Browsing by Subject "AIR-POLLUTION"

Sort by: Order: Results:

Now showing items 21-39 of 39
  • Haahtela, Tari; von Hertzen, Leena; Anto, Josep M.; Bai, Chunxue; Baigenzhin, Abay; Bateman, Eric D.; Behera, Digambar; Bennoor, Kazi; Camargos, Paulo; Chavannes, Niels; de Sousa, Jaime Correia; Cruz, Alvaro; Teixeira, Maria Do Ceu; Erhola, Marina; Furman, Eeva; Gemicioglu, Bilun; Diaz, Sandra Gonzalez; Hellings, Peter W.; Jousilahti, Pekka; Khaltaev, Nikolai; Kolek, Vitezslav; Kuna, Piotr; La Grutta, Stefania; Le Thi Tuyet Lan,; Maglakelidze, Tamaz; Masjedi, Mohamed R.; Mihaltan, Florin; Mohammad, Yousser; Nunes, Elizabete; Nyberg, Arvid; Quel, Jorge; Rosado-Pinto, Jose; Sagara, Hironori; Samolinski, Boleslaw; Schraufnagel, Dean; Sooronbaev, Talant; Eldin, Mohamed Tag; To, Teresa; Valiulis, Arunas; Varghese, Cherian; Vasankari, Tuula; Viegi, Giovanni; Winders, Tonya; Yanez, Anahi; Yorgancioglu, Arzu; Yusuf, Osman; Bousquet, Jean; Billo, Nils E. (2019)
    Background: The Nature Step to Respiratory Health was the overarching theme of the 12th General Meeting of the Global Alliance against Chronic Respiratory Diseases (GARD) in Helsinki, August 2018. New approaches are needed to improve respiratory health and reduce premature mortality of chronic diseases by 30% till 2030 (UN Sustainable Development Goals, SDGs). Planetary health is defined as the health of human civilization and the state of the natural systems on which it depends. Planetary health and human health are interconnected, and both need to be considered by individuals and governments while addressing several SDGs. Results: The concept of the Nature Step has evolved from innovative research indicating, how changed lifestyle in urban surroundings reduces contact with biodiverse environments, impoverishes microbiota, affects immune regulation and increases risk of NCDs. The Nature Step calls for strengthening connections to nature. Physical activity in natural environments should be promoted, use of fresh vegetables, fruits and water increased, and consumption of sugary drinks, tobacco and alcohol restricted. Nature relatedness should be part of everyday life and especially emphasized in the care of children and the elderly. Taking "nature" to modern cities in a controlled way is possible but a challenge for urban planning, nature conservation, housing, traffic arrangements, energy production, and importantly for supplying and distributing food. Actions against the well-known respiratory risk factors, air pollution and smoking, should be taken simultaneously. Conclusions: In Finland and elsewhere in Europe, successful programmes have been implemented to reduce the burden of respiratory disorders and other NCDs. Unhealthy behaviour can be changed by well-coordinated actions involving all stakeholders. The growing public health concern caused by NCDs in urban surroundings cannot be solved by health care alone; a multidisciplinary approach is mandatory.
  • Pietikäinen, J. -P.; Kupiainen, K.; Klimont, Z.; Makkonen, R.; Korhonen, H.; Karinkanta, R.; Hyvärinen, A. -P.; Karvosenoja, N.; Laaksonen, A.; Lihavainen, H.; Kerminen, V. -M. (2015)
    The global aerosol-climate model ECHAM-HAMMOZ was used to investigate changes in the aerosol burden and aerosol radiative effects in the coming decades. Four different emissions scenarios were applied for 2030 (two of them applied also for 2020) and the results were compared against the reference year 2005. Two of the scenarios are based on current legislation reductions: one shows the maximum potential of reductions that can be achieved by technical measures, and the other is targeted to short-lived climate forcers (SLCFs). We have analyzed the results in terms of global means and additionally focused on eight subregions. Based on our results, aerosol burdens show an overall decreasing trend as they basically follow the changes in primary and precursor emissions. However, in some locations, such as India, the burdens could increase significantly. The declining emissions have an impact on the clear-sky direct aerosol effect (DRE), i.e. the cooling effect. The DRE could decrease globally 0.06-0.4 W m(-2) by 2030 with some regional increases, for example, over India (up to 0.84 W m(-2)). The global changes in the DRE depend on the scenario and are smallest in the targeted SLCF simulation. The aerosol indirect radiative effect could decline 0.25-0.82 W m(-2) by 2030. This decrease takes place mostly over the oceans, whereas the DRE changes are greatest over the continents. Our results show that targeted emission reduction measures can be a much better choice for the climate than overall high reductions globally. Our simulations also suggest that more than half of the near-future forcing change is due to the radiative effects associated with aerosol-cloud interactions.
  • Tuovinen, Saana; Kontkanen, Jenni; Jiang, Jingkun; Kulmala, Markku (2020)
    New Particle Formation (NPF) is regularly observed to occur in heavily polluted Chinese megacities. However, in these NPF events, the survival probability of small clusters into larger aerosol particles is higher than theoretically predicted. One explanation for this could be that the loss rate of clusters due to scavenging by pre-existing particles, which is described by condensation sink, is lower than expected. In this study, we describe the loss of clusters due to condensation sink by using heterogeneous nucleation theory, and investigate if ineffectiveness of heterogeneous nucleation can result in a significantly lowered effective condensation sink. We find that in principle it is possible that due to properties of the system there is no heterogeneous nucleation, and this can significantly influence the magnitude of effective condensation sink and thus increase the survival probability of clusters.
  • Ramos-Remus, Cesar; Barajas-Ochoa, Aldo; Ramirez-Gomez, Andrea; Castillo-Ortiz, Jose D.; Brambila-Barba, Victor; Adebajo, Adewale O.; Espinoza, Luis R.; Aceves-Avila, Francisco J.; Sanchez-Gonzalez, Jorge M.; Boudersa, Nadia; Slimani, Samy; Ladjouze-Rezig, Aicha; Diaz, Monica P.; Kirmayr, Karin I.; Asnal, Cecilia A.; Catoggio, Luis J.; Citera, Gustavo; Casado, Gustavo C.; Alvarez, Analia P.; Pisoni, Cecilia N.; Benavente, Emilio; Lopez-Cabanillas, Adriana; Baez, Roberto M.; Pons-Estel, Bernardo A.; Sacnun, Monica P.; Cavallasca, Javier A.; Paniego, Raul H.; Proudman, Susanna M.; Thomas, Ranjeny; Major, Gabor; Mathers, David M.; Schrieber, Leslie; Islam, Nazrul; Haq, Syed A.; Dessein, Patrick H.; von Muhlen, Carlos A.; Bianchi, Washington A.; Castelar-Pinheiro, Geraldo da R.; Feldman-Pollak, Daniel; Cossermelli, Waldenise; Bonfiglioli, Karina R.; Giorgi, Rina D.; Zabsonre-Tiendrebeogo, Wendlassida J.; Olaru, Lilia; Karsh, Jacob; Castro-Esparza, Irene H.; Fuentealba, Carlos; Aguilera, Sergio; Burgos, Paula I.; Leirisalo-Repo, Marjatta; GEO-RA Grp (2017)
    The age of onset of rheumatoid arthritis (RA) is an important outcome predictor. Northern countries report an age of RA onset of around 50 years, but apparently, variability exists across different geographical regions. The objective of the present study is to assess whether the age of onset of RA varies across latitudes worldwide. In a proof-of-concept cross-sectional worldwide survey, rheumatologists from preselected cities interviewed 20 consecutive RA patients regarding the date of RA onset (RAO, when the patient first noted a swollen joint). Other studied variables included location of each city, rheumatologist settings, latitudes (10A degrees increments, south to north), longitudes (three regions), intracountry consistency, and countries' Inequality-adjusted Human Development Index (IHDI). Data from 2481 patients (82% females) were obtained from 126 rheumatologists in 77 cities of 41 countries. Worldwide mean age of RAO was 44 +/- 14 years (95% CI 44-45). In 28% of patients, RA began before age 36 years and before age 46 years in 50% of patients. RAO was 8 years earlier around the Tropic of Cancer when compared with northern latitudes (p <0.001, 95% CI 3.5-13). Multivariate analysis showed that females, western cities, and latitudes around the Tropic of Cancer are associated with younger age of RAO (R (2) 0.045, p <0.001). A positive correlation was found between the age of RAO and IHDI (r = 0.7, p <0.01, R (2) 0.5). RA often begins at an early age and onset varies across latitudes worldwide. We postulate that countries' developmental status and their geographical and geomagnetic location influence the age of RAO.
  • Kohl, Lukas; Meng, Meng; de Vera, Joan; Bergquist, Bridget; Cooke, Colin A.; Hustings, Sarah; Jackson, Brian; Chow, Chung-Wai; Chan, Arthur W. H. (2019)
    Wildfires are increasing in prevalence and intensity and emit large quantities of persistent organic and inorganic pollutants. Recent fires have caused elevated concerns that residual pollutants in indoor environments pose a long‐term health hazard to residents, however, to date no studies have investigated how long fire‐derived pollutants are retained in indoor environments. We quantified polycyclic aromatic hydrocarbons (PAHs) and toxic trace elements in ground ashes from the 2016 wildland‐urban interface fires in Fort McMurray (Alberta, Canada) and in house dust from 64 homes. We document residual arsenic pollution from local building fires, but found no evidence that forest fire ash remained in households 14 months after the fire. Overall, house dust pollutant concentrations were equal or lower than in other locations unaffected by wildfires. Given the current and future concerns over wildfire impacts, this study provides importance evidence on the degree of their long‐term effects on the residential environment.
  • Hong, Juan; Xu, Hanbing; Tan, Haobo; Yin, Changqing; Hao, Liqing; Li, Fei; Cai, Mingfu; Deng, Xuejiao; Wang, Nan; Su, Hang; Cheng, Yafang; Wang, Lin; Petäjä, Tuukka; Kerminen, Veli-Matti (2018)
    Simultaneous measurements of aerosol hygroscopicity and particle-phase chemical composition were performed at a suburban site over the Pearl River Delta region in the late summer of 2016 using a self-assembled hygroscopic tandem differential mobility analyzer (HTDMA) and an Aerodyne quadruple aerosol chemical speciation monitor (ACSM), respectively. The hygroscopic growth factor (HGF) of the Aitken mode (30 nm, 60 nm) and accumulation mode (100 nm, 145 nm) particles were obtained under 90% relative humidity (RH). An external mixture was observed for particles of every size during this study, with a dominant mode of more-hygroscopic (MH) particles, as aged aerosols dominated due to the anthropogenic influence. The HGF of lesshygroscopic (LH) mode particles increased, while their number fractions decreased during the daytime due to a reduced degree of external mixing that probably resulted from the condensation of gaseous species. These LH mode particles in the early morning or late afternoon could be possibly dominated by carbonaceous material emitted from local automobile exhaust during rush hours. During polluted days with air masses flowing mainly from the coastal areas, the chemical composition of aerosols had a clear diurnal variation and a strong correlation with the mean HGF. Closure analysis was carried out between the HTDMA-measured HGF and the ACSM-derived hygroscopicity using various approximations for the hygroscopic growth factor of organic compounds (HGF(org)). Considering the assumptions regarding the differences in the mass fraction of each component between PM1 and 145 nm particles, the hygroscopicity-composition closure was achieved using an HGF(org) of 1.26 for the organic material in the 145 nm particles and a simple linear relationship between the HGForg and the oxidation level inferred from the O : C ratio of the organic material was suggested. Compared with the results from other environments, HGF(org) obtained from our measurements appeared to be less sensitive to the variation of its oxidation level, which is, however, similar to the observations in the urban atmosphere of other megacities in China. This finding suggests that the anthropogenic precursors or the photooxidation mechanisms might differ significantly between the suburban and urban atmosphere in China and those in other background environments. This may lead to different characteristics of the oxidation products in secondary organic aerosols (SOA) and therefore to a different relationship between the HGF(org) and its O : C ratio.
  • Wang, Jiaping; Virkkula, Aki; Gao, Yuan; Lee, Shuncheng; Shen, Yicheng; Chi, Xuguang; Nie, Wei; Liu, Qiang; Xu, Zheng; Huang, Xin; Wang, Tao; Cui, Long; Ding, Aijun (2017)
    Temporal variations in aerosol optical properties were investigated at a coastal station in Hong Kong based on the field observation from February 2012 to February 2015. At 550 nm, the average light-scattering (151 +/- 100Mm(-1) / and absorption coefficients (8.3 +/- 6.1Mm(-1) / were lower than most of other rural sites in eastern China, while the single-scattering albedo (SSA = 0.93 +/- 0.05) was relatively higher compared with other rural sites in the Pearl River Delta (PRD) region. Correlation analysis confirmed that the darkest aerosols were smaller in particle size and showed strong scattering wavelength dependencies, indicating possible sources from fresh emissions close to the measurement site. Particles with D-p of 200-800 nm were less in number, yet contributed the most to the light-scattering coefficients among submicron particles. In summer, both Delta BC / Delta CO and SO2 / BC peaked, indicating the impact of nearby combustion sources on this site. Multi-year backward Lagrangian particle dispersion modeling (LPDM) and potential source contribution (PSC) analysis revealed that these particles were mainly from the air masses that moved southward over Shenzhen and urban Hong Kong and the polluted marine air containing ship exhausts. These fresh emission sources led to low SSA during summer months. For winter and autumn months, contrarily, Delta BC / Delta CO and SO2 / BC were relatively low, showing that the site was more under influence of well-mixed air masses from long-range transport including from South China, East China coastal regions, and aged aerosol transported over the Pacific Ocean and Taiwan, causing stronger abilities of light extinction and larger variability of aerosol optical properties. Our results showed that ship emissions in the vicinity of Hong Kong could have visible impact on the light-scattering and absorption abilities as well as SSA at Hok Tsui.
  • GBD Lower Resp Infect; Troeger, Christopher E.; Khalil, Ibrahim A.; Meretoja, Tuomo J. (2020)
    Background Despite large reductions in under-5 lower respiratory infection (LRI) mortality in many locations, the pace of progress for LRIs has generally lagged behind that of other childhood infectious diseases. To better inform programmes and policies focused on preventing and treating LRIs, we assessed the contributions and patterns of risk factor attribution, intervention coverage, and sociodemographic development in 195 countries and territories by drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017) LRI estimates. Methods We used four strategies to model LRI burden: the mortality due to LRIs was modelled using vital registration data, demographic surveillance data, and verbal autopsy data in a predictive ensemble modelling tool; the incidence of LRIs was modelled using population representative surveys, health-care utilisation data, and scientific literature in a compartmental meta-regression tool; the attribution of risk factors for LRI mortality was modelled in a counterfactual framework; and trends in LRI mortality were analysed applying changes in exposure to risk factors over time. In GBD, infectious disease mortality, including that due to LRI, is among HIV-negative individuals. We categorised locations based on their burden in 1990 to make comparisons in the changing burden between 1990 and 2017 and evaluate the relative percent change in mortality rate, incidence, and risk factor exposure to explain differences in the health loss associated with LRIs among children younger than 5 years. Findings In 2017, LRIs caused 808 920 deaths (95% uncertainty interval 747 286-873 591) in children younger than 5 years. Since 1990, there has been a substantial decrease in the number of deaths (from 2 337 538 to 808 920 deaths; 65.4% decrease, 61.5-68.5) and in mortality rate (from 362.7 deaths [3304-392.0] per 100 000 children to 118.9 deaths [109.8-128.3] per 100 000 children; 67.2% decrease, 63.5-70.1). LRI incidence dedined globally (32.4% decrease, 27.2-37.5). The percent change in under-5 mortality rate and incidence has varied across locations. Among the risk factors assessed in this study, those responsible for the greatest decrease in under-5 LRI mortality between 1990 and 2017 were increased coverage of vaccination against Haemophilus influenza type b (11.4% decrease, 0.0-24.5), increased pneumococcal vaccine coverage (6.3% decrease, 6.1-6.3), and reductions in household air pollution (8.4%, 6 8-9.2). Interpretation Our findings show that there have been substantial but uneven declines in LRI mortality among countries between 1990 and 2017. Although improvements in indicators of sociodemographic development could explain some of these trends, changes in exposure to modifiable risk factors are related to the rates of decline in LRI mortality. No single intervention would universally accelerate reductions in health loss associated with LRIs in all settings, but emphasising the most dominant risk factors, particularly in countries with high case fatality, can contribute to the reduction of preventable deaths. Copyright (C) 2019 The Author(s). Published by Elsevier Ltd.
  • Hussein, Tareq; Saleh, Shatha Suleiman Ali; dos Santos, Vanessa N.; Boor, Brandon E.; Koivisto, Antti J.; Londahl, Jakob (2019)
    We calculated the regional deposited dose of inhaled particulate matter based on number/mass concentrations in Amman, Jordan. The dose rate was the highest during exercising but was generally lower for females compared to males. The fine particles dose rate was 10(10)-10(11) particles/h (10(1)-10(2) mu g/h). The PM10 dose rate was 49-439 mu g/h for males and 36-381 mu g/h for females. While resting, the PM10 deposited in the head airways was 67-77% and 8-12% in the tracheobronchial region. When exercising, the head airways received 37-44% of the PM10, whereas the tracheobronchial region received 31-35%. About 8% (exercise) and 14-16% (rest) of the PM2.5 was received in the head airways, whereas the alveolar received 74-76% (exercise) and 54-62% (rest). Extending the results for common exposure scenarios in the city revealed alarming results for service workers and police officers; they might receive 50 mu g/h PM2.5 and 220 mu g/h PM10 while doing their duty on main roads adjacent to traffic. This is especially critical for a pregnant police officer. Outdoor athletic activities (e.g., jogging along main roads) are associated with high PM2.5 and PM10 dose rates (100 mu g/h and -425 mu g/h, respectively).
  • Li, Sixuan; Chen, Lulu; Huang, Gang; Lin, Jintai; Yan, Yingying; Ni, Ruijing; Huo, Yanfeng; Wang, Jingxu; Liu, Mengyao; Weng, Hongjian; Wang, Yonghong; Wang, Zifa (2020)
    Despite much effort made in studying human health associated with fine particulate matter (PM2.5), our knowledge about PM2.5 and human health from a long-term perspective is still limited by inadequately long data. Here, we presented a novel method to retrieve surface PM2.5 mass concentrations using surface visibility measurements and GEOS-Chem model simulations. First, we used visibility measurements and the ratio of PM2.5 and aerosol extinction coefficient (AEC) in GEOS-Chem to calculate visibility-inferred PM2.5 at individual stations (SC-PM2.5). Then we merged SC-PM2.5 with the spatial pattern of GEOS-Chem modeled PM2.5 to obtain a gridded PM2.5 dataset (GC-PM2.5). We validated the GC-PM2.5 data over the North China Plain on a 0.3125° longitude x 0.25° latitude grid in January, April, July and October 2014, using ground-based PM2.5 measurements. The spatial patterns of temporally averaged PM2.5 mass concentrations are consistent between GC-PM2.5 and measured data with a correlation coefficient of 0.79 and a linear regression slope of 0.8. The spatial average GC-PM2.5 data reproduce the day-to-day variation of observed PM2.5 concentrations with a correlation coefficient of 0.96 and a slope of 1.0. The mean bias is less than 12 μg/m3 (<14%). Future research will validate the proposed method using multi-year data, for purpose of studying long-term PM2.5 variations and their health impacts since 1980.
  • Paciencia, Ines; Rufo, Joao Cavaleiro; Silva, Diana; Martins, Carla; Mendes, Francisca; Rama, Tiago; Rodolfo, Ana; Madureira, Joana; Delgado, Luis; Fernandes, Eduardo de Oliveira; Padrao, Patricia; Moreira, Pedro; Severo, Milton; Pina, Maria Fatima; Teixeira, Joao Paulo; Barros, Henrique; Ruokolainen, Lasse; Haahtela, Tari; Moreira, Andre (2019)
    Children are in contact with local environments, which may affect respiratory symptoms and allergic sensitization. We aimed to assess the effect of the environment and the walkability surrounding schools on lung function, airway inflammation and autonomic nervous system activity. Data on 701 children from 20 primary schools were analysed. Lung function, airway inflammation and pH from exhaled breath condensate were measured. Pupillometry was performed to evaluate autonomic activity. Land use composition and walkability index were quantified within a 500 m buffer zone around schools. The proportion of effects explained by the school environment was measured by mixed-effect models. We found that green school areas tended to be associated with higher lung volumes (FVC, FEV1 and FEF25-75%) compared with built areas. FVC was significantly lower in-built than in green areas. After adjustment, the school environment explained 23%, 34% and 99.9% of the school effect on FVC, FEV1, and FEF25-75%, respectively. The walkability of school neighbourhoods was negatively associated with both pupil constriction amplitude and redilatation time, explaining -16% to 18% of parasympathetic and 8% to 29% of sympathetic activity. Our findings suggest that the environment surrounding schools has an effect on the lung function of its students. This effect may be partially mediated by the autonomic nervous system.
  • Timonen, Hilkka; Aurela, Minna; Carbone, Samara; Saarnio, Karri; Frey, Anna; Saarikoski, Sanna; Teinilä, Kimmo; Kulmala, Markku; Hillamo, Risto (2014)
    Concentration and composition of the fine particulate matter (PM) was measured using various online methods for 13 months in an urban, background area in Helsinki, Finland. Seasonal differences were found for ions and carbonaceous compounds. Biomass burning was found to increase inorganic ion and elemental carbon (EC) concentrations in winter, whereas organic carbon (OC) contribution was highest during summer due to secondary aerosol formation. Diurnal cycles, with maxima between 06:00 and 09:00, were recorded for EC and nitrate due to traffic emissions. In addition, the concentrations measured with the online and offline PM sampling devices were compared using regression analysis. In general, a good agreement (r(2) = 0.60-0.95) was found. During the year-long measurements, on average 65% of PM2.5 was identified by submicron chemical analyses (ions, OC, EC). As compared with filter measurements, the high resolution measurements provided important data on short pollution plumes and diurnal changes.
  • Olascoaga Gracia, Beñat; Juurola, Eija; Pinho, Paulo; Lukes, Petr; Halonen, Liisa; Nikinmaa, Eero; Back, Jaana; Porcar-Castell, Albert (2014)
  • Kurppa, Mona; Roldin, Pontus; Strömberg, Jani Juhani; Balling, Anna; Karttunen, Sasu; Kuuluvainen, Heino; Niemi, Jarkko V.; Pirjola, Liisa; Rönkkö, Topi; Timonen, Hilkka; Hellsten, Antti; Järvi, Leena (2020)
    High-resolution modelling is needed to understand urban air quality and pollutant dispersion in detail. Recently, the PALM model system 6.0, which is based on large-eddy simulation (LES), was extended with the detailed Sectional Aerosol module for Large Scale Applications (SALSA) v2.0 to enable studying the complex interactions between the turbulent flow field and aerosol dynamic processes. This study represents an extensive evaluation of the modelling system against the horizontal and vertical distributions of aerosol particles measured using a mobile laboratory and a drone in an urban neighbourhood in Helsinki, Finland. Specific emphasis is on the model sensitivity of aerosol particle concentrations, size distributions and chemical compositions to boundary conditions of meteorological variables and aerosol background concentrations. The meteorological boundary conditions are taken from both a numerical weather prediction model and observations, which occasionally differ strongly. Yet, the model shows good agreement with measurements (fractional bias <0.67, normalised mean squared error <6, fraction of the data within a factor of 2 > 0.3, normalised mean bias factor <0.25 and normalised mean absolute error factor <0.35) with respect to both horizontal and vertical distribution of aerosol particles, their size distribution and chemical composition. The horizontal distribution is most sensitive to the wind speed and atmospheric stratification, and vertical distribution to the wind direction. The aerosol number size distribution is mainly governed by the flow field along the main street with high traffic rates and in its surroundings by the background concentrations. The results emphasise the importance of correct meteorological and aerosol background boundary conditions, in addition to accurate emission estimates and detailed model physics, in quantitative high-resolution air pollution modelling and future urban LES studies.
  • Venter, Andrew D.; van Zyl, Pieter G.; Beukes, Johan P.; Swartz, Jan-Stefan; Josipovic, Miroslav; Vakkari, Ville; Laakso, Lauri; Kulmala, Markku (2018)
    Aerosols consist of organic and inorganic species, and the composition and concentration of these species depends on their sources, chemical transformation and sinks. In this study an assessment of major inorganic ions determined in three aerosol particle size ranges collected for 1year at Welgegund in South Africa was conducted. SO42- and ammonium (NH4+) dominated the PM1 size fraction, while SO42- and nitrate (NO3) dominated the PM1-2.5 and PM2.5-10 size fractions. SO42- had the highest contribution in the two smaller size fractions, while NO3- had the highest contribution in the PM2.5-10 size fraction. SO42- and NO3- levels were attributed to the impacts of aged air masses passing over major anthropogenic source regions. Comparison of inorganic ion concentrations to levels thereof within a source region influencing Welgegund, indicated higher levels of most species within the source region. However, the comparative ratio of SO42- was significantly lower due to SO42- being formed distant from SO2 emissions and submicron SO42- having longer atmospheric residencies. The PM at Welgegund was determined to be acidic, mainly due to high concentrations of SO42-. PM1 and PM1-2.5 fractions revealed a seasonal pattern, with higher inorganic ion concentrations measured from May to September. Higher concentrations were attributed to decreased wet removal, more pronounced inversion layers trapping pollutants, and increases in household combustion and wild fires during winter. Back trajectory analysis also revealed higher concentrations of inorganic ionic species corresponding to air mass movements over anthropogenic source regions.
  • LifeCycle Project Group; Pinot de Moira, Angela; Haakma, Sido; Strandberg-Larsen, Katrine; Eriksson, Johan G.; Mikkola, Tuija M.; Nybo Andersen, Anne-Marie (2021)
    The Horizon2020 LifeCycle Project is a cross-cohort collaboration which brings together data from multiple birth cohorts from across Europe and Australia to facilitate studies on the influence of early-life exposures on later health outcomes. A major product of this collaboration has been the establishment of a FAIR (findable, accessible, interoperable and reusable) data resource known as the EU Child Cohort Network. Here we focus on the EU Child Cohort Network’s core variables. These are a set of basic variables, derivable by the majority of participating cohorts and frequently used as covariates or exposures in lifecourse research. First, we describe the process by which the list of core variables was established. Second, we explain the protocol according to which these variables were harmonised in order to make them interoperable. Third, we describe the catalogue developed to ensure that the network’s data are findable and reusable. Finally, we describe the core data, including the proportion of variables harmonised by each cohort and the number of children for whom harmonised core data are available. EU Child Cohort Network data will be analysed using a federated analysis platform, removing the need to physically transfer data and thus making the data more accessible to researchers. The network will add value to participating cohorts by increasing statistical power and exposure heterogeneity, as well as facilitating cross-cohort comparisons, cross-validation and replication. Our aim is to motivate other cohorts to join the network and encourage the use of the EU Child Cohort Network by the wider research community.
  • Yu, Miao; Tang, Guiqian; Yang, Yang; Li, Qingchun; Wang, Yonghong; Miao, Shiguang; Zhang, Yizhou; Wang, Yuesi (2020)
    Aerosols cause cooling at the surface by reducing shortwave radiation, while urbanization causes warming by altering the surface albedo and releasing anthropogenic heat. The combined effect of the two phenomena needs to be studied in depth. The effects of urbanization and aerosols were investigated during a typical winter haze event. The event, which occurred in Beijing from 15 to 22 December 2016, was studied via the Rapid-Refresh Multiscale Analysis and Prediction System - Short Term (RMAPS-ST) model. The mechanisms of the impacts of aerosols and urbanization were analyzed and quantified. Aerosols reduced urban-related warming during the daytime by 20 % (from 30 % to 50 %) as concentrations of fine particulate matter (PM2.5) increased from 200 to 400 mu g m(-3). Conversely, aerosols also enhanced urban-related warming at dawn, and the increment was approximately 28 %, which contributed to haze formation. Urbanization reduced the aerosol-related cooling effect by approximately 54 % during the haze event, and the strength of the impact changed little with increasing aerosol content. The impact of aerosols on urban-related warming was more significant than the impact of urbanization on aerosol-related cooling. Aerosols decreased the urban impact on the mixing-layer height by 148 % and on the sensible heat flux by 156 %. Furthermore, aerosols decreased the latent heat flux; however, this reduction decreased by 48.8 % due to urbanization. The impact of urbanization on the transport of pollutants was more important than that of aerosols. The interaction between urbanization and aerosols may enhance the accumulation of pollution and weigh against diffusion.
  • MASK Study Grp; Bedard, A.; Basagana, X.; Anto, J. M.; Haahtela, T.; Toppila-Salmi, S.; Valovirta, E.; Bousquet, J. (2020)
    Background The analysis of mobile health (mHealth) data has generated innovative insights into improving allergic rhinitis control, but additive information is needed. A cross-sectional real-world observational study was undertaken in 17 European countries during and outside the estimated pollen season. The aim was to collect novel information including the phenotypic characteristics of the users. Methods The Allergy Diary-MASK-air-mobile phone app, freely available via Google Play and App, was used to collect the data of daily visual analogue scales (VASs) for overall allergic symptoms and medication use. Fluticasone Furoate (FF), Mometasone Furoate (MF), Azelastine Fluticasone Proprionate combination (MPAzeFlu) and eight oral H1-antihistamines were studied. Phenotypic characteristics were recorded at entry. The ARIA severity score was derived from entry data. This was an a priori planned analysis. Results 9037 users filled in 70,286 days of VAS in 2016, 2017 and 2018. The ARIA severity score was lower outside than during the pollen season. Severity was similar for all treatment groups during the pollen season, and lower in the MPAzeFlu group outside the pollen season. Days with MPAzeFlu had lower VAS levels and a higher frequency of monotherapy than the other treatments during the season. Outside the season, days with MPAzeFlu also had a higher frequency of monotherapy. The number of reported days was significantly higher with MPAzeFlu during and outside the season than with MF, FF or oral H1-antihistamines. Conclusions This study shows that the overall efficacy of treatments is similar during and outside the pollen season and indicates that medications are similarly effective during the year.
  • Hussein, Tareq; Dada, Lubna; Hakala, Simo; Petaja, Tuukka; Kulmala, Markku (2019)
    Characterization of urban particle number size distribution (PNSD) has been rarely reported/performed in the Middle East. Therefore, we aimed at characterizing the PNSD (0.01-10 mu m) in Amman as an example for an urban Middle Eastern environment. The daily mean submicron particle number concentration (PNSub) was 6.5 x 10(3)-7.7 x 10(4) cm(-3) and the monthly mean coarse mode particle number concentration (PNCoarse) was 0.9-3.8 cm(-3) and both had distinguished seasonal variation. The PNSub also had a clear diurnal and weekly cycle with higher concentrations on workdays (Sunday-Thursday; over 3.3 x 10(4) cm(-3)) than on weekends (below 2.7 x 10(4) cm(-3)). The PNSub constitute of 93% ultrafine fraction (diameter <100 nm). The mean particle number size distributions was characterized with four well-separated submicron modes (D-pg,D-I, N-i): nucleation (22 nm, 9.4 x 10(3) cm(-3)), Aitken (62 nm, 3.9 x 10(3) cm(-3)), accumulation (225 nm, 158 cm(-3)), and coarse (2.23 mu m, 1.2 cm(-3)) in addition to a mode with small geometric mean diameter (GMD) that represented the early stage of new particle formation (NPF) events. The wind speed and temperature had major impacts on the concentrations. The PNCoarse had a U-shape with respect to wind speed and PNSub decreased with wind speed. The effect of temperature and relative humidity was complex and require further investigations.