Browsing by Subject "BIOMARKER"

Sort by: Order: Results:

Now showing items 21-24 of 24
  • Ottka, Claudia; Weber, Corinna; Mueller, Elisabeth; Lohi, Hannes (2021)
    Introduction Phenobarbital is a commonly used anticonvulsant for the treatment of canine epileptic seizures. In addition to its central nervous system (CNS) depressing effects, long-term phenobarbital administration affects liver function. However, broader metabolic consequences of phenobarbital treatment are poorly characterized. Objectives To identify metabolic changes in the sera of phenobarbital-treated dogs and to investigate the relationship between serum phenobarbital concentration and metabolite levels. Methods Leftovers of clinical samples were used: 58 cases with phenobarbital concentrations ranging from 7.8 mu g/mL to 50.8 mu g/mL, and 25 controls. The study design was cross-sectional. The samples were analyzed by a canine-specific H-1 NMR metabolomics platform. Differences between the case and control groups were evaluated by logistic regression. The linear relationship between metabolite and phenobarbital concentrations was evaluated using linear regression. Results Increasing concentrations of glycoprotein acetyls, LDL particle size, palmitic acid, and saturated fatty acids, and decreasing concentrations of albumin, glutamine, histidine, LDL particle concentration, multiple HDL measures, and polyunsaturated fatty acids increased the odds of the sample belonging to the phenobarbital-treated group, having a p-value <.0033, and area under the curve (AUC) > .7. Albumin and glycoprotein acetyls had the best discriminative ability between the groups (AUC: .94). No linear associations between phenobarbital and metabolite concentrations were observed. Conclusion The identified metabolites are known to associate with, for example, liver and CNS function, inflammatory processes and drug binding. The lack of a linear association to phenobarbital concentration suggests that other factors than the blood phenobarbital concentration contribute to the magnitude of metabolic changes.
  • Rosin, Gustaf; Hannelius, Ulf; Lindstrom, Linda; Hall, Per; Bergh, Jonas; Hartman, Johan; Kere, Juha (2012)
  • Passov, Arie; Petäjä, Liisa; Pihlajoki, Marjut; Salminen, Ulla-Stina; Suojaranta, Raili; Vento, Antti; Andersson, Sture; Pettilä, Ville; Schramko, Alexey; Pesonen, Eero (2019)
    Background: Acute kidney injury (AKI) is common after heart surgery. Neutrophil gelatinase-associated lipocalin (NGAL) is produced in injured kidney. NGAL has been used as an early plasma biomarker for AKI in patients undergoing heart surgery. Neutrophils contain all isoforms (25-kDa, 45-kDa and 145-kDa) but the kidney produces almost exclusively the 25-kDa isoform of NGAL. We investigated first, whether there is association between NGAL and neutrophil activation, and second whether activated neutrophils are a significant source of circulating NGAL in plasma in patients undergoing cardiac surgery. Methods: Two separate patient cohorts were studied: 1) the "kinetic cohort" (n = 29) and 2) the "FINNAKI cohort" (n = 306). As NGAL is strictly co-localized with lactoferrin in neutrophils, NGAL and lactoferrin were measured with enzyme-linked immunosorbent assay in all patients. In sixty-one patients of the "FINNAKI cohort" Western blot was used to separate NGAL isoforms according to their molecular size. Mann-Whitney U, Kruskal-Wallis H, Pearson's and Spearman's tests were used as appropriate. Results: There was strong intraoperative association between NGAL and lactoferrin at all four time-points in the "kinetic cohort". In the "FINNAKI cohort", NGAL and lactoferrin concentrations correlated preoperatively (R = 0.59, p <0.001) and at admission to the intensive care unit (R = 0.69, p <0.001). At admission to intensive care unit, concentrations of NGAL and lactoferrin were higher in AKI than in non-AKI patients (NGAL: p <0.001; lactoferrin: p <0.029). In Western blot analyses, neutrophil specific 45-kDa isoform (median 41% [IQR 33.3-53.1]) and mostly neutrophil derived 145-kDa isoform (median 53.5% [IQR 44.0-64.9%]) together represented over 90% of total NGAL in plasma. Potentially kidney derived NGAL isoform (25-kDa) accounted for only 0.9% (IQR 0.3 - 3.0%) of total NGAL in plasma. There were no statistically significant differences in the distribution of NGAL isomers between AKI and non-AKI patients. Conclusions: Plasma NGAL during cardiac surgery is associated with neutrophil activation. Based on molecular size, the majority of circulating NGAL is derived from neutrophils. Neutrophil activation is a confounding factor when interpreting increased plasma NGAL in cardiac surgery.
  • Riihilä, P.; Viiklepp, K.; Nissinen, L.; Farshchian, M.; Kallajoki, M.; Kivisaari, A.; Meri, S.; Peltonen, J.; Peltonen, S.; Kähäri, V-M. (2020)
    Summary Background Incidence of epidermal keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is increasing worldwide. Objectives To study the role of complement classical pathway components C1q, C1r and C1s in the progression of cSCC. Methods The mRNA levels of C1Q subunits, C1R and C1S in cSCC cell lines, normal human epidermal keratinocytes (NHEKs), cSCC tumors in vivo and normal skin were analyzed with quantitative RT-PCR. The production of C1r and C1s was determined with Western blotting. The expression of C1r and C1s in tissue samples in vivo was analyzed with immunohistochemistry and further investigated in human cSCC xenografts by knocking down C1r and C1s. Results Significantly elevated C1R and C1S mRNA levels and production of C1r and C1s were detected in cSCC cells, compared to normal human epidermal keratinocytes. The mRNA levels of C1R and C1S were markedly elevated in cSCC tumors in vivo compared to normal skin. Abundant expression of C1r and C1s by tumor cells was detected in invasive sporadic cSCCs and recessive dystrophic epidermolysis bullosa-associated cSCCs, whereas the expression of C1r and C1s was lower in cSCC in situ, actinic keratosis, and normal skin. Knockdown of C1r and C1s expression in cSCC cells inhibited activation of ERK1/2 and Akt, promoted apoptosis of cSCC cells and significantly suppressed growth and vascularization of human cSCC xenograft tumors in vivo. Conclusions These results provide evidence for the role of tumor cell-derived C1r and C1s in the progression of cSCC and identify them as biomarkers and putative therapeutic targets in cSCC. This article is protected by copyright. All rights reserved.