Browsing by Subject "ADSORPTION"

Sort by: Order: Results:

Now showing items 21-31 of 31
  • Lönnrot, Satu; Paajanen, Johanna; Suorsa, Valtteri; Zhang, Wenzhong; Ritala, Mikko; Koivula, Risto (2020)
    Submicron ZrO(2)fibers with three different Sb-doping levels (5, 10 and 15 cation%) were produced with an electroblowing synthesis for removal of(99)TcO(4)(-). The Sb-doped ZrO(2)fibers showed high selectivity toward(99)TcO(4)(-), which was not interfered by ClO4-, NO(3)(-)or Cl(-)ions and showed no selectivity toward ReO4-. The optimal pH range for the(99)Tc separation was 2-6 but the Sb-doped fibers maintained very high uptake level throughout the studied pH range of 1-10. According to the uptake experiments, Sb(III) is assumed to reduce Tc(VII) to Tc(IV) that is then adsorbed by the zirconia surface.
  • Lan, Hangzhen; Zhang, Wenzhong; Smått, Jan-Henrik; Koivula, Risto; Hartonen, Kari; Riekkola, Marja-Liisa (2019)
    Mesoporous silica-coated solid phase microextraction (SPME) Arrow systems were developed for capturing of low-molecular-weight aliphatic amines (LMWAAs) from complicated sample matrices. Specifically, silicas of type MCM-41, SBA-15 and KIT-6 were chosen as substrates to afford size-exclusion selectivity. They possess ordered multidimensional pore-channel structures and mesopore sizes between 3.8 and 8.2 nm. Their surface acidity was enhanced by grafting them with a layer of titanium hydrogenphosphate (-TP). This enhanced the chemical selectivity for basic LMWAAs. The siliceous coatings increased the extraction of ethylamine, diethylamine (DEA) and triethylamine (TEA) by factors of 18.6–102.5, 4.8–10.8 and 2.6–4.0, respectively, when compared to the commercial SPME Arrow with polydimethylsiloxane/divinylbenzene coating. Among them, the MCM-41 and MCM-41-TP coated SPME Arrows demonstrated exceptional selectivity towards LMWAAs that were quantified by gas chromatography-mass spectrometry (GC-MS). The total peak area ratios of LMWAAs/ten competing compounds were 25.4 and 36.3, respectively. The extraction equilibrium was reached within 20–30 min. The MCM-41 and MCM-41-TP derived SPME Arrows gave very similar results (18.4 ± 2.1–376 ± 12 ng g−1 to DEA and TEA) when applied to urban mushroom samples. SPME Arrow with MCM-41 coatings followed by GC-MS was applied also to the analysis of atmospheric air and urine samples resulting in high selectivity due to the size and mesoporous structure of the functionalized silica, and its chemical interactions with the LMWAAs.
  • Li, Xiaodong; Puhakka, Eini; Ikonen, Jussi; Söderlund, Mervi; Lindberg, Antero; Holgersson, Stellan; Martin, Andrew; Siitari-Kauppi, Marja (2018)
    The sorption behavior of Se(IV) on Grimsel granodiorite and its main minerals, plagioclase, K-feldspar, quartz and biotite, were investigated in Grimsel groundwater simulant in a large Se concentration range (from 1.66 x 10(-10) M to 1 x 10(-3) M). Experimental results show that the distribution coefficients (K-d values) of Se (IV) on the rock and mineral samples increased with the decreasing of Se(IV) concentration. The sorption of Se (IV) on biotite has the largest K-d value in low concentration area (<10(-7) M) stabilizing between 0.0595 +/- 0.0097 m(3)/Kg and 0.0713 +/- 0.0164 m(3)/Kg. The Kd value of Se(IV) on K-feldspar was the second largest (0.0154 +/- 0.0019 m(3)/Kg in 10(-9) M) while the sorption on quartz was negligible. The sorption behavior of Se(IV) on Grimsel granodiorite followed the same trend as plagioclase, the most abundant mineral in Grimsel granodiorite, with K-d values of 0.0078 +/- 0.0010 m(3)/Kg for Grimsel granodiorite and 0.0085 +/- 0.0016 m(3)/Kg for plagioclase, when Se(IV) concentration was 10(-9) M. HPLC-ICP-MS results show that all the Se(IV) remained in + IV oxidation state after more than 1 month experimental time and speciation modelling proved that the main species in Grimsel groundwater simulant were HSeO3- and SeO32-. Multi-site surface complexation modelling was performed by PHREEQC with the help of molecular modelling techniques which was performed with the CASTEP code implemented into Materials Studio. The modelling results predict that there are three kinds of sorption sites on the surface of biotite mineral, with sorption site densities differing in three magnitudes.
  • Puhakka, Eini; Li, Xiaodong; Ikonen, Jussi; Siitari-Kauppi, Marja (2019)
    Sorption of Se(IV) and Se(VI) species onto Mg-rich biotite (phlogopite) and calcite surfaces was investigated using molecular modelling techniques. A CASTEP code implemented into Materials Studio was used to calculate the periodic systems, site densities and site types on the phlogopite and calcite surfaces. According to the results, the Se oxyanions attach to both edge and basal surfaces of phlogopite via an oxygen atom. However, calculated sorption energies indicate that surface complexation reactions via hydrogen bonding happen on the edge surfaces of phlogopite while cation exchange reactions happen on the basal surfaces of phlogopite. These reactions occur on the so-called weak sites according to the PHREEQC modelling. On the calcite surface, only cation exchange reactions are possible, and only for neutral Se species which do not occur in low saline groundwater conditions with pH 8–10. Biotite which is an abundant mineral in crystalline rock works fairly well as a sorbent but calcite which often exists on fracture surfaces of bedrock does not act as a sorbent for Se species.
  • Qi, Baowen; Feng, Haike; Qiu, Xingping; Beaune, Gregory; Guo, Xiaoqiang; Brochard-Wyart, Francoise; Winnik, Francoise M. (2019)
    The sulfobetaine (SB) moiety, which comprises a quaternary ammonium group linked to a negatively charged sulfonate ester, is known to impart nonfouling properties to interfaces coated with polysulfobetaines or grafted with SB-polymeric brushes. Increasingly, evidence emerges that the SB group is, overall, a better antifouling group than the phosphorylcholine (PC) moiety extensively used in the past. We report here the synthesis of a series of SB-modified chitosans (CH-SB) carrying between 20 and 40 mol % SB per monosaccharide unit. Chitosan (CH) itself is a naturally derived copolymer of glucosamine and N-acetyl-glucosamine linked with a beta-1,4 bond. Analysis by quartz crystal microbalance with dissipation (QCM-D) indicates that CH-SB films (thickness similar to 20 nm) resist adsorption of bovine serum albumin (BSA) with increasing efficiency as the SB content of the polymer augments (surface coverage similar to 15 mu g cm(-2) for films of CH with 40 mol % SB). The cell adhesivity of CH-SB films coated on glass was assessed by determining the spreading dynamics of CT26 cell aggregates. When placed on chitosan films, known to be cell-adhesive, the CT26 cell aggregates spread by forming a cell monolayer around them. The spreading of CT26 cell aggregates on zwitterion-modified chitosans films is thwarted remarkably. In the cases of CH-SB30 and CH-SB40 films, only a few isolated cells escape from the aggregates. The extent of aggregate spreading, quantified based on the theory of liquid wetting, provides a simple in vitro assay of the nonfouling properties of substrates toward specific cell lines. This assay can be adopted to test and compare the fouling characteristics of substrates very different from the chemical viewpoint.
  • Grosjean, Sylvain; Hodapp, Patrick; Hassan, Zahid; Woell, Christof; Nieger, Martin; Bräse, Stefan (2019)
    Modular synthesis of structurally diverse functionalized azobiphenyls and azoterphenyls for the realization of optically switchable materials has been described. The corresponding synthesis of azobiphenyls and azoterphenyls by stepwise Mills/Suzuki-Miyaura cross-coupling reaction, proceeds with high yields and provides facile access to a library of functionalized building blocks. The synthetic methods described herein allow combining several distinct functional groups within a single unit, each intended for a specific task, such as 1) the -N=N- azobenzene core as a photoswitchable moiety, 2) aryls and heteroaryls, functionalized with carboxylic acids or pyridine at its peripheries, as coordinating moieties and 3) varying substitution, size and length of the backbone for adaptability to specific applications. These specifically designed azobiphenyls and azoterphenyls provide modular bricks, potentially useful for the assembly of a variety of polymers, molecular containers and coordination networks, offering a high degree of molecular functionality. Once integrated into materials, the azobenzene system, as a side group on the organic linker backbone, can be exploited for remotely controlling the structural, mechanical or physical properties, thus being applicable for a broad variety of 'smart' applications.
  • Carney, Randy P.; Hazari, Sidhartha; Rojalin, Tatu; Knudson, Alisha; Gao, Tingjuan; Tang, Yuchen; Liu, Ruiwu; Viitala, Tapani; Yliperttula, Marjo; Lam, Kit S. (2017)
    All cells expel a variety of nanosized extracellular vesicles (EVs), including exosomes, with composition reflecting the cells' biological state. Cancer pathology is dramatically mediated by EV trafficking via key proteins, lipids, metabolites, and microRNAs. Recent proteomics evidence suggests that tumor-associated exosomes exhibit distinct expression of certain membrane proteins, rendering those proteins as attractive targets for diagnostic or therapeutic application, yet it is not currently feasible to distinguish circulating EVs in complex biofluids according to their tissue of origin or state of disease. Here, peptide binding to tumor-associated EVs via overexpressed membrane protein is demonstrated. It is found that SKOV-3 ovarian tumor cells and their released EVs express alpha(3)beta(1) integrin, which can be targeted by the in-house cyclic nonapeptide, LXY30. After measuring bulk SKOV-3 EV association with LXY30 by flow cytometry, Raman spectral analysis of laser-trapped single exosomes with LXY30-dialkyne conjugate enables the differentiation of cancer-associated exosomes from noncancer exosomes. Furthermore, the foundation for a highly specific detection platform for tumor-EVs in solution with biosensor surface-immobilized LXY30 is introduced. LXY30 not only exhibits high specificity and affinity to alpha(3)beta(1) integrin-expressing EVs, but also reduces EV uptake into SKOV-3 parent cells, demonstrating the possibility for therapeutic application.
  • Heikkinen, Niko; Keskivali, Laura; Eskelinen, Patrik; Reinikainen, Matti; Putkonen, Matti (2021)
    Atomic layer deposition (ALD) was used to prepare a thin alumina layer on Fischer-Tropsch catalysts. Co-Pt-Si/gamma-Al2O3 catalyst was overcoated with 15-40 cycles of Al2O3 deposited from trimethylaluminum (TMA) and water vapor, followed by thermal annealing. The resulting tailored Fischer-Tropsch catalyst with 35 cycle ALD overcoating had increased activity compared to unmodified catalyst. The increase in activity was achieved without significant loss of selectivity towards heavier hydrocarbons. Altered catalyst properties were assumed to result from cobalt particle stabilization by ALD alumina overcoating and nanoscale porosity of the overcoating. In addition to optimal thickness of the overcoat, thermal annealing was an essential part of preparing ALD overcoated catalyst.
  • Juvonen, Henna; Antikainen, Osmo; Lemmens, Marijke; Ehlers, Henrik; Juppo, Anne (2021)
    Changing relative humidity levels challenge the manufacturing of chewable xylitol-sorbitol based tablets. The aim of the study is to investigate how the formulation of chewable xylitol-sorbitol tablets affects the properties of the powder blends and the tablets in an environment of different relative humidity levels. In all, 30 batches containing different ratios of sorbitol, xylitol and magnesium stearate were prepared at three different relative humidity levels. Powder blends were made into tablets using an instrumented eccentric tableting machine. To demonstrate the effect of variables on powder blend and tablet properties, multiple linear regression analysis was performed. It was found that xylitol-sorbitol powder blends and tablets benefitted from the large amount of magnesium stearate, and the high lubricant level negatively affected the quality of the tablets only at high relative humidity. In the presence of high environmental humidity, the amount of sorbitol in the powder mixture must be limited in order to prevent sticking whereas at low relative humidity, higher content of sorbitol is needed to decrease the friability of tablets. Results indicate that alternating relative humidity levels truly challenge the production of xylitol-sorbitol based tablets and if the humidity is not controllable, there is a need for additional filler-binders.
  • Savijärvi, Hannu; McConnochie, Timothy H.; Harri, Ari-Matti; Paton, Mark (2019)
    The Mars Science Laboratory (MSL) Rover Environmental Monitoring Station humidity instrument (REMS-H) onboard the Curiosity rover is measuring daily minimum water vapor mixing ratios (min vmr), the respective pre-dawn air temperatures (T), and vmr at 2200LT. These are displayed for nearly three martian years (sols 10-2003) and compared with adsorptive column model simulations. The model was initialized with MSL-observed local column water contents, optical depths and surface pressures from sols 230-1291, assuming the same annual cycle outside this period. The first two and a half MSL years present rather similar annual cycles in the REMS-H data, whereas from about sol 1800 onward the min vmr and T suddenly increase and the 2200LT vmr values get closer to the min vmr, indicating less depletion of water vapor during the nights. Model experiments with typical regolith (ground thermal inertia of 300 SI units and porosity of 30% for adsorption) match the observed min vmr and T relatively well for the first 2.5 years. However, from about sol 1800 onward, when Curiosity started to climb onto Mt. Sharp, simulations with higher thermal inertia of about 400 SI units and very low porosity of similar to 0.3%, suggesting exposed bedrock, provide a far better fit. Some other periods of bedrock- and dune-dominated ground can be detected from the REMS-H vmr and air-T data along the Curiosity traverse.
  • Holopainen, Jani; Heikkilä, Mikko J.; Salmi, Leo D.; Ainassaari, Kaisu; Ritala, Mikko (2018)
    Electroblowing was used to prepare ZnO and aluminum doped zinc oxide (AZO, 1–3 cation-% of Al) fibers. The as-blown fibers were calcined at 500 °C to obtain the target material. The average fiber diameters ranged from 240 ± 60 nm for ZnO fibers to 330 ± 80 nm for AZO with 3% Al. Smaller crystallite size was measured with the x-ray diffraction for the Al doped fibers. Electroblowing was found out be an effective method to increase the fiber productivity over electrospinning and other methods reported in literature to prepare AZO fibers as a high production rate of 0.32 g/h was achieved. The ZnO and AZO fibers could be converted to zeolitic imidazole framework-8 [ZIF-8, zinc(2-methylimidazolate)2] by a solvent free thermal treatment in an autoclave under 2-methylimidazole (HmIM) vapor at 150 and 200 °C while preserving the fibrous structure. The conversion process to ZIF-8 occurred faster at higher temperatures and on fibers with smaller crystallite size. Depending on the conversion treatment time either ZnO/ZIF-8 and AZO/ZIF-8 core/shell fibers or ZIF-8 fibers could be obtained. At best the prepared ZIF-8 fibers had a very high BET specific surface area of 1340 m2/g.