Browsing by Subject "INTELLIGENCE"

Sort by: Order: Results:

Now showing items 21-22 of 22
  • Korhonen, Vesa; Mattsson, Markus; Inkinen, Mikko; Toom, Auli (2019)
    In the description of the complex relationship between individual students and their education context, as well as understanding of questions related to progression, retention or dropouts in higher education, student engagement is considered the primary construct. In particular, the significance of the first year of higher education in terms of engagement is decisive. We aim at developing a multidimensional conceptualization of engagement and utilized network analysis. Data were collected as part of the annual Student Barometer survey in Finland during the 2012-2013 academic year, and we gathered a nationally representative sample (n = 2422) of first-year students in different disciplines at 13 Finnish universities. Network analysis confirmed the multidimensional process model of engagement and its six dimensions. The central dimensions of engagement are identity and sense of belonging, which develop in the interplay between individual and collective dimensions as a long-term process. Additional network analyses with covariates identified positive and negative factors that affect engagement. The study adds new perspectives to existing knowledge of engagement. It is important to understand the process-like nature of engagement and make visible factors affecting the process. Based on these findings, we provide novel practical recommendations for interventions for university students who struggle with engagement during their first year.
  • Litvin, Andrey; Korenev, Sergey; Rumovskaya, Sophiya; Sartelli, Massimo; Baiocchi, Gianluca; Biffl, Walter L.; Coccolini, Federico; Di Saverio, Salomone; Kelly, Michael Denis; Kluger, Yoram; Leppäniemi, Ari; Sugrue, Michael; Catena, Fausto (2021)
    The article is a scoping review of the literature on the use of decision support systems based on artificial neural networks in emergency surgery. The authors present modern literature data on the effectiveness of artificial neural networks for predicting, diagnosing and treating abdominal emergency conditions: acute appendicitis, acute pancreatitis, acute cholecystitis, perforated gastric or duodenal ulcer, acute intestinal obstruction, and strangulated hernia. The intelligent systems developed at present allow a surgeon in an emergency setting, not only to check his own diagnostic and prognostic assumptions, but also to use artificial intelligence in complex urgent clinical cases. The authors summarize the main limitations for the implementation of artificial neural networks in surgery and medicine in general. These limitations are the lack of transparency in the decision-making process; insufficient quality educational medical data; lack of qualified personnel; high cost of projects; and the complexity of secure storage of medical information data. The development and implementation of decision support systems based on artificial neural networks is a promising direction for improving the forecasting, diagnosis and treatment of emergency surgical diseases and their complications.