Browsing by Subject "INSULIN-RESISTANCE"

Sort by: Order: Results:

Now showing items 21-40 of 141
  • Lovric, Alen; Graner, Marit; Bjornson, Elias; Arif, Muhammad; Benfeitas, Rui; Nyman, Kristofer; Ståhlman, Marcus; Pentikäinen, Markku O.; Lundbom, Jesper; Hakkarainen, Antti; Siren, Reijo; Nieminen, Markku S.; Lundbom, Nina; Lauerma, Kirsi; Taskinen, Marja-Riitta; Mardinoglu, Adil; Boren, Jan (2018)
    Non-alcoholic fatty liver disease (NAFLD) is recognized as a liver manifestation of metabolic syndrome, accompanied with excessive fat accumulation in the liver and other vital organs. Ectopic fat accumulation was previously associated with negative effects at the systemic and local level in the human body. Thus, we aimed to identify and assess the predictive capability of novel potential metabolic biomarkers for ectopic fat depots in non-diabetic men with NAFLD, using the inflammation-associated proteome, lipidome and metabolome. Myocardial and hepatic triglycerides were measured with magnetic spectroscopy while function of left ventricle, pericardial and epicardial fat, subcutaneous and visceral adipose tissue were measured with magnetic resonance imaging. Measured ectopic fat depots were profiled and predicted using a Random Forest algorithm, and by estimating the Area Under the Receiver Operating Characteristic curves. We have identified distinct metabolic signatures of fat depots in the liver (TAG50:1, glutamate, diSM18:0 and CE20:3), pericardium (N-palmitoyl-sphinganine, HGF, diSM18:0, glutamate, and TNFSF14), epicardium (sphingomyelin, CE20:3, PC38:3 and TNFSF14), and myocardium (CE20:3, LAPTGF-beta 1, glutamate and glucose). Our analyses highlighted non-invasive biomarkers that accurately predict ectopic fat depots, and reflect their distinct metabolic signatures in subjects with NAFLD.
  • Kumpula, Linda S.; Makela, Sanna M.; Mäkinen, Ville-Petteri; Karjalainen, Anna; Liinamaa, Johanna M.; Kaski, Kimmo; Savolainen, Markku J.; Hannuksela, Minna L.; Ala-Korpela, Mika (2010)
  • Kananen, Laura; Surakka, Ida; Pirkola, Sami; Suvisaari, Jaana; Lönnqvist, Jouko; Peltonen, Leena; Ripatti, Samuli; Hovatta, Iiris (2010)
  • Korpela, K.; Zijlmans, M. A. C.; Kuitunen, M.; Kukkonen, K.; Savilahti, E.; Salonen, Anne; de Weerth, C.; de Vos, W. M. (2017)
    Background: Children with high body mass index (BMI) at preschool age are at risk of developing obesity. Early identification of factors that increase the risk of excessive weight gain could help direct preventive actions. The intestinal microbiota and antibiotic use have been identified as potential modulators of early metabolic programming and weight development. To test if the early microbiota composition is associated with later BMI, and if antibiotic use modifies this association, we analysed the faecal microbiota composition at 3 months and the BMI at 5-6 years in two cohorts of healthy children born vaginally at term in the Netherlands (N = 87) and Finland (N = 75). We obtained lifetime antibiotic use records and measured weight and height of all children. Results: The relative abundance of streptococci was positively and the relative abundance of bifidobacteria negatively associated with the BMI outcome. The association was especially strong among children with a history of antibiotic use. Bacteroides relative abundance was associated with BMI only in the children with minimal lifetime antibiotic exposure. Conclusions: The intestinal microbiota of infants are predictive of later BMI and may serve as an early indicator of obesity risk. Bifidobacteria and streptococci, which are indicators of microbiota maturation in infants, are likely candidates for metabolic programming of infants, and their influence on BMI appears to depend on later a\ntibiotic use.
  • Suomela, Emmi; Oikonen, Mervi; Pitkanen, Niina; Ahola-Olli, Ari; Virtanen, Johanna; Parkkola, Riitta; Jokinen, Eero; Laitinen, Tomi; Hutri-Kahonen, Nina; Kahonen, Mika; Lehtimaki, Terho; Taittonen, Leena; Tossavainen, Paivi; Jula, Antti; Loom, Britt-Marie; Mikkila, Vera; Telama, Risto; Viikari, Jorma S. A.; Juonala, Markus; Raitakari, Olli T. (2016)
    Background & Aims: Fatty liver is a potentially preventable cause of serious liver diseases. This longitudinal study aimed to identify childhood risk factors of fatty liver in adulthood in a population-based group of Finnish adults. Methods: Study cohort included 2,042 individuals from the Cardiovascular Risk in Young Finns Study aged 3-18 years at baseline in 1980. During the latest follow-up in 2011, the liver was scanned by ultrasound. In addition to physical and environmental factors related to fatty liver, we examined whether the genetic risk posed by a single nucleotide polymorphism in the patatin-like phospholipase domain-containing protein 3 gene (PNPLA3) (rs738409) strengthens prediction of adult fatty liver. Results: Independent childhood predictors of adult fatty liver were small for gestational age, (odds ratio = 1.71, 95% confidence interval = 1.07-2.72), variant in PNPLA3 (1.63, 1.29-2.07 per one risk allele), variant in the transmembrane 6 superfamily 2 gene (TM6SF2) (1.57, 1.08-2.30), BMI (1.30, 1.07-1.59 per standard deviation) and insulin (1.25, 1.05-1.49 per standard deviation). Childhood blood pressure, physical activity, C-reactive protein, smoking, serum lipid levels or parental lifestyle factors did not predict fatty liver. Risk assessment based on childhood age, sex, BMI, insulin levels, birth weight, TM6SF2 and PNPLA3 was superior in predicting fatty liver compared with the approach using only age, sex, BMI and insulin levels (C statistics, 0.725 vs. 0.749; p = 0.002). Conclusions: Childhood risk factors on the development of fatty liver were small for gestational age, high insulin and high BMI. Prediction of adult fatty liver was enhanced by taking into account genetic variants in PNPLA3 and TM6SF2 genes. Lay summary: The increase in pediatric obesity emphasizes the importance of identification of children and adolescents at high risk of fatty liver in adulthood. We used data from the longitudinal Cardiovascular Risk in Young Finns Study to examine the associations of childhood (3-18 years) risk variables with fatty liver assessed in adulthood at the age of 34-49 years. The findings suggest that a multifactorial approach with both lifestyle and genetic factors included would improve early identification of children with a high risk of adult fatty liver. (C) 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
  • Welsh, Paul; Rankin, Naomi; Li, Qiang; Mark, Patrick B.; Würtz, Peter; Ala-Korpela, Mika; Marre, Michel; Poulter, Neil; Hamet, Pavel; Chalmers, John; Woodward, Mark; Sattar, Naveed (2018)
    Aims/hypotheses We aimed to quantify the association of individual circulating amino acids with macrovascular disease, microvascular disease and all-cause mortality in individuals with type 2 diabetes. Methods We performed a case-cohort study (N = 3587), including 655 macrovascular events, 342 microvascular events (new or worsening nephropathy or retinopathy) and 632 all-cause mortality events during follow-up, in a secondary analysis of the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) study. For this study, phenylalanine, isoleucine, glutamine, leucine, alanine, tyrosine, histidine and valine were measured in stored plasma samples by proton NMR metabolomics. Hazard ratios were modelled per SD increase in each amino acid. Results In models investigating associations and potential mechanisms, after adjusting for age, sex and randomised treatment, phenylalanine was positively, and histidine inversely, associated with macrovascular disease risk. These associations were attenuated to the null on further adjustment for extended classical risk factors (including eGFR and urinary albumin/creatinine ratio). After adjustment for extended classical risk factors, higher tyrosine and alanine levels were associated with decreased risk of microvascular disease (HR 0.78; 95% CI 0.67, 0.91 and HR 0.86; 95% CI 0.76, 0.98, respectively). Higher leucine (HR 0.79; 95% CI 0.69, 0.90), histidine (HR 0.89; 95% CI 0.81, 0.99) and valine (HR 0.79; 95% CI 0.70, 0.88) levels were associated with lower risk of mortality. Investigating the predictive ability of amino acids, addition of all amino acids to a risk score modestly improved classification of participants for macrovascular (continuous net reclassification index [NRI] +35.5%, p <0.001) and microvascular events (continuous NRI +14.4%, p = 0.012). Conclusions/interpretation We report distinct associations between circulating amino acids and risk of different major complications of diabetes. Low tyrosine appears to be a marker of microvascular risk in individuals with type 2 diabetes independently of fundamental markers of kidney function.
  • Ahola-Olli, Ari V.; Mustelin, Linda; Kalimeri, Maria; Kettunen, Johannes; Jokelainen, Jari; Auvinen, Juha; Puukka, Katri; Havulinna, Aki S.; Lehtimäki, Terho; Kähönen, Mika; Juonala, Markus; Keinänen-Kiukaanniemi, Sirkka; Salomaa, Veikko; Perola, Markus; Järvelin, Marjo-Riitta; Ala-Korpela, Mika; Raitakari, Olli; Wurtz, Peter (2019)
    Aims/hypothesis Metabolomics technologies have identified numerous blood biomarkers for type 2 diabetes risk in case-control studies of middle-aged and older individuals. We aimed to validate existing and identify novel metabolic biomarkers predictive of future diabetes in large cohorts of young adults. Methods NMR metabolomics was used to quantify 229 circulating metabolic measures in 11,896 individuals from four Finnish observational cohorts (baseline age 24-45 years). Associations between baseline metabolites and risk of developing diabetes during 8-15 years of follow-up (392 incident cases) were adjusted for sex, age, BMI and fasting glucose. Prospective metabolite associations were also tested with fasting glucose, 2 h glucose and HOMA-IR at follow-up. Results Out of 229 metabolic measures, 113 were associated with incident type 2 diabetes in meta-analysis of the four cohorts (ORs per 1 SD: 0.59-1.50; p Conclusions/interpretation Metabolic biomarkers across multiple molecular pathways are already predictive of the long-term risk of diabetes in young adults. Comprehensive metabolic profiling may help to target preventive interventions for young asymptomatic individuals at increased risk.
  • Hasan, Amal; Kochumon, Shihab; Al-Ozairi, Ebaa; Tuomilehto, Jaakko; Al-Mulla, Fahd; Ahmad, Rasheed (2020)
    Purpose: The suppression of tumorigenicity 2 (ST2) has two main splice variants including a membrane bound (ST2) form, which activates the myeloid differentiation primary response 88 (MyD88)/nuclear factor-kappa B (NF-kappa B) signaling pathway, and a secreted soluble form (sST2), which acts as a decoy receptor for ST2 ligand, interleukin (IL)-33. The IL-33/ST2 axis is protective against obesity, insulin resistance, and type 2 diabetes (T2D). In humans, adipose tissue IL-33 displays distinct correlation profiles with glycated hemoglobin, ST2, and other immunometabolic mediators, depending on the glycemic health of the individuals. We determined whether adipose tissue ST2 displays distinct correlation profiles with immunometabolic mediators and whether ST2 and/or IL-33 are correlated with intracellular signaling molecules. Patients and Methods: A total of 91 adults with normal glycemia, prediabetes, and T2D were included. After measuring their anthropometric and biochemical parameters, subcutaneous adipose tissues were isolated and mRNA expression of biomarkers was measured. Results: In individuals with normal glycemia, adipose tissue ST2 was directly correlated with chemokine (C-C motif) ligand (CCL)-2, CCL5, IL-12, fibrinogen-like protein 2 (FGL2) and interferon regulatory factor (IRF)-4, but inversely correlated with cytochrome C oxidase subunit 7A1. IL-33 and ST2 were directly correlated with tumor necrosis factor receptorassociated factor 6 (TRAF6), NF-kappa B, and nuclear factor of activated T-cells 5 (NFAT5). In individuals with prediabetes, ST2 was inversely correlated with IL-5, whereas IL-33 but not ST2 was directly correlated with MyD88 and NF-kappa B. In individuals with T2D, ST2 was directly correlated with CCL2, IL-1 beta, and IRF5. IL-33 and ST2 were directly correlated with MyD88, TRAF6, and NF-kappa B. Conclusion: Adipose tissue ST2 and IL-33 show different correlation profiles with various immunometabolic biomarkers depending on the metabolic state of the individuals. Therefore, targeting the IL-33/ST2 axis might form the basis for novel therapies to combat metabolic disorders.
  • Laine, M. K.; Kujala, R.; Eriksson, J. G.; Kautiainen, H.; Sarna, S.; Kujala, U. M. (2017)
    Aims Regular physical activity plays a major role, in both prevention and treatment of type 2 diabetes. Less is known whether vigorous physical activity during young adulthood is associated with costs of diabetes medication in later life. The aim of this study is to evaluate this question. Methods The study population consisted of 1314 former elite-class athletes and 860 matched controls. The former athletes were divided into three groups based on their active career sport: endurance, mixed and power sports. Information on purchases of diabetes medication between 1995 and 2009 was obtained from the drug purchase register of the Finnish Social Insurance Institution. Results The total cost of diabetes medication per person year was significantly lower among the former endurance (mean 81 theta [95% CI 33-151 theta ]) and mixed group athletes (mean 272 theta [95% CI 181- 388 theta]) compared with the controls (mean 376 theta [95% CI 284- 485 theta]), (p <0.001 and p = 0.045, respectively). Of the former endurance athletes, 0.4% used insulin, while 5.2% of the controls used insulin (p = 0.018). Conclusions A career as former endurance, sprint, jumper or team game athlete seems to reduce the costs of diabetes medication in later life.
  • Kovanen, Leena; Donner, Kati; Kaunisto, Mari; Partonen, Timo (2016)
    Cryptochromes are key components of the circadian clocks that generate and maintain seasonal variations. The aim of our study was to analyze the associations of CRY1 and CRY2 genetic variants with the problematicity of seasonal variations, and whether the problematicity of seasonal variations changed during the follow-up of 11 years. Altogether 21 CRY1 and 16 CRY2 single-nucleotide polymorphisms (SNPs) were genotyped and analyzed in 5910 individuals from a Finnish nationwide population-based sample who had filled in the self-report on the seasonal variations in mood and behavior in the year 2000. In the year 2011, 3356 of these individuals filled in the same self-report on the seasonal variations in mood and behavior. Regression models were used to test whether any of the SNPs associated with the problematicity of seasonal variations or with a change in the problematicity from 2000 to 2011. In the longitudinal analysis, CRY2 SNP rs61884508 was protective from worsening of problematicity of seasonal variations. In the cross-sectional analysis, CRY2 SNP rs72902437 showed evidence of association with problematicity of seasonal variations, as did SNP rs1554338 (in the MAPK8IP1 and downstream of CRY2). (C) 2016 Elsevier Ireland Ltd. All rights reserved.
  • Lundbom, Jesper; Bierwagen, Alessandra; Bodis, Kalman; Szendroedi, Julia; Kaprio, Jaakko; Rissanen, Aila; Lundbom, Nina; Roden, Michael; Pietilainen, Kirsi H. (2016)
    Background. Obese twins have lower saturated and higher long-chain polyunsaturated fatty acids (FA) in subcutaneous adipose tissue (SAT) compared to their lean monozygotic (MZ) co-twin. Whether this holds for metabolically distinct deep (DSAT) and superficial (SSAT) depots is unknown. Here we use non-invasive magnetic resonance spectroscopy (MRS) to measure the FA unsaturation in body mass index (BMI) discordant MZ twins in DSAT and SSAT and their relationship to ectopic fat content and body fat distribution. The main finding is further confirmed in an independent cohort using standardized measurement times. Methods. MRS and magnetic resonance imaging were used to measure DSAT and SSAT unsaturation and their relationship to intramyocellular lipids (IMCL), hepatocellular lipids (HCL) and the amount of subcutaneous (SAT) and visceral adipose tissue (VAT) in 16 pairs of healthy monozygotic twins (MZ) discordant for BMI. A second independent cohort of 12 healthy volunteers was used to measure DSAT unsaturation and IMCL with standardized measurement time. One volunteer also underwent repeated random measurements of DSAT unsaturation and IMCL. Results. In accordance with biopsy studies SSAT unsaturation was higher in the heavier twins (15.2 +/- 1.0% vs. 14.4 +/- 1.5%, P = 0.024) and associated with SAT volume (R = 0.672, P = 0.001). DSAT unsaturation did not differ between twins (11.4 +/- 0.8 vs. 11.0 +/- 1.0, P = 0.267) and associated inversely with IMCL content (R = -0.462, P = 0.001). The inverse association between DSAT unsaturation and IMCL was also present in the participants of the second cohort (R = -0.641, P = 0.025) and for the repeated sampling at random of one person (R = -0.765, P = 0.027). Conclusions. DSAT and SSAT FA unsaturation shows distinct associations with obesity and IMCL in MZ twins, reflecting compartment-specific metabolic activities. The FA unsaturation in the DSAT depot associates inversely with IMCL content, which raises the possibility of cross talk between the DSAT depot and the rapid turnover IMCL depot. (C) 2016 Elsevier Inc. All rights reserved.
  • Heiskanen, Jarkko S.; Ruohonen, Saku; Rovio, Suvi P.; Kytö, Ville; Kähönen, Mika; Lehtimäki, Terho; Viikari, Jorma S. A.; Juonala, Markus; Laitinen, Tomi; Tossavainen, Päivi; Jokinen, Eero; Hutri-Kähönen, Nina; Raitakari, Olli T. (2019)
    Decreased left ventricular (LV) diastolic function is associated with increased all-cause mortality and risk for a heart failure. The determinants of LV diastolic function have been mainly studied in elderly populations; however, the origin of LV heart failure may relate to the lifestyle factors acquired during the life course. Therefore, we examined biochemical, physiological, and lifestyle determinants of LV diastolic function in 34-49-year-old participants of the Cardiovascular Risk in Young Finns Study (Young Finns Study). In 2011, clinical examination and echocardiography were performed for 1928 participants (880 men and 1048 women; aged 34-49 years). LV diastolic function was primarily defined using E/e-ratio (population mean 4.8, range 2.1-9.0). In a multivariate model, systolic blood pressure (P <0.005), female sex (P <0.005), age (P <0.005), waist circumference (P = 0.024), smoking (P = 0.028), serum alanine aminotransferase (P = 0.032) were directly associated with E/e-ratio, while an inverse association was found for height (P <0.005). Additionally, a higher E/e-ratio was found in participants with concentric hypertrophy compared to normal cardiac geometry (P <0.005). Other indicators of the LV diastolic function including E/A-ratio and left atrial volume index showed similarly strong associations with systolic blood pressure and age. In conclusion, we identified systolic blood pressure, waist circumference and smoking as modifiable determinants of the LV diastolic function in the 34-49-year-old participants of the Young Finns Study.
  • Yki-Jarvinen, Hannele (2016)
    Non-alcoholic fatty liver disease (NAFLD) increases risk of mortality from liver and cardiovascular disease (CVD) and is the major cause of hepatocellular carcinoma (HCC), which may develop without cirrhosis. NAFLD predicts type 2 diabetes, even independently of obesity. Globally, the prevalence of NAFLD averages 25% and is as common as the metabolic syndrome. The majority of patients with type 2 diabetes have NAFLD. The challenge for the diabetologist is to identify patients at risk of advanced liver disease and HCC. At a minimum, liver function tests (LFTs), despite being neither specific nor sensitive, should be performed in all patients with the metabolic syndrome or type 2 diabetes. Increases in LFTs, for which the updated reference values are lower (serum ALT approximate to 30 U/l in men and approximate to 20 U/l in women) than those hitherto used in many laboratories, should prompt assessment of fibrosis biomarkers and referral of individuals at risk to a NAFLD/hepatology clinic. Preferably, evaluation of NAFLD should be based on measurement of steatosis biomarkers or ultrasound if easily available. A large number of individuals carry the patatin-like phospholipase domain containing 3 (PNPLA3) I148M variant (30-50%) or the transmembrane 6 superfamily member 2 (TM6SF2) E167K variant (11-15%). These variants increase the risk of advanced liver disease and HCC but not of diabetes or CVD. Genotyping of selected patients for these variants is recommended. Many patients have 'double trouble', i.e. carry both a genetic risk factor and have the metabolic syndrome. Excess use of alcohol could be a cause of 'triple trouble', but such patients would be classified as having alcoholic fatty liver disease. This review summarises a presentation given at the symposium 'The liver in focus' at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Kenneth Cusi, DOI: 10.1007/s00125-016-3952-1, and by John Jones, DOI: 10.1007/s00125-016-3940-5) and a commentary by the Session Chair, Michael Roden (DOI: 10.1007/s00125-016-3911-x).
  • Qin, Nanbing; Bayat, Ali-Reza; Trevisi, Erminio; Minuti, Andrea; Kairenius, Piia; Viitala, Sirja; Mutikainen, Mervi; Leskinen, Heidi; Elo, Kari Tapani; Kokkonen, Tuomo Juhani; Vilkki, Johanna (2018)
    To investigate the metabolic (.11, !I:2.es in the adipose tissue (AT) of dairy cows under milk fat depression (MFD), 30 cows were randomly allocated to a control diet, a conjugated linoleic acid (CLA)-supplemented diet, or a high-starch diet supplemented with a mixture of sunflower and fish oil (2:1; as HSO diet) from 1 to 112 d in milk. Performance of animals, milk yield, milk composition, energy balance, and blood metabolites were measured during lactation. Quantitative PCR analyses were conducted on the AT samples collected at wk 3 and 15 of lactation. The CLA and HSO diets considerably depressed milk fat yield and milk fat content at both wk 3 and 15 in the absence of significant changes in milk protein and lactose contents. In addition, the HSO diet lowered milk yield at wk 15 and decreased dry matter intake of cows from wk 3 to 15. Compared with the control, both CLA and HSO groups showed reduced body weight loss, improved energy balance, and decreased plasma concentrations of nonesterified fatty acids and beta-hydroxybutyrate at early lactation. The gene expression analyses reflected suppressed lipolysis in AT of the CLA and HSO groups compared with the control at wk 3, as suggested by the downregulation of hormone-sensitive lipase and fatty acid binding protein 4 and the upregulation of perilipin 2. In addition, the HSO diet promoted lipogenesis in AT at wk 15 through the upregulation of 1-acylglycerol-3-phosphate O-acyltransferase 2, mitochondria' glycerol-3-phosphate acyltransferase, perilipin 2, and peroxisome proliferator-activated receptor gamma. The CLA diet likely regulated insulin sensitivity in AT as it upregulated the transcription of various genes involved in insulin signaling, inflammatory responses, and ceramide metabolism, including protein kinase B2, nuclear factor kappa B1, toll-like receptor 4, caveolin 1, serine palmitoyltransferase long chain base subunit 1, and N-acylsphingosine amidohydrolase 1. In contrast, the HSO diet resulted in little or no change in the pathways relevant to insulin sensitivity. In conclusion, the CLA and HSO diets induced a shift in energy partitioning toward AT instead of mammary gland during lactation through the regulation of different pathways.
  • Leskinen, Tuija; Rinnankoski-Tuikka, Rita; Rintala, Mirva; Seppanen-Laakso, Tuulikki; Pollanen, Eija; Alen, Markku; Sipila, Sarianna; Kaprio, Jaakko; Kovanen, Vuokko; Rahkila, Paavo; Oresic, Matej; Kainulainen, Heikki; Kujala, Urho M. (2010)
    High physical activity/aerobic fitness predicts low morbidity and mortality. Our aim was to identify the most up-regulated gene sets related to long-term physical activity vs. inactivity in skeletal muscle and adipose tissues and to obtain further information about their link with cardio-metabolic risk factors. We studied ten same-sex twin pairs (age range 50-74 years) who had been discordant for leisure-time physical activity for 30 years. The examinations included biopsies from m. vastus lateralis and abdominal subcutaneous adipose tissue. RNA was analyzed with the genome-wide Illumina Human WG-6 v3.0 Expression BeadChip. For pathway analysis we used Gene Set Enrichment Analysis utilizing active vs. inactive co-twin gene expression ratios. Our findings showed that among the physically active members of twin pairs, as compared to their inactive co-twins, gene expression in the muscle tissue samples was chronically up-regulated for the central pathways related to energy metabolism, including oxidative phosphorylation, lipid metabolism and supportive metabolic pathways. Up-regulation of these pathways was associated in particular with aerobic fitness and high HDL cholesterol levels. In fat tissue we found physical activity-associated increases in the expression of polyunsaturated fatty acid metabolism and branched-chain amino acid degradation gene sets both of which associated with decreased 'high-risk' ectopic body fat and plasma glucose levels. Consistent with other findings, plasma lipidomics analysis showed up-regulation of the triacylglycerols containing the polyunsaturated fatty acids. Our findings identified skeletal muscle and fat tissue pathways which are associated with the long-term physical activity and reduced cardio-metabolic disease risk, including increased aerobic fitness. In particular, improved skeletal muscle oxidative energy and lipid metabolism as well as changes in adipocyte function and redistribution of body fat are associated with reduced cardio-metabolic risk.
  • Horikoshi, Momoko; Maegi, Reedik; van de Bunt, Martijn; Surakka, Ida; Sarin, Antti-Pekka; Mahajan, Anubha; Marullo, Letizia; Thorleifsson, Gudmar; Haegg, Sara; Hottenga, Jouke-Jan; Ladenvall, Claes; Ried, Janina S.; Winkler, Thomas W.; Willems, Sara M.; Tsernikova, Natalia; Esko, Tonu; Beekman, Marian; Nelson, Christopher P.; Willenborg, Christina; Wiltshire, Steven; Ferreira, Teresa; Fernandez, Juan; Gaulton, Kyle J.; Steinthorsdottir, Valgerdur; Hamsten, Anders; Magnusson, Patrik K. E.; Willemsen, Gonneke; Milaneschi, Yuri; Robertson, Neil R.; Groves, Christopher J.; Bennett, Amanda J.; Lehtimaeki, Terho; Viikari, Jorma S.; Rung, Johan; Lyssenko, Valeriya; Perola, Markus; Heid, Iris M.; Herder, Christian; Grallert, Harald; Mueller-Nurasyid, Martina; Roden, Michael; Hypponen, Elina; Isaacs, Aaron; van Leeuwen, Elisabeth M.; Karssen, Lennart C.; Mihailov, Evelin; Kaprio, Jaakko; Eriksson, Johan G.; Groop, Leif; Ripatti, Samuli; Engage Consortium (2015)
    Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency >= 0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated.
  • Luukkonen, Panu K.; Dufour, Sylvie; Lyu, Kun; Zhang, Xian-Man; Hakkarainen, Antti; Lehtimäki, Tiina E.; Cline, Gary W.; Petersen, Kitt Falk; Shulman, Gerald I.; Yki-Järvinen, Hannele (2020)
    Weight loss by ketogenic diet (KD) has gained popularity in management of nonalcoholic fatty liver disease (NAFLD). KD rapidly reverses NAFLD and insulin resistance despite increasing circulating nonesterified fatty acids (NEFA), the main substrate for synthesis of intrahepatic triglycerides (IHTG). To explore the underlying mechanism, we quantified hepatic mitochondrial fluxes and their regulators in humans by using positional isotopomer NMR tracer analysis. Ten overweight/obese subjects received stable isotope infusions of: [D-7]glucose, [C-13(4)]beta-hydroxybutyrate and [3-C-13]lactate before and after a 6-d KD. IHTG was determined by proton magnetic resonance spectroscopy (H-1-MRS). The KD diet decreased IHTG by 31% in the face of a 3% decrease in body weight and decreased hepatic insulin resistance (-58%) despite an increase in NEFA concentrations (+35%). These changes were attributed to increased net hydrolysis of IHTG and partitioning of the resulting fatty acids toward keto-genesis (+232%) due to reductions in serum insulin concentrations (-53%) and hepatic citrate synthase flux (-38%), respectively. The former was attributed to decreased hepatic insulin resistance and the latter to increased hepatic mitochondrial redox state (+167%) and decreased plasma leptin (-45%) and triiodothyronine (-21%) concentrations. These data demonstrate heretofore unde-scribed adaptations underlying the reversal of NAFLD by KD: That is, markedly altered hepatic mitochondrial fluxes and redox state to promote ketogenesis rather than synthesis of IHTG.
  • Shiju, Rashmi; Thomas, Daisy; Al Arouj, Monira; Sharma, Prem; Tuomilehto, Jaakko; Bennakhi, Abdullah (2019)
    Aim: This pilot study in Kuwait was aimed to assess the effect of Sudarshan kriya yoga (SKY) on anxiety, depression and total quality of life in people with type 2 diabetes mellitus (T2DM). Methods: 26 T2DM patients aged greater than 30, male and female visiting the outpatient clinic of Dasman Diabetes Institute were enrolled for the study. Pre and post 5 day SKY intervention responses of participants on psychosocial problems were evaluated using four questionnaires (Hamilton anxiety, patient health questionnaire (PHQ-9), Hospital anxiety depression and WHO total quality of life (QOL). Biochemical parameters; such as lipid profile, glycated hemoglobin (HbA1c) were measured at baseline and after 15 weeks of SKY practice. Results: The mean age of the participants was 56.7 (+/- 11.4 SD) years, and mean duration of diabetes 15.0 (+/- 9.3 SD) years. Comparison of responses before and after intervention indicated a significant improvement in the QOL, depression, anxiety and insomnia. But no significant improvement in glycemic control. Conclusion: Results indicate that SKY can be potentially beneficial for treating anxiety, insomnia, and depression associated in people with T2DM and in improving the quality of life in people with T2DM. (C) 2019 Diabetes India. Published by Elsevier Ltd. All rights reserved.
  • Pohjanvirta, Raimo; Karppinen, Ira; Galban-Velazquez, Suylen; Esteban, Javier; Håkansson, Helen; Sankari, Satu; Linden, Jere (2021)
    The physiological functions of the aryl hydrocarbon receptor (AHR) are only beginning to unfold. Studies in wildtype and AHR knockout (AHRKO) mice have recently disclosed that AHR activity is required for obesity and steatohepatitis to develop when mice are fed with a high-fat diet (HFD). In addition, a line of AHRKO mouse has been reported to accumulate retinoids in the liver. Whether these are universal manifestations across species related to AHR activity level is not known yet. Therefore, we here subjected wildtype and AHRKO male rats (on Sprague-Dawley background) to HFD feeding coupled with free access to 10% sucrose solution and water; controls received a standard diet and water. Although the HFD-fed rats consumed more energy throughout the 24-week feeding regimen, they did not get overweight. However, relative weights of the brown and epididymal adipose tissues were elevated in HFDfed rats, while that of the liver was lower in AHRKO than wildtype rats. Moreover, the four groups exhibited diet-or genotype-dependent differences in biochemical variables, some of which suggested marked dissimilarities from AHRKO mice. Expression of pro-and anti-inflammatory genes was induced in livers of HFD-fed AHRKO rats, but histologically they did not differ from others. HFD reduced the hepatic concentrations of retinyl palmitate, 9-cis-4oxo-13,14-dihydroretinoic acid and (suggestively) retinol, whereas AHR status had no effect. Hence, the background strain/line of AHRKO rat is resistant to diet-induced obesity, and AHR does not modulate this or liver retinoid concentrations. Yet, subtle AHR-dependent differences in energy balance-related factors exist despite similar weight development. (c) 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
  • Fan, Yuxin; Li, Weiqin; Liu, Huikun; Wang, Leishen; Zhang, Shuang; Liu, Hongyan; Leng, Junhong; Shen, Yun; Tuomilehto, Jaakko; Yu, Zhijie; Yang, Xilin; Liu, Ming; Hu, Gang (2019)
    Objective: To evaluate the independent or combined effects of gestational diabetes (GDM) and pre-pregnancy and postpartum BMI on the odds of postpartum diabetes and hyperglycemia. Methods: The study samples included 1263 women with prior GDM and 705 women without GDM. Postpartum 1-7 years diabetes was diagnosed by the standard oral glucose tolerance test. Results: The multivariable-adjusted odds ratios among women with prior GDM, compared with those without it, were 7.52 for diabetes and 2.27 for hyperglycemia. The multivariable-adjusted odds ratios at different postpartum BMI levels (= 28 kg/m(2)) were 1.00, 2.80, and 8.08 for diabetes (P-trend <0.001), and 1.00, 2.10, and 4.42 for hyperglycemia (P-trend <0.001), respectively. Women with high body fat (>= 31.9%) or abdominal obesity (>= 85 cm) had a 2.7-6.9-fold higher odds ratio for diabetes or hyperglycemia. Women with both obesity and prior GDM had the highest risk of diabetes or hyperglycemia compared with non-obese women without GDM. Non-obese women with prior GDM had the same risk of diabetes and hyperglycemia as non-GDM women with obesity. When using Cox regression models, the results were very close to those using logistic regression models. Conclusions: Maternal prior GDM and pre-pregnancy or postpartum obesity contribute equally to postpartum diabetes and hyperglycemia risk. (C) 2019 Elsevier B.V. All rights reserved.