a monopolistic provision of a good implies that at least some users enjoy

no consumer surplus (in the example no users enjoy surplus when R = R̄.) Moreover, it

is possible that the monopolist’s price is high enough that some users will opt out of the

18The monopolistic firm is not constrained to use a blockchain design.

27

service although they would pay the cost of its provision, i.e., the monopolistic pricing

entails a deadweight loss.

In contrast, the Bitcoin system can raise revenue without excluding any users and

without eliminating users’ surplus. The system can operate under sufficiently low con-

gestion that allows all transactions to be processed. Even transactions that pay no fees

will be processed eventually, and users need to pay transaction fees only to avoid costly

delays. Transaction fees are determined by the cost of delay increase to other users, inde-

pendently of users’ willingness to pay for service. In particular, Corollary 5 shows that,

unlike a monopolist, it is possible for all users to have a strictly positive net reward.

In addition to protecting users from monopolistic pricing, the system allocates service

priority efficiently. Users with high delay costs are prioritized and processed quickly. Each

transaction is charged the externality it imposes on other users (given that the system’s

processing capacity is held fixed). Transaction fees are not fixed by the protocol, but are

determined endogenously from users’ choices and their delay costs.

Setting transaction fees via equilibrium of the congestion game entails some disadvan-

tages. First, transaction fees and total revenue depend on the congestion in the system,

and may differ from the soically desired level. Congestion is a function of the system’s

fixed parameters µ and K as well as the transaction arrival rate λ. A judicious choice

of µ, K in the protocol can induce users to pay appropriate transaction fees for a given

transaction arrival rate λ. However, the transaction arrival rate may change over time,

leading to undesirable transaction fees. Second, transaction fees are used to fund infras-

tructure provision by miners, but are determined without any regard for users’ value for

additional miners. Thus, equilibrium transaction fees are unlikely to match those that

would be chosen by a social surplus-maximizing planner. Third, in order to raise revenue

the system must impose costly delays on users. Last, instead of offering users a transpar-

ent fee, users are required to be strategic in choosing their transaction fee, depending on

behavior of others and system congestion. If users fail to choose appropriate transaction

fees, the system will fail to efficiently prioritize transactions.

5.2 Stability of the system

The revenue, which depends on the congestion level, determines the miners’ infrastructure

provision. Thus, changes in the arrival rate of transactions to the Bitcoin system will

change the number of miners providing infrastructure. In particular, in the absence of

congestion users pay almost no transaction fees, generating low revenue which funds only

a small number of miners. When the number of miners is very low, users’ assumed

28

indifference to the number of miners N does not hold, as the system becomes unreliable

when there are few miners. With only a handful of miners the system becomes susceptible

to occasional service disruptions due to network or computer failures.

Expand the analysis in Section 4 to allow potential users to avoid the system when

they deem it insufficiently reliable. An equilibrium in reliability-congestion space requires

that the congestion is sufficiently high that all actual users find the system reliable enough.

Such an equilibrium, aside from complete abandonment of the system, need not exist.

Absence of an equilibrium can be associated with the system’s collapse, but the collapse

is not unavoidable. Bitcoin may survive a period of low or zero transaction fees if some

miners choose to provide infrastructure to the system although the fees they receive are

low. For example, it may be in the best interest of users with large coin balances to

provide mining services without receiving direct compensation.

In contrast, a monopolist-run system is more stable in several ways. First, the monop-

olist does not rely on congestion for generating revenue, and therefore is not susceptible

to the risk of implosion due to lack of congestion. Moreover, the monopolist can select the

infrastructure level to maximize his long-term profits, and can offer a consistently reliable

service even if demand fluctuates. Finally, the monopolist can adjust the fee he charges

as demand conditions change or infrastructure requirements changes.

5.3 Social cost of the system and potential waste

The equilibrium characterized in Section 4 entails the following costs for users and miners.

Users bear the cost of paying transaction fees, as well as bearing costly delays. Transaction

fees are transfers to miners, and in total are equal to miner’s revenue. Free entry implies

that miners costs are equal to miner’s revenue. Therefore, the social cost of the system

is equal to the users’ total cost given in Theorem 7. We proceed to discuss both costs

associated with the system.

Delay costs are necessary in order to raise revenue from users. The analysis in Section

4 sheds light on the relation between the revenue and delay costs. Delay costs and

revenue are both increasing with congestion, and therefore a system with higher revenue

will also have higher delay costs. Consider a system with a fixed and large block size

K. The system generates different combinations of revenue and delay costs for different

congestion levels ρ. Theorem 10 shows the possible combinations of revenue and delay

costs are approximately the combinations given by the curve in Figure 6, except that both

axes need to be scaled by the block size K. Therefore, delay costs are much greater than

revenue when revenue is small relative to K.

29

Delay costs are potentially wasteful. Delays serve no purpose other than to create

incentives for users to pay higher transaction fees. But alternative system designs may be

able to raise revenue from users without the need for delays. For example, a monopolist

may charge all transactions a fixed fee, and process all transaction immediately.

There are several kinds of potential waste in miners’ efforts. First, miners spend

substantial resources in the tournament to declare a block legal and thereby receive the

reward. This effort is wasteful in that it consumes real resources (such as electricity),

but gives no benefit except for the random selection of a miner. Such tournaments would

not be necessary in a traditional monopolist system. Second, all miners spend resources

ascertaining that the transactions conform to the rules. While this effort accounts for

only a small portion of miners’ cost Croman et al. (2016), this duplication can be avoided

in a traditional monopolist system.

Last, there can be waste in the system in that the amount of infrastructure is deter-

mined by congestion pricing, regardless of its value to users. It is possible for the Bitcoin

system to operate at a congestion level that implies high revenue and a larger number

of miners, even though all users prefer to have a lower number of miners.19 A judicious

choice of µ, K in the protocol can induce an appropriate number of miners for a given

transaction arrival rate λ. However, the transaction arrival rate may change over time,

leading to undesirable infrastructure levels.

In contrast, a monopolist-run system will avoid the tournament-waste and redundant

duplication of effort, eliminate all delay costs and can set the amount of infrastructure.

On the other hand, fee-setting by the monopolist may entail social cost from deadweight

loss, as the monopoly price may inhibit some users from transacting in the system.

6 Design Suggestions and Alternative Pricing Mech-

anisms

Frustration with Bitcoin’s limited throughput capacity has generated a heated discussion

of protocol modifications to scale Bitcoin. In addition, hundreds of altcoins (shorthand

for alternate crypto-currencies) have been proposed and more are being designed. This

paper points out that under the current design of Bitcoin and other crypto-currencies,

congestion is imperative to raise revenue. In this section we examine modifications of the

original protocol and their implications. First, without a radical departure from Bitcoin’s

19For example, users may be concerned with the environmental impact of the vast electricity consump-
tion of miners.

30

design, some congestion is integral to the workings of Bitcoin and its scaled-up versions.

We discuss how the system’s parameters µ, K should be set to trade off the need for

congestion against the implied waste.

Second, we pose the question of identifying the class of revenue generating mechanisms

that can be implemented under the distributed system, and briefly examine some possible

alternatives.

By the revelation principle, a revenue generating mechanism can be equivalently de-

scribed as an incentive compatible menu {(b (·) ,W (·))} of possible combinations of pay-

ments and delay.20 In contrast to a traditional payment system, the distributed system

cannot directly determine the delay schedule W (·). The protocol sets the rules of the

game played by miners, and miners’ equilibrium behavior generates the menu of options

offered to users. Thus, the distributed system can offer a menu of options {(b (·) ,W (·))}
only if it can arise from the miners’ equilibrium behavior. In particular, the protocol rules

must maintain that the legality of the ledger can be verified by a third party and that

miners are incentivized to process transactions rather than ignore them.

6.1 Block size increase

Transaction volume on the Bitcoin system increased over recent years with the increased

popularity of the currency. As the transaction volume approached the system’s capacity,

high delays and fees became major concerns for the Bitcoin community. In response, a

number of proposals argued for a system modification that would allow Bitcoin to support

higher transaction volume, seeking to increase the block size by a factor of 2 or more.21

If the transaction arrival rate remains fixed, such an increase in the block size should

dramatically lower congestion and therefore lead to low transaction fees.22 The following

corollary gives a simple bound for any user’s transaction fee as a function of congestion.

Corollary 13. For any distribution of users’ delay cost c ∼ F [0, c̄], the transaction fee

paid by a user with delay cost ci is bounded by

b (ci) ≤ µ−1ci · (WK (ρ)− 1) .

µ−1ci is the user’s average cost for being delayed one block.

20Exclusion from service can be denoted by zero payment and infinite delay.
21For a summary of the various proposals see https://en.wikipedia.org/wiki/Bitcoin_

scalability_problem, retrieved 7/23/2017.
22Currently the Bitcoin system rewards miners with newly minted coins, which account for the major

part of the payment to miners.

31

K (tx) µ−1 (m) λ (tx/10m) revenue ($/10m) delay cost ($/10m)

status quo 2,000 10min 1,500 $1,205 $1,049
big blocks 20,000 10min 1,500 $0.002 $750
frequent blocks 2,000 1min 1,500 $0.0002 $75

Table 1: Comparison between increased block size and block rate under the assumption c˜U[0,1]

A simple intuition for the result is that user ci may choose to pay a transaction fee equal

to 0, which entails the lowest service priority and a delay cost equal to ci·µ−1WK (ρ). If user

ci receives the highest service priority there is still a delay cost of ci ·µ−1WK (0) = ci ·µ−1,

as the transaction still needs to wait for the next block. The difference between the two

expressions bounds the user’s willingness to pay for any intermediate priority.

As an illustration, consider multiplying the block size by 10, from K = 2, 000 transac-

tions to K = 20, 000 transactions. Suppose that prior to the change the system processed

all potential transactions. With the increased block size by 10 the system congestion is

at most ρ = 1/10, and W20,000 (1/10) = 0.0005. Therefore, even a user with delay cost of

µ−1ci = $10 would pay at most a transaction fee of at most $0.005.

While multiplying the block size by 10 causes revenue to collapse, it does not eliminate

delay costs. For example, consider the system with K = 2, 000 with µ−1 = 10 minutes

and an average arrival of λ = 1, 500 transaction per block. Table 1 presents revenue and

delay cost for the system under the assumption that users’ cost of 10min delay costs per

are distributed uniformly between $0 and $1. Increasing the block size to K = 20, 000

causes revenue to collapse, but delay cost per block remain substantial. This is because

even though virtually all transactions are processed in the next block, there is still delay

until the next block arrives. If instead capacity was increased by keeping K = 2, 000 and

making blocks 10 times more frequent, then delay costs are substatially reduced.

6.2 Adjusting throughput to control congestion

The Bitcoin protocol can generate artificial congestion in the system. Congestion in the

Bitcoin system is imposed by the rules of system that control the processing capacity of

the system. The current Bitcoin protocol fixes the block size K and block arrival rate

µ, setting a fixed capacity for the system.23 As discussed in Section 5, this implies the

congestion in the system varies with the transaction arrival rate λ, and may result in an

undesirable level of revenue and infrastructure.

Consider an alternative protocol which sets the system’s capacity parameters µ, K in

23Technological constraints may limit the values of K and µ that are feasible.

32

response to the transaction arrival rate λ to achieve a desired congestion level ρ. While

no individual miner can affect the congestion level, the capacity parameters µ, K can

affect congestion and transaction fees in a similar way to how a quantity restrictions set

by a monopolist affect prices. By adjusting capacity the protocol can adjust delay cost,

revenue, and infrastructure.

Holding fixed the arrival rate λ, Theorems 6 and 7 characterize the possible values of

delay cost, revenue, and infrastructure that the system can achieve by adjusting µ, K.

Under the assumptions specified in Section 4, adjusting µ and K is equivalent to choosing

ρ = λ/µK and K. Figure 7 illustrates the possible attainable values for revenue and delay

given different values of K and ρ, assuming delay costs are distributed uniformly in [0, 1].

Each curve shows the attainable values for revenue and delay for a fixed value of K and

a range of possible ρ. All curves are (approximately) a scaled version of the curve 6 (note

the logarithmic scale for the vertical axis), as implied by Theorem 10. Each curve’s two

main features are (i) its monotonicity – more delays are required to generate more revenue,

and (ii) the curve is asymptotically vertical at the origin, i.e., to move from zero to some

revenue, the delay cost has to be substantial. These insights transcend the specific U[0,

1] distribution of c underlying the figure. However, note that these calculations ignore

technological constraints and assume that no users opt out of the system. A comparison

between the curves shows that a larger block size K is bad in that the required delay

costs to raise a certain amount of revenue is larger for larger K.

A judicious choice of µ and K should provide the system with a sufficient number

of miners, while minimizing the delay costs and transaction fees borne by users. For

simplicity, assume that the system requires at least N̄ miners and additional miners add

no benefit. In such case, the system should raise revenue exactly equal to R∗ , cm · N̄ .

Users will have to pay the required revenue R∗ as well as bear the necessary delay costs.

As illustrated by Figure 7, the necessary delay cost to sustain the target level of revenue is

increasing in K. For example, when c ∼ U [0, 1], adjusting congestion ρ to attain revenue

of R∗ = 500 requires delay cost of 170 when K = 200, of 780 when K = 2, 000, and of

3930 when K = 20, 000.24 More generally, Theorem 12 shows that the required delay

costs to attain a given target revenue go to infinity as K grows large.

This analysis suggests the following simple adaptation to the current protocol. First,

select the smallest block size K that is feasible.25 Second, adjust the block rate µ according

24The required congestion ρ to attain revenue of 500 when K is equal to 20, 200, 2,000, 20,000 is 0.98,
0.89, 0.64, and 0.38 respectively.

25Clearly, there are communication and other limitations that may require the block size to exceed
certain levels. This paper ignores these engineering challenges.

33

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000100

101

102

103

104

revenue RevK(ρ) ($/time)

de
la

y
co

st
D

el
ay

C
os

t K
(ρ

)
($
/
tim

e)

K = 20
K = 200
K = 2,000
K = 20,000

Figure 7: Possible pairs of revenue and delay cost as ρ varies, for different values of K, where delay costs
are distributed according to c ∼ U [0, 1].

to the arrival rate of transactions λ so that ρ remains constant at the level that generates

the required revenue level.

This adaptation can be implemented with small changes to the protocol. Although

the parameter λ is not directly observable, it can be estimated from the ledger which

is publicly available. The protocol can specify the function that calculates µ from the

ledger, making µ publicly available. The calculated block arrival rate can be maintained

in the same manner the block rate is currently maintained.

6.3 Mandating a fixed transaction fee paid by users to miners

A required fixed transaction fee implies that only users willing to pay the fee will contem-

plate using the system. The system can easily enforce this, by setting the protocol rules

to render any transaction without the required fee to be illegal. The presence of a fixed

fee can render congestion unnecessary. However, the determination of the desired level

of the fixed fee is challenging; it depends on users’ willingness to pay (which is difficult

to estimate) and its aggregate should garner a sufficient, but not excessive level of miner

effort.

A fixed fee can be easily included when the protocol is first introduced. However,

a change of circumstances may cause the fee to be no longer appropriate. For exam-

34

ple, technological changes may reduce the miners’ cost or change the cost of alternative

transaction methods. If the protocol specifies a fixed fee, changing the transaction fee

requires a switch to a new protocol. The question of designing protocol rules that allow

an adjustable minimal fee is left for future research.

6.4 Direct VCG pricing

Instead of asking users to determine their transaction fees, the direct mechanism intro-

duced by Dolan (1978) asks users to specify their delay cost. Transactions with higher

delay cost are given priority. The mechanism charges a payment (transaction fee) from

each user equal to the realized externality imposed on other transactions. The realized ex-

ternality can be calculated after all the delayed transactions are processed (once a block is

not full, no delay is imposed on any following transactions), using the delay cost specified

by the delayed transactions. Dolan (1978) shows that this pricing mechanism is incentive

compatible, i.e., it is optimal for each user to declare his true cost.

Section 4 showed that if each user knows the distribution of transaction fees and in re-

sponse optimally chooses his transaction fee, then each user pays his expected externality.

Thus, this dynamic VCG mechanism would yield the same transaction fees in expecta-

tion, without requiring users to know the distribution of transaction fees or calculate their

optimal response. In addition, under this mechanism it does not matter whether users

observe the current state of the system.

Although the calculation of transaction fees under this mechanism is more involved,

fees can be eventually calculated from information on the ledger. Thus balances and

transaction fees can be verified by miners or any third party. However, there are some

difficulties in implementing this mechanism. First, payments may be unbounded, and

a user cannot be charged more than his available balance. Second, while miners will

receive the same reward in expectation, any transaction that is processed in a block that

is not full imposes no externality and thus pays no transaction fee. If miners collect only

transaction fees from transaction in a block they mined, then a miner has no incentive to

mine a block that is not full.

7 Conclusion

Starting with the simple questions of who pays for the Bitcoin payment system, why

and how much, this paper proceeds to analyze the economics underlying that distributed

35

system. Transaction fees are paid by users who wish to gain processing priority over

other users and avoid delays. The system’s infrastructure is provided by miners, who

compete and provide their services at cost. Our analysis identifies a relation between

congestion and transaction fees, which matches features of the empirical data, as seen in

Figure 4. Congestion is essential for raising revenue from users to fund miners’ provision

of infrastructure.

The paper draws a comparison between the economic structures of the distributed

Bitcoin system and a traditional electronic payment systems operated by a monopolist.

Several additional differences should be noted. As opposed to traditional systems, the

Bitcoin system does not require trust in any entity. However, the Bitcoin system cannot

provided some services: transaction cannot be reversed in case of error or fraud, and users

who lose the credentials to their account have no way of retrieving their balance. As such,

Bitcoin may be more comparable to cash than to a modern electronic payment system.

Bitcoin is a monopoly run by a protocol, not by a managing organization. Familiar

monopolies are run by managing organizations with discretion to determine and then

change prices, offerings and rules. Monopolies are often regulated to prevent or at least

mitigate their abuse of power.

Bitcoin is not regulated. It cannot be regulated. There is no need to regulate it because

as a system it is committed to the protocol as is and the transaction fees it charges the

users are determined by the users independently of the miners’ efforts.

Bitcoin’s design as an economic system is revolutionary and therefore would merit

an economist’s attention and scrutiny even if it had not been functional. Its apparent

functionality and usefulness should further encourage economists to study this marvelous

structure.

References

Athey, S., Parashkevov, I., Sarukkai, V. & Xia, J. (2016), ‘Bitcoin pricing, adoption, and

usage: Theory and evidence’.

Babaioff, M., Dobzinski, S., Oren, S. & Zohar, A. (2012), On bitcoin and red balloons, in

‘Proceedings of the 13th ACM conference on electronic commerce’, ACM, pp. 56–73.

Carlsten, M., Kalodner, H., Weinberg, S. M. & Narayanan, A. (2016), On the instability of

bitcoin without the block reward, in ‘Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security’, ACM, pp. 154–167.

36

Catalini, C. & Gans, J. S. (2016), Some simple economics of the blockchain, Technical

report, National Bureau of Economic Research.

Chiu, J. & Koeppl, T. (2017), ‘The economics of cryptocurrencies–bitcoin and beyond’.

Croman, K., Decker, C., Eyal, I., Gencer, A. E., Juels, A., Kosba, A., Miller, A., Sax-

ena, P., Shi, E. & Gün, E. (2016), On scaling decentralized blockchains, in ‘Proc. 3rd

Workshop on Bitcoin and Blockchain Research’.

Dolan, R. J. (1978), ‘Incentive mechanisms for priority queuing problems’, The Bell Jour-

nal of Economics pp. 421–436.

Easley, D., O’hara, M. & Basu, S. (2017), ‘From mining to markets: The evolution of

bitcoin transaction fees’, Working paper .

Eyal, I., Gencer, A. E., Sirer, E. G. & Van Renesse, R. (2016), Bitcoin-ng: A scalable

blockchain protocol, in ‘13th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 16)’, pp. 45–59.

Eyal, I. & Sirer, E. G. (2014), Majority is not enough: Bitcoin mining is vulnerable,

in ‘International Conference on Financial Cryptography and Data Security’, Springer,

pp. 436–454.

Gandal, N. & Halaburda, H. (2014), ‘Competition in the cryptocurrency market’.

Gans, J. S. & Halaburda, H. (2015), Some economics of private digital currency, in ‘Eco-

nomic Analysis of the Digital Economy’, University of Chicago Press, pp. 257–276.

Glazer, A. & Hassin, R. (1986), ‘Stable priority purchasing in queues’, Operations Research

Letters 4(6), 285–288.

Halaburda, H. & Sarvary, M. (2016), ‘Beyond bitcoin’, The Economics of Digital Curren-

cies .

Hassin, R. (1995), ‘Decentralized regulation of a queue’, Management Science 41(1), 163–

173.

Hassin, R. & Haviv, M. (2003), To queue or not to queue: Equilibrium behavior in queueing

systems, Vol. 59, Springer Science & Business Media.

Kasahara, S. & Kawahara, J. (2016), ‘Priority mechanism of Bitcoin and its effect on

transaction-confirmation process’, Working paper .

37

Kleinrock, L. (1975), Queueing Systems. Volume 1: Theory, Wiley-Interscience.

Kroll, J. A., Davey, I. C. & Felten, E. W. (2013), The economics of bitcoin mining, or

bitcoin in the presence of adversaries, in ‘Proceedings of WEIS’, Vol. 2013, Citeseer.

Lui, F. T. (1985), ‘An equilibrium queuing model of bribery’, Journal of political economy

93(4), 760–781.

Nakamoto, S. (2008), ‘Bitcoin: A peer-to-peer electronic cash system’.

Narayanan, A., Bonneau, J., Felten, E., Miller, A. & Goldfeder, S. (2016), Bitcoin and

cryptocurrency technologies, Princeton University Press.

Olver, F. J. W., Lozier, D. W., Boisvert, R. F. & Clark, C. W., eds (2010), NIST Handbook

of Mathematical Functions, Cambridge University Press.

Posner, R. A. (1975), ‘The social costs of monopoly and regulation’, Journal of political

Economy 83(4), 807–827.

Ron, D. & Shamir, A. (2013), Quantitative analysis of the full bitcoin transaction graph,

in ‘International Conference on Financial Cryptography and Data Security’, Springer,

pp. 6–24.

Sapirshtein, A., Sompolinsky, Y. & Zohar, A. (2016), Optimal selfish mining strategies

in bitcoin, in ‘International Conference on Financial Cryptography and Data Security’,

Springer, pp. 515–532.

Tanenbaum, A. S. & Van Steen, M. (2007), Distributed systems: principles and paradigms,

Prentice-Hall.

Yermack, D. (2013), Is bitcoin a real currency? an economic appraisal, Technical report,

National Bureau of Economic Research.

Zohar, A. (2015), ‘Bitcoin: under the hood’, Communications of the ACM 58(9), 104–113.

A Endogenous Entry

The analysis in Section 4 assumed that the reward R is sufficiently high for all users

receive positive net reward. Corollary 5 shows that all users receive positive net reward if∫ c̄

0

µ−1WK

(
ρF̄ (c)

)
dc ≤ R.

38

To extend the analysis to values of R for which the inequality is not satisfied, let c∗ ∈ [0, c̄]

be the unique solution to∫ c∗

0

µ−1WK

(
ρ
(
F̄ (c)− F̄ (c∗)

))
dc = R.

It is straightforward to verify that in equilibrium users with delay cost ci /∈ [0, c∗] opt out

of the system, and that a user with delay cost ci ∈ [0, c∗] chooses a transaction fee

b (ci) = ρ

∫ ci

0

f (c) · c · µ−1W ′
K

(
ρ
(
F̄ (c)− F̄ (c∗)

))
dc.

The system’s revenue and total delay cost are given by

RevK(ρ) = Kρ2

∫ c∗

0

cf(c)
(
F̄ (c)− F̄ (c∗)

)
W ′
K

(
ρ
(
F̄ (c)− F̄ (c∗)

))
dc,

DelayCostK(ρ) = Kρ

∫ c∗

0

cf(c)WK

(
ρ
(
F̄ (c)− F̄ (c∗)

))
dc.

The infrastructure available to the system is given by the number of miners

N =
RevK(ρ)

cm
.

Note that these expressions coincide with their counterparts in Section 4 when c∗ = c̄.

B Proofs

Proof of Lemma 2: Consider a queueing system consisting of ‘high-priority’ transactions

arriving according to a Poisson process rate λ̂. Transactions are processed according to

exponential service times with parameter µ, and block size of K. Standard analysis of bulk

service systems (e.g., Section 4.6, Kleinrock 1975) yields that, if ρ̂ , λ̂/µK ∈ [0, 1), this

queuing system is stable and the steady-state queue length for high-priority transactions

has the geometric distribution

π` = (1− z0)z`0, ` = 0, 1, . . . ,

where z0 ∈ [0, 1) is the aforementioned polynomial root.

39

Now, suppose a single, distinguished ‘low-priority’ transaction arrives, whose service is

preempted by any high-priority transaction. Let T` be the expected remaining time until

the low-priority transaction is processed, give ` ≥ 0 high-priority transactions awaiting

processing. Then, we must have

T` =
1

µ+ λ̂
+

λ̂

µ+ λ̂
T`+1 +

µ

µ+ λ̂
I{`≥K}T`−K , ` = 0, 1, (6)

The first term in (6) is the expected waiting time until the next transaction arrival or

service, the second term is the additional waiting time if there is a transaction arrival,

while the final term is the additional waiting time if there is a service. We can rewrite

(6) as

(µ+ λ̂)T` = 1 + λ̂T`+1 + µI{`≥K}T`−K , ` = 0, 1, (7)

Define T (z) to be the generating function

T (z) ,
∞∑
`=0

T`z
`.

Applying (7), we have that

(µ+ λ̂)T (z) =
1

1− z
+ λ̂z−1

[
T (z)− T0

]
+ µzKT (z).

Solving for T (z) and simplifying,

T (z) =
λ̂T0(1− z)− z

(1− z)
[
µzK+1 − (λ̂+ µ)z + λ̂

] =
λ̂T0(1− z)− z

µ(1− z)
[
zK+1 − (Kρ̂+ 1)z +Kρ̂

] .
We are interested in the steady-state average waiting time

W̄ =
∞∑
`=0

π`T` = (1− z0)T (z0).

Clearly W̄ < ∞ (since the system is stable), but, by construction, z0 is a root of the

denominator of T (z). Therefore, it also must be a root of the numerator, and this implies

the boundary condition

T0 =
z0

λ̂(1− z0)
.

40

Furthermore, denote by QK(z, ρ̂) the degree K polynomial in z defined by

zK+1 − (Kρ̂+ 1)z +Kρ̂ =
(
z0(ρ̂, K)− z

)
QK(z, ρ̂), ∀ (z, ρ̂) ∈ R× [0, 1). (8)

This polynomial exists and is unique since z0 , z0(ρ̂, K) is a root of the degree K + 1

polynomial on the left side. Then, we have that

T (z) =
z0 − z

µ(1− z0)(1− z)
[
zK+1 − (Kρ̂+ 1)z +Kρ̂

] =
1

µ(1− z0)(1− z)QK(z, ρ̂)
,

and the expected waiting time can be written as

W̄ =
1

µ(1− z0)QK(z0, ρ̂)
.

In order to simplify this expression, we will apply the implicit function theorem and

differentiate (8) with respect to (z, ρ̂) ∈ R× [0, 1) to obtain

(K + 1)zK − (Kρ̂+ 1) = −QK(z, ρ̂) +
(
z0(ρ̂, K)− z

)
∂zQK(z, ρ̂), (9)

−Kz +K = ∂ρ̂z0(ρ̂, K)QK(z, ρ̂) +
(
z0(ρ̂, K)− z

)
∂ρ̂QK(z, ρ̂). (10)

Substituting z = z0(ρ̂, K) into (9), we have that

QK(z0, ρ̂) = 1 +Kρ̂− (K + 1)zK0 .

Therefore, the expected waiting time is

W̄ = µ−1WK (ρ̂) ,

where

WK (ρ̂) ,
1

(1− z0)
(
1 +Kρ̂− (K + 1)zK0

) , (11)

as desired.

We will now show that W ′
K(ρ̂) > 0. Differentiating (11),

W ′
K(ρ̂) =

(
QK(z0, ρ̂) +K(K + 1)(1− z0)zK−1

0

)
∂ρ̂z0(ρ̂, K)−K(1− z0)(

(1− z0)QK(z0, ρ̂)
)2

41

Substituting z = z0(ρ̂, K) into (9), we have that

∂ρ̂z0(ρ̂, K) =
K(1− z0)

QK(z0, ρ̂)
= K(1− z0)2WK(ρ̂).

Then,

W ′
K(ρ̂) = K

(
QK(z0, ρ̂) +K(K + 1)(1− z0)zK−1

0

)
−QK(z0, ρ̂)

(1− z0)QK(z0, ρ̂)3

=
K2(K + 1)zK−1

0

QK(z0, ρ̂)3

= K2(K + 1)zK−1
0 (1− z0)3WK(ρ̂)3.

(12)

Since the waiting time must be at least one block, WK (ρ̂) ≥ 1. Since z0 < 1 and, if

ρ̂ ∈ (0, 1), z0 6= 0 also, we have that W ′
K(ρ̂) > 0. Furthermore, since z0(0, K) = 0, it is

clear that

WK(0) = 1, W ′
K(0) =

2 if K = 1,

0 if K > 1.

Finally, we consider the asymptotic limits of WK(·) and W ′
K(·) as ρ̂ → 1. Factoring

the defining polynomial for z0 ∈ [0, 1), we have that

0 = zK+1
0 − (Kρ̂+ 1)z0 +Kρ̂ = (1− z0)

(
Kρ̂−

K∑
`=1

z`0

)
.

Therefore, z0 satisfies

ρ̂ =
1

K

K∑
`=1

z`0 ≤
1

K

K∑
`=1

z0 = z0 < 1,

where the inequalities follow since z0 ∈ [0, 1). Taking a limit as ρ̂ → 1, clearly z0 → 1

and QK(z0, ρ̂)→ 0. Therefore, from (11), WK (ρ̂)→∞, and also from (12),

lim
ρ̂→1

W ′
K(ρ̂) = lim

ρ̂→1

K2(K + 1)zK−1
0

QK(z0, ρ̂)3
=∞.

Proof of Proposition 3: Let G denote the the cumulative distribution function of trans-

action fees in some equilibrium, and let b(ci) be a transaction fee chosen by agents with

42

delay cost ci. Consider a user i with delay cost ci. The user chooses his transaction fee b

to maximize his net reward

R− b− ci ·W (b | G) ,

with W (b | G) denoting the expected delay given transaction fee b and the CDF G. By

Lemma 2 the expected delay is decreasing with b, and standard arguments (see Lui (1985),

Hassin & Haviv (2003)) imply that b (ci) is increasing in ci and b (0) = 0. Monotonicity

of b (·) implies that G (b (c)) = F (c). Therefore we have that

ρ̂ (ci) =
λ · (1−G (b (ci)))

µK
= ρ · F̄ (ci) ,

and

W (b | G) = µ−1WK

(
ρ · Ḡ (b)

)
= µ−1WK

(
ρ · F̄ (ci)

)
.

Each agent is bidding optimally if and only if

b(ci) ∈ arg min
b
{c ·W (b | G) + b}.

The first order condition implies

W ′ (bi | G) = − 1

ci
.

Plugging in G′ (bi) = f (ci) /b
′ (ci), we have that

µ−1W ′
K

(
ρ · Ḡ (b)

)
· (−ρf (ci) /b

′ (ci)) = − 1

ci
,

or

b′ (ci) = ciρf (ci)µ
−1W ′

K

(
ρF̄ (ci)

)
.

Integration together with the fact that b (0) = 0 yields

b (ci) = ρ

∫ ci

0

f (c) · c · µ−1W ′ (ρF̄ (c)
)
dc.

Proof of Corollary 5: Integration by parts yields that

43

b (ci) = ρ

∫ ci

0

cf (c)µ−1W ′
K

(
ρF̄ (c)

)
dc

= −
∫ ci

0

c
(
µ−1WK

(
ρF̄ (c)

))′
dc

=

∫ ci

0

µ−1WK

(
ρF̄ (c)

)
dc−

[
cµ−1WK

(
ρF̄ (c)

)]∣∣ci
0

=

∫ ci

0

µ−1WK

(
ρF̄ (c)

)
dc− ciµ−1WK

(
ρF̄ (ci)

)
=

∫ ci

0

µ−1WK

(
ρF̄ (c)

)
dc− ciµ−1WK

(
ρF̄ (ci)

)
.

Therefore,

U(ci) , R− ci ·W (b(ci) | G)− b(ci)

= R−
∫ ci

0

µ−1WK

(
ρF̄ (c)

)
dc.

From the last expression we have that U (ci) is decreasing with ci, and therefore if

U (c̄) = R · µ−
∫ c̄

0

WK

(
ρ̄F̄ (c)

)
dc ≥ 0

we have that U (ci) ≥ 0 for any ci ∈ [0, c̄] given ρ̄. Because WK is an increasing function,

if the inequality holds given ρ̄, it also holds for any ρ < ρ̄.

Proof of Theorem 6: Transactions arrive per unit time at rate λ, and the expected revenue

per transaction is ∫ c̄

0

f(c)b(c) dc.

44

Therefore, the total expected revenue per unit time is

RevK(ρ) = λ

∫ c̄

0

f(c)b(c) dc

= Kρ2

∫ c̄

0

∫ c

0

f(c)sf(s)W ′
K

(
ρF̄ (s)

)
ds dc

= Kρ2

∫ c̄

0

∫ c̄

s

f(c)sf(s)W ′
K

(
ρF̄ (s)

)
dc ds

= Kρ2

∫ c̄

0

sf(s)F̄ (s)W ′
K

(
ρF̄ (s)

)
ds.

This established (1). For (2), we integrate by parts with

u = KρsF̄ (s), du = Kρ
(
F̄ (s)− sf(s)

)
ds, dv = ρf(s)W ′

K

(
ρF̄ (s)

)
ds, v = −WK

(
ρF̄ (s)

)
,

to obtain

RevK(ρ) = uv
∣∣∣c̄
0
−
∫ c̄

0

v du

= Kρ

∫ c̄

0

(
F̄ (s)− sf(s)

)
WK

(
ρF̄ (s)

)
ds,

as desired.

Proof of Theorem 7: Transactions arrive per unit time at rate λ, and the expected delay

cost per transaction is ∫ c̄

0

f(c) · cµ−1WK

(
ρF̄ (c)

)
dc.

Therefore, the total expected revenue per unit time is

DelayCostK(ρ) = λ

∫ c̄

0

cf(c)µ−1WK

(
ρF̄ (c)

)
dc

= Kρ

∫ c̄

0

cf(c)WK

(
ρF̄ (c)

)
dc,

as desired. The expression for total cost per unit time (4) follows by combining (2) and

(3).

45

Proof of Lemma 9: The result is trivial for ρ̂ = 0.

Fix ρ̂ > 0. Define the transcendental function

T (α) , e−α + ρ̂α− 1.

Clearly T (0) = 0, T ′(0) < 0, and limα→∞ T (α) =∞. By the intermediate value theorem,

there is at least one strictly positive root. Since T ′′(α) > 0 for all α ≥ 0, the root must

be unique. Thus,

T (α) < 0, ∀ 0 < α < α(ρ̂); T (α) > 0, ∀ α > α(ρ̂). (13)

Next, we wish to prove that, as K →∞,

z0(ρ̂, K) = 1− α(ρ̂)/K + o(1/K). (14)

Recall the polynomial defining z0,

PK(z) , zK+1 − (Kρ̂+ 1)z +Kρ̂.

Note that

PK(0) = Kρ̂ > 0, PK(1) = 0, P ′K(1) = K(1− ρ̂) > 0,

so PK(z) must be positive for z sufficiently close to zero, and must be negative for z

sufficiently close to (but less than) 1. Since z0 is the unique root of PK(·) in the interval

[0, 1), we have that

PK(z) > 0, ∀ 0 ≤ z < z0(ρ̂, K); PK(z) < 0, ∀ z0(ρ̂, K) < z < 1. (15)

Now, fix an arbitrary ε > 0. Define

νK , 1− α(ρ̂) + ε

K
, νK , 1− α(ρ̂)− ε

K
.

46

Then,

lim
K→∞

PK(νK) = lim
K→∞

νK+1
K − (Kρ̂+ 1)νK +Kρ̂

= lim
K→∞

νK

(
1− α(ρ̂) + ε

K

)K
+ (Kρ̂+ 1)

α(ρ̂) + ε

K
− 1

= e−
(
α(ρ̂)+ε

)
+ ρ̂
(
α(ρ̂) + ε

)
− 1

= T
(
α(ρ̂) + ε

)
> 0,

where (13) is used for the final inequality. Thus, for all K sufficiently large, PK(νK) > 0.

By (15), this implies that, for all K sufficiently large, z0(ρ̂, K) > νK . Combining this

with an analogous argument applied to νK , we have that, for all K sufficiently large,

1− α(ρ̂) + ε

K
< z0(ρ̂, K) < 1− α(ρ̂)− ε

K
,

or equivalently, ∣∣∣∣z0(ρ̂, K)−
(

1− α(ρ̂)

K

)∣∣∣∣ < ε

K
.

Since ε is arbitrary, we have established (14).

Finally, we are ready to analyze the asymptotic waiting time. Equation (14) implies

that there exists a sequence {εK} with limit εK → 0, such that

z0(ρ̂, K) = 1− α(ρ̂) + εK
K

.

Then,

lim
K→∞

WK (ρ̂)−1 = lim
K→∞

(1− z0)
(
1 +Kρ̂− (K + 1)zK0

)
= α(ρ̂)ρ̂− lim

K→∞

K + 1

K

(
α(ρ̂) + εK

)
zK0 .

But, using the fact that log(1− x) = −x+O(x2) as x→ 0,

lim
K→∞

K log z0 = lim
K→∞

K log

(
1− α(ρ̂) + εK

K

)
= lim

K→∞
−
(
α(ρ̂) + εK

)
+O

((
α(ρ̂) + εK

)2

K

)
= −α(ρ̂).

47

This implies that zK0 → e−α(ρ̂). Also, from the transcendental algebraic equation defining

α(ρ̂), we have that

ρ̂ =
1− e−α(ρ̂)

α(ρ̂)
.

Therefore,

lim
K→∞

WK (ρ̂)−1 = α(ρ̂)ρ̂− α(ρ̂)e−α(ρ̂) = 1− (1 + α(ρ̂)) e−α(ρ̂),

as desired.

It remains to establish that W ′
∞(ρ̂) > 0. Applying the implicit function theorem to

differentiate the equation T
(
α(ρ̂)) = 0 with respect to ρ̂, we have that

−e−α(ρ̂)α′(ρ̂) + α(ρ̂) + ρ̂α′(ρ̂) = 0.

Simplifying, we obtain that

α′(ρ̂) =
α(ρ̂)

e−α(ρ̂) − ρ̂
= −α(ρ̂)2W∞(ρ̂).

Then, differentiating (5), we have that

W ′
∞(ρ̂) = − e−α(ρ̂)α(ρ̂)α′(ρ̂)

(1− (1 + α(ρ̂)) e−α(ρ̂))
2 = e−α(ρ̂)α(ρ̂)3W∞(ρ̂)3 > 0,

where the inequality holds for ρ̂ ∈ (0, 1). Observing that α(ρ̂) → ∞ as ρ̂ → 0, it follows

that W ′
∞(0) = 0.

Proof of Theorem 10: Note that, from (2),

RevK(ρ)

K
= ρ

∫ c̄

0

(
F̄ (c)− cf(c)

)
WK

(
ρF̄ (c)

)
dc. (16)

Since WK(·) is strictly increasing,

∣∣(F̄ (c)− cf(c)
)
WK

(
ρF̄ (c)

)∣∣ ≤ (F̄ (c) + cf(c)
)
WK (ρ) .

Now, pick any ρ̄ ∈ (ρ, 1). Then WK(ρ) → W∞(ρ) < W∞(ρ̄) by Lemma 9, so for K

48

sufficiently large,

∣∣(F̄ (c)− cf(c)
)
WK

(
ρF̄ (c)

)∣∣ ≤ (F̄ (c) + cf(c)
)
W∞ (ρ̄) ,

which is integrable over c ∈ [0, c̄]. Then, we can apply the dominated convergence theorem

to (16) to obtain

lim
K→∞

RevK(ρ)

K
= ρ

∫ c̄

0

(
F̄ (c)− cf(c)

)
W∞

(
ρF̄ (c)

)
dc , Rev∞(ρ),

as desired.

The asymptotic limits for delay cost and total cost can be established using similar

dominated convergence theorem arguments. Finally, the derivative expressions can be

derived directly by differentiation.

Proof of Theorem 11: First, we will derive an asymptotic expression for α(ρ) when ρ→ 0.

Suppose ρ > 0, if α > 0 is the solution of

e−α + ρα− 1 = 0,

then β , α− 1/ρ > −1/ρ must solve

−1

ρ
e−1/ρ = βeβ.

The two real solutions to this transcendental equation can be expressed as

β =Wi

(
−1

ρ
e−1/ρ

)
, ∀ i = −1, 0,

where W0(·) and W−1(·) are the two branches of the Lambert W -function (for the defini-

tion and properties of this function, see, e.g., Olver et al. 2010). Since β > −1/ρ, we can

restrict to the i = 0 case (the so-called ‘principal branch’), to obtain

α(ρ) =
1

ρ
+W0

(
−1

ρ
e−1/ρ

)
.

As x→ 0, from the Taylor expansion it is easy to see that W0(x) = x+O(x2). Then, as

49

ρ→ 0,

α(ρ) =
1

ρ
+O

(
1

ρ
e−1/ρ

)
.

Now, we can analyze the asymptotic waiting time. As ρ→ 0, α(ρ)→∞, so that

(
1 + α(ρ)

)
e−α(ρ) → 0.

Since 1/(1− x) = 1 + x+O(x2) as x→ 0, we have that

W∞(ρ) = 1 +
(
1 + α(ρ)

)
e−α(ρ) + o

((
1 + α(ρ)

)
e−α(ρ)

)
= 1 + α(ρ)e−α(ρ) + o

(
α(ρ)e−α(ρ)

)
= 1 +

1

ρ
e−1/ρ + o

(
1

ρ
e−1/ρ

)
.

For the asymptotic revenue,

Rev∞(ρ) = ρ

∫ c̄

0

(
F̄ (c)− cf(c)

)
W∞

(
ρF̄ (c)

)
dc

= ρ

∫ c̄

0

(
F̄ (c)− cf(c)

) (
W∞

(
ρF̄ (c)

)
− 1
)
dc

where we have used the fact that∫ c̄

0

F̄ (c) dc =

∫ c̄

0

cf(c) dc = E[c].

Then,

Rev∞(ρ) ≤ ρ

∫ c̄

0

∣∣F̄ (c)− cf(c)
∣∣ · ∣∣W∞ (ρF̄ (c)

)
− 1
∣∣ dc

≤ ρ

∫ c̄

0

(
F̄ (c) + cf(c)

)
· |W∞ (ρ))− 1| dc

≤ 2ρE(c) |W∞ (ρ))− 1|

≤ 2E(c)e−1/ρ + o
(
e−1/ρ

)
.

For the asymptotic delay cost, applying the dominated convergence theorem,

lim
ρ→0

DelayCost∞(ρ)

ρ
=

∫ c̄

0

cf(c)W∞(0) dc = E[c].

50

Proof of Theorem 12: Define ρK , Rev−1
K (R∗), so that RevK(ρK) = R∗ for all K. Then,

DelayCost∗K(R∗) = DelayCostK (ρK)

= KρK

∫ c̄

0

cf(c)WK

(
ρKF̄ (c)

)
dc

≥ KρKE[c],

using the fact that WK(·) ≥ 1. Hence, it suffices to prove that

lim
K→∞

KρK =∞. (17)

We will proceed by contradiction. Fix ε > 0. Suppose (17) does not hold. Then, there

must exist a infinite subsequence

1 ≤ K1 < K2 < . . .

so that KiρKi
is bounded, i.e.,

M , sup
i≥1

KiρKi
<∞.

Define ρ̄ > 0 so that

W∞(ρ) ≤ 1 + ε, ∀ ρ ∈ (0, ρ̄).

This is possible since W∞(ρ) → 1 as ρ → 0. Since ρKi
≤ M/Ki → 0, there exists I1 ≥ 1

so that

ρKi
≤ ρ̄, ∀ i ≥ I1.

From Lemma 9, there exists I2 ≥ 1 such that

WKi
(ρ̄) ≤ W∞(ρ̄) + ε, ∀ i ≥ I2.

51

Then, we have that, for i ≥ max{I1, I2},

R∗ = RevKi
(ρKi

)

= KiρKi

∫ c̄

0

(
F̄ (c)− cf(c)

)
WKi

(
ρKi

F̄ (c)
)
dc

= KiρKi

∫ c̄

0

(
F̄ (c)− cf(c)

) (
WKi

(
ρKi

F̄ (c)
)
− 1
)
dc

≤M

∫ c̄

0

∣∣F̄ (c)− cf(c)
∣∣ · ∣∣WKi

(
ρKi

F̄ (c)
)
− 1
∣∣ dc

≤M

∫ c̄

0

(
F̄ (c) + cf(c)

) (
WKi

(
ρKi

F̄ (c)
)
− 1
)
dc

≤ 2ME[c]
(
WKi

(ρKi
)− 1

)
≤ 2ME[c]

(
WKi

(ρ̄)− 1
)

≤ 2ME[c]
(
W∞ (ρ̄)− 1 + ε

)
≤ 4ME[c]ε.

Since ε > 0 is arbitrary but R∗ > 0, we have a contradiction.

Proof of Corollary 13: Using integration by parts we have that

b (ci) = µ−1

∫ ci

0

(
WK

(
ρF̄ (c)

)
−WK

(
ρF̄ (ci)

))
dc

≤ µ−1

∫ ci

0

(WK (ρ)− 1) dc

≤ µ−1ci · (WK (ρ)− 1)

52

	BoF DP 27/2017
	Monopoly without a monopolist: An Economic analysis of the bitcoin payment system
	Abstract
	1 Introduction
	2 Related literature
	2.1 Engineering of bitcoin
	2.2 Bitcoin usage as a currency and the crypto-currency market
	2.3 Related work in queuing theory
	2.4 Work on competition, monopoly and its regulation

	3 A Brief description of the bitcoin system
	4 Economic model
	4.1 Miner behavior
	4.2 User behavior and equilibrium transaction fees
	4.3 Total revenue and infrastructure
	4.4 Behavior for large block size K and for small service rate ρ

	5 Bitcoin as a self regulating system
	5.1 Pricing
	5.2 Stability of the system
	5.3 Social cost of the system and potential waste

	6 Design suggestions and alternative pricing mechanisms
	6.1 Block size increase
	6.2 Adjusting throughput to control congestion
	6.3 Mandating a fixed transaction fee paid by users to miners
	6.4 Direct VCG pricing

	7 Conclusion
	References
	A Endogenous entry
	B Proofs

	Bank of Finland Research Discussion Papers 2017

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /PageByPage

 /Binding /Left

 /CalGrayProfile (Gray Gamma 2.2)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Warning

 /CompatibilityLevel 1.6

 /CompressObjects /Off

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.1000

 /ColorConversionStrategy /LeaveColorUnchanged

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType true

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings true

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams true

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts false

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

 /Arial-Black

 /Arial-BlackItalic

 /Arial-BoldItalicMT

 /Arial-BoldMT

 /Arial-ItalicMT

 /ArialMT

 /ArialNarrow

 /ArialNarrow-Bold

 /ArialNarrow-BoldItalic

 /ArialNarrow-Italic

 /CenturyGothic

 /CenturyGothic-Bold

 /CenturyGothic-BoldItalic

 /CenturyGothic-Italic

 /CourierNewPS-BoldItalicMT

 /CourierNewPS-BoldMT

 /CourierNewPS-ItalicMT

 /CourierNewPSMT

 /Georgia

 /Georgia-Bold

 /Georgia-BoldItalic

 /Georgia-Italic

 /Impact

 /LucidaConsole

 /Tahoma

 /Tahoma-Bold

 /TimesNewRomanMT-ExtraBold

 /TimesNewRomanPS-BoldItalicMT

 /TimesNewRomanPS-BoldMT

 /TimesNewRomanPS-ItalicMT

 /TimesNewRomanPSMT

 /Trebuchet-BoldItalic

 /TrebuchetMS

 /TrebuchetMS-Bold

 /TrebuchetMS-Italic

 /Verdana

 /Verdana-Bold

 /Verdana-BoldItalic

 /Verdana-Italic

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 150

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 150

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (None)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>

 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>

 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>

 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)

 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>

 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>

 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>

 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>

 /ENU <FEFF004b006900720073007400750075006e0020006a00610020007000610069006e006f00740061006c006f006900680069006e0020006d0065006e0065007600e4007400200074007900f60074002e>

 >>

>> setdistillerparams

<<

 /HWResolution [600 600]

 /PageSize [595.276 841.890]

>> setpagedevice

