Nowcasting the Finnish economy with a large Bayesian vector autoregressive model

Show simple item record

dc.contributor Bank of Finland
dc.contributor Suomen Pankki Itkonen, Juha Juvonen, Petteri 2017-12-18T08:40:48Z 2017-12-18T08:40:48Z 2017
dc.description.abstract Timely and accurate assessment of current macroeconomic activity is crucial for policymakers and other economic agents. Nowcasting aims to forecast the current economic situation ahead of official data releases. We develop and apply a large Bayesian vector autoregressive (BVAR) model to nowcast quarterly GDP growth rate of the Finnish economy. We study the BVAR model’s out-of-sample performance at different forecasting horizons, and compare to various bridge models and a dynamic factor model.
dc.format.extent 22
dc.language.iso ENG
dc.language.iso FIN
dc.subject ennusteet
dc.subject mallit
dc.subject BVAR
dc.subject Suomi
dc.subject bkt
dc.title Nowcasting the Finnish economy with a large Bayesian vector autoregressive model
dc.type Paper
dc.identifier.urn URN:NBN:fi:bof-201712181708
dc.subject.jel C52
dc.subject.jel C53
dc.subject.jel E32
dc.subject.jel E37 BoF Economics Review
dc.series.year 2017
dc.series.number 6/2017
dc.series.sortingnumber 0006 18.12.2017
dc.subject.yso taloudelliset mallit
dc.subject.yso taloudelliset ennusteet
dc.subject.yso bruttokansantuote
bof-internal.includedInCRIS 1
dc.type.okm D4

Files in this item

Total number of downloads: Loading...

Files Size Format View
BoFER_6_2017.pdf 888.4Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record