Browsing by Subject "MASS"

Sort by: Order: Results:

Now showing items 21-40 of 109
  • Winzenberg, Tania; Lamberg-Allardt, Christel; Fuleihan, Ghada Ei-Hajj; Molgaard, Christian; Zhu, Kun; Wu, Feitong; Riley, Richard D. (2018)
    Introduction Our previous study-level (aggregate data) meta-analysis suggested that vitamin D supplements may be beneficial for bone density specifically in children with vitamin D deficiency. However, the misclassification of vitamin D status inherent in study-level data means that the results are not definitive and cannot provide an accurate assessment of the size of any effect. Therefore, we propose to undertake an individual patient data (IPD) meta-analysis to determine whether the effect of vitamin D supplementation on bone density in children differs according to baseline vitamin D status, and to specifically estimate the effect of vitamin D in children who are vitamin D deficient. Methods and analysis This study has been designed to adhere to the Preferred Reporting Items for Systematic Review and Meta-Analyses of IPD statement. We will include randomised placebo-controlled trials of vitamin D supplementation reporting hone density outcomes at least 6 months after the study commenced in children and adolescents (aged Ethics and dissemination Ethics approval will not be required as the data are to be used for the primary purpose for which they were collected and all original individual studies had ethics approval. Results of the IPD meta-analysis will be submitted for publication in a peer-reviewed journal.
  • Di Chiara, Stefano; Foadi, Roshan; Tuominen, Kimmo; Tähtinen, Sara (2015)
    We consider a fully dynamical origin for the masses of weak gauge bosons and heavy quarks of the Standard Model. Electroweak symmetry breaking and the gauge boson masses arise from new strong dynamics, which leads to the appearance of a composite scalar in the spectrum of excitations. In order to generate mass for the Standard Model fermions, we consider extended gauge dynamics, effectively represented by four fermion interactions at presently accessible energies. By systematically treating these interactions, we show that they lead to a large reduction of the mass of the scalar resonance. Therefore, interpreting the scalar as the recently observed 125 GeV state implies that the mass originating solely from new strong dynamics can be much heavier, i.e. of the order of 1 TeV. In addition to reducing the mass of the scalar resonance, we show that the four-fermion interactions allow for contributions to the oblique corrections in agreement with the experimental constraints. The couplings of the scalar resonance with the Standard Model gauge bosons and fermions are evaluated, and found to be compatible with the current LHC results. Additional new resonances are expected to be heavy, with masses of the order of a few TeVs, and hence accessible in future experiments. (C) 2015 The Authors. Published by Elsevier B.V.
  • Porthan, Kimmo; Kentta, Tuomas; Niiranen, Teemu J.; Nieminen, Markku S.; Oikarinen, Lasse; Viitasalo, Matti; Hernesniemi, Jussi; Jula, Antti M.; Salomaa, Veikko; Huikuri, Heikki; Albert, Christine M.; Tikkanen, Jani T. (2019)
    Background: Electrocardiographic (ECG) left ventricular hypertrophy (LVH) is an established risk factor for cardiovascular events. However, limited data is available on the prognostic values of different ECG LVH criteria specifically to sudden cardiac death (SCD). Our goal was to assess relationships of different ECG LVH criteria to SCD. Methods: Three traditional and clinically useful (Sokolow-Lyon, Cornell, RaVL) and a recently proposed (Peguero-Lo Presti) ECG LVH voltage criteria were measured in 5730 subjects in the Health 2000 Survey, a national general population cohort study. Relationships between LVH criteria, aswell as their selected composites, to SCD were analyzed with Cox regression models. In addition, population-attributable fractions for LVH criteria were calculated. Results: After a mean follow-up of 12.5 +/- 2.2 years, 134 SCDs had occurred. When used as continuous variables, all LVH criteria except for RaVL were associated with SCD in multivariable analyses. When single LVH criteria were used as dichotomous variables, only Cornell was significant after adjustments. The dichotomous composite of Sokolow-Lyon and Cornell was also significant after adjustments (hazard ratio for SCD 1.82, 95% confidence interval 1.20-2.70, P = 0.006) and was the only LVH measure that showed statistically significant population attributable fraction (11.0%, 95% confidence interval 1.9-19.2%, P=0.019). Conclusions: Sokolow-Lyon, Cornell, and Peguero-Lo Presti ECG, but not RaVL voltage, are associated with SCD risk as continuous ECG voltage LVH variables. When SCD risk assessment/adjustment is performed using a dichotomous ECG LVH measure, composite of Sokolow-Lyon and Cornell voltages is the preferred option. (c) 2018 The Authors. Published by Elsevier B.V.
  • Björkman, Mikko P.; Suominen, Merja H.; Kautiainen, Hannu; Jyväkorpi, Satu K.; Finne-Soveri, Harriet U.; Strandberg, Timo E.; Pitkälä, Kaisu H.; Tilvis, Reijo S. (2020)
    Objectives: To test the long-term effects of whey-enriched protein supplementation on muscle and physical performance. Design: A 12-month randomized controlled double blind trial with a 43-month of post-trial follow-up. Setting: Porvoo, Finland. Participants: A total of 218 older (>74 years of age) community-dwelling people with sarcopenia. Intervention: (1) Control with no supplementation; (2) isocaloric placebo; and (3) 20 g x 2 whey-enriched protein supplementation. All participants were given instructions on home-based exercise, dietary protein, and vitamin D supplementation of 20 mu g/d. Measurements: Physical performance was assessed by short physical performance battery and continuous summary physical performance scores. Hand grip strength and calf intracellular resistance based skeletal muscle index were measured by bioimpedance spectroscopy. The measurements were performed at 0, 6, and 12 months. The post-trial follow-up was performed by a postal questionnaire and national census record data. Results: The participants were older (75-96 years of age) and mostly women (68%). The test supplements had no significant effects on physical performance; the 12-month changes for short physical performance battery were -0.55, -.05, and 0.03 points in control, isocaloric, and protein groups (P = .17), respectively. The changes in continuous summary physical performance scores were similar between the intervention groups (P = .76). The hand grip strength decreased significantly in all intervention groups, and the 12-month changes in calf intracellular resistance-based skeletal muscle index were minor and there were no differences between the intervention groups. One-half of the patients (56%) in both supplement groups reported mild gastrointestinal adverse effects. Differences were found neither in the all-cause mortality nor physical functioning in the post-trial follow-up. Conclusions: The whey-enriched protein supplementation in combination with low intensity home-based physical exercise did not attenuate the deterioration of muscle and physical performance in community-dwelling older people with sarcopenia. (C) 2019 AMDA - The Society for Post-Acute and Long-Term Care Medicine.
  • Tiira, Jussi; Moisseev, Dmitri N.; von Lerber, Annakaisa; Ori, Davide; Tokay, Ali; Bliven, Larry F.; Petersen, Walter (2016)
    In this study measurements collected during winters 2013/2014 and 2014/2015 at the University of Helsinki measurement station in Hyytiala are used to investigate connections between ensemble mean snow density, particle fall velocity and parameters of the particle size distribution (PSD). The density of snow is derived from measurements of particle fall velocity and PSD, provided by a particle video imager, and weighing gauge measurements of precipitation rate. Validity of the retrieved density values is checked against snow depth measurements. A relation retrieved for the ensemble mean snow density and median volume diameter is in general agreement with previous studies, but it is observed to vary significantly from one winter to the other. From these observations, characteristic mass-dimensional relations of snow are retrieved. For snow rates more than 0.2 mm h(-1), a correlation between the intercept parameter of normalized gamma PSD and median volume diameter was observed.
  • Savolainen-Peltonen, Hanna; Vihma, Veera; Wang, Feng; Turpeinen, Ursula; Hämäläinen, Esa; Haanpää, Mikko; Leidenius, Marjut; Tikkanen, Matti J.; Mikkola, Tomi S. (2018)
    Circulating estrogens fluctuate during the menstrual cycle but it is not known whether this fluctuation is related to local hormone levels in adipose tissue. We analyzed estrogen concentrations and gene expression of estrogen-regulating enzymes in breast subcutaneous adipose tissue in premenopausal women with (n = 11) and without (n = 17) estrogen receptor-positive breast cancer. Estrone (E-1) was the predominant estrogen in premenopausal breast adipose tissue, and E-1 and mRNA expression of CYP19A1 in adipose tissue correlated positively with BMI. Adipose tissue estradiol (E-2) concentrations fluctuated during the menstrual cycle, similarly to the serum concentrations. In women with breast cancer median adipose tissue E-1 (1519 vs. 3244, p <.05) and E-2 (404 vs. 889 pmol/kg, p <.05) levels were lower in the follicular than in the luteal phase whereas in control women no significant differences were observed. In the follicular phase, mRNA expressions of HSD17B1 (median 0.06; interquartile range 0.05-0.07 vs. 0.17; 0.03-0.2, p = .010) and CYP19A1 (0.08; 0.07-0.14 vs. 0.22; 0.09-0.54, p = .025) were lower in women with breast cancer than in controls. In conclusion, the changes in adipose tissue E-1 and E-2 concentrations and the estrogen-regulating CYP19A1 and HSD17B1 during the menstrual cycle may be related to dysfunctional local estrogen metabolism in women with breast cancer.
  • The CMS collaboration; Sirunyan, A. M.; Tumasyan, A.; Eerola, P.; Forthomme, Laurent; Kirschenmann, H.; Österberg, K.; Voutilainen, M.; Brücken, Erik; Garcia, F.; Havukainen, J.; Karimäki, V.; Kim, Minsuk; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2021)
    Evidence is presented for the electroweak (EW) production of two jets (jj) in association with two Z-bosons and constraints on anomalous quartic gauge couplings are set. The analysis is based on a data sample of proton-proton collisions at root s = 13 TeVcollected with the CMS detector in 2016-2018, and corresponding to an integrated luminosity of 137 fb(-1). The search is performed in the fully leptonic final state ZZ -> lll'l', where l, l' = e, mu. The EW production of two jets in association with two Zbosons is measured with an observed (expected) significance of 4.0 (3.5) standard deviations. The cross sections for the EW production are measured in three fiducial volumes and the result is sigma(EW)(pp -> ZZjj -> lll'l'jj) = 0.33(-0.10)(+0.11)(stat)(-0.03)(+0.04)(syst) fbin the most inclusive volume, in agreement with the standard model prediction of 0.275 +/- 0.021fb. Measurements of total cross sections for jj production in association with two Zbosons are also reported. Limits on anomalous quartic gauge couplings are derived in terms of the effective field theory operators T0, T1, T2, T8, and T9. (C) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license.
  • The CMS collaboration; Sirunyan, A. M.; Tumasyan, A.; Eerola, P.; Forthomme, Laurent; Kirschenmann, H.; Österberg, K.; Voutilainen, M.; Brücken, Erik; Garcia, F.; Havukainen, J.; Karimäki, V.; Kim, Minsuk; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Luukka, P.; Tuuva, T. (2021)
    Evidence for Higgs boson decay to a pair of muons is presented. This result combines searches in four exclusive categories targeting the production of the Higgs boson via gluon fusion, via vector boson fusion, in association with a vector boson, and in association with a top quark-antiquark pair. The analysis is performed using proton-proton collision data at root s = 13 TeV, corresponding to an integrated luminosity of 137 fb(-1), recorded by the CMS experiment at the CERN LHC. An excess of events over the back- ground expectation is observed in data with a significance of 3.0 standard deviations, where the expectation for the standard model (SM) Higgs boson with mass of 125.38 GeV is 2.5. The combination of this result with that from data recorded at root s = 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.7 fb(-1), respectively, increases both the expected and observed significances by 1%. The measured signal strength, relative to the SM prediction, is 1.19(-0.39)(+0.40)(stat)(-0.14)(+0.15). This result constitutes the first evidence for the decay of the Higgs boson to second generation fermions and is the most precise measurement of the Higgs boson coupling to muons reported to date.
  • Ertoprak, A.; Cederwall, B.; Qi, C.; Aktas, O.; Doncel, M.; Hadinia, B.; Liotta, R.; Sandzelius, M.; Scholey, C.; Andgren, K.; Back, T.; Badran, H.; Braunroth, T.; Calverley, T.; Cox, D. M.; Cullen, D. M.; Fang, Y. D.; Ganioglu, E.; Giles, M.; Gomez Hornillos, M. B.; Grahn, T.; Greenlees, P. T.; Hilton, J.; Hodge, D.; Ideguchi, E.; Jakobsson, U.; Johnson, A.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Khaplanov, A.; Kumar Raju, M.; Leino, M.; Li, H.; Liu, H.; Matta, S.; Modamio, V.; Nara Singh, B. S.; Niikura, M.; Nyman, M.; Ozgur, I.; Page, R. D.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Paul, E. S.; Petrache, C. M.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Saren, J.; Sorri, J.; Stolze, S.; Subramaniam, P.; Taylor, M. J.; Uusitalo, J.; Valiente-Dobon, J. J.; Wyss, R. (2020)
    Excited states in the extremely neutron-deficient nucleus Pt-172 were populated via Ru-96(Kr-78, 2p) and Mo-92(Kr-83, 3n) reactions. The level scheme has been extended up to an excitation energy of approximate to 5MeV and tentative spin-parity assignments up to I-pi = 18(+). Linear polarization and angular distribution measurements were used to determine the electromagnetic E1 character of the dipole transitions connecting the positive-parity ground-state band with an excited side-band, firmly establishing it as a negativeparity band. The lowestmember of this negative-parity structure was firmly assigned spin-parity 3(-). In addition, we observed an E3 transition from this 3(-) state to the ground state, providing direct evidence for octupole collectivity in Pt-172. Large-scale shell model (LSSM) and total Routhian surface (TRS) calculations have been performed, supporting the interpretation of the 3(-) state as a collective octupole-vibrational state.
  • Huitu, Katri; Kärkkäinen, Timo J.; Mondal, Subhadeep; Rai, Santosh Kumar (2018)
    We consider a neutrinophilic Higgs scenario where the Standard Model is extended by one additional Higgs doublet and three generations of singlet right-handed Majorana neutrinos. Light neutrino masses are generated through mixing with the heavy neutrinos via the Type-I seesaw mechanism when the neutrinophilic Higgs gets a vacuum expectation value (VEV). The Dirac neutrino Yukawa coupling in this scenario can be sizable compared to those in the canonical Type-I seesaw mechanism owing to the small neutrinophilic Higgs VEV giving rise to interesting phenomenological consequences. We have explored various signal regions likely to provide a hint of such a scenario at the LHC as well as at future e(+)e(-) colliders. We have also highlighted the consequences of light neutrino mass hierarchies in collider phenomenology that can complement the findings of neutrino oscillation experiments.
  • CORE Collaboration; Challinor, A.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Väliviita, J. (2018)
    Lensing of the cosmic microwave background (CMB) is now a well-developed probe of the clustering of the large-scale mass distribution over a broad range of redshifts. By exploiting the non-Gaussian imprints of lensing in the polarization of the CMB, the CORE mission will allow production of a clean map of the lensing deflections over nearly the full-sky. The number of high-SAN modes in this map will exceed current CMB lensing maps by a factor of 40, and the measurement will be sample-variance limited on all scales where linear theory is valid. Here, we summarise this mission product and discuss the science that will follow from its power spectrum and the cross-correlation with other clustering data. For example, the summed mass of neutrinos will be determined to an accuracy of 17 meV combining CORE lensing and CMB two-point information with contemporaneous measurements of the baryon acoustic oscillation feature in the clustering of galaxies, three times smaller than the minimum total mass allowed by neutrino oscillation measurements. Lensing has applications across many other science goals of CORE, including the search for B-mode polarization from primordial gravitational waves. Here, lens-induced B-modes will dominate over instrument noise, limiting constraints on the power spectrum amplitude of primordial gravitational waves. With lensing reconstructed by CORE, one can "delens" the observed polarization internally, reducing the lensing B-mode power by 60 %. This can be improved to 70 % by combining lensing and measurements of the cosmic infrared background from CORE, leading to an improvement of a factor of 2.5 in the error on the amplitude of primordial gravitational waves compared to no delensing (in the null hypothesis of no primordial B-modes). Lensing measurements from CORE will allow calibration of the halo masses of the tens of thousands of galaxy clusters that it will find, with constraints dominated by the clean polarization-based estimators. The 19 frequency channels proposed for CORE will allow accurate removal of Galactic emission from CMB maps. We present initial findings that show that residual Galactic foreground contamination will not be a significant source of bias for lensing power spectrum measurements with CORE.
  • Molgaard, Bjarke; Viitanen, Anna-Kaisa; Kangas, Anneli; Huhtiniemi, Marika; Larsen, Soren Thor; Vanhala, Esa; Hussein, Tareq; Boor, Brandon E.; Hämeri, Kaarle; Koivisto, Antti Joonas (2015)
    Due to the health risk related to occupational air pollution exposure, we assessed concentrations and identified sources of particles and volatile organic compounds (VOCs) in a handcraft workshop producing fishing lures. The work processes in the site included polyurethane molding, spray painting, lacquering, and gluing. We measured total VOC (TVOC) concentrations and particle size distributions at three locations representing the various phases of the manufacturing and assembly process. The mean working-hour TVOC concentrations in three locations studied were 41, 37, and 24 ppm according to photo-ionization detector measurements. The mean working-hour particle number concentration varied between locations from 3000 to 36,000 cm(-3). Analysis of temporal and spatial variations of TVOC concentrations revealed that there were at least four substantial VOC sources: spray gluing, mold-release agent spraying, continuous evaporation from various lacquer and paint containers, and either spray painting or lacquering (probably both). The mold-release agent spray was indirectly also a major source of ultrafine particles. The workers' exposure can be reduced by improving the local exhaust ventilation at the known sources and by increasing the ventilation rate in the area with the continuous source.
  • Vehmanen, L.; Sievänen, H.; Kellokumpu-Lehtinen, P.; Nikander, R.; Huovinen, R.; Ruohola, J.; Penttinen, H.M.; Utriainen, M.; Tokola, K.; Blomqvist, C.; Saarto, T. (2021)
    A 12-month exercise program reversibly prevented hip bone loss in premenopausal women with early breast cancer. The bone-protective effect was maintained for 2 years after the end of the program but was lost thereafter. Purpose Breast cancer survivors are at an increased risk for osteoporosis and fracture. This 5-year follow-up of a randomized impact exercise intervention trial evaluated the maintenance of training effects on bone among breast cancer patients. Methods Five hundred seventy-three early breast cancer patients aged 35-68 years and treated with adjuvant therapy were allocated into a 12-month exercise program or a control group. Four hundred forty-four patients (77%) were included in the 5-year analysis. The exercise intervention comprised weekly supervised step aerobics, circuit exercises, and home training. Areal bone mineral density (aBMD) was measured by dual-energy X-ray absorptiometry. Physical activity was estimated in metabolic equivalent (MET) hours per week and physical performance assessed by 2-km walking and figure-8 running tests. Results In premenopausal patients, the 12-month exercise program maintained femoral neck (FN) and total hip (TH) aBMD for 3 years, but the protective effect was lost thereafter. The mean FN aBMD change in the exercise and control groups was - 0.2% and - 1.5% 1 year, - 1.1% and - 2.1% 3 years and - 3.3% versus - 2.4% 5 years after the beginning of the intervention, respectively. Lumbar spine (LS) bone loss was not prevented in premenopausal women and no training effects on aBMD were seen in postmenopausal women. The main confounding element of the study was the unexpected rise in physical activity among patients in the control group. The physical performance improved among premenopausal women in the exercise group compared with the controls. Conclusion The 12-month exercise program prevented FN and TH bone loss in premenopausal breast cancer patients for 3 years. The bone-protective effect was reversible and lost thereafter.
  • Juvela, M.; Malinen, J.; Montillaud, J.; Pelkonen, V.-M.; Ristorcelli, I.; Tóth, L. V. (2018)
    Context. The Galactic Cold Cores (GCC) project has made Herschel photometric observations of interstellar clouds where Planck detected compact sources of cold dust emission. The fields are in different environments and stages of star formation. Aims. Our aim is to characterise the structure of the clumps and their parent clouds, and to study the connections between the environment and the formation of gravitationally bound objects. We also examine the accuracy to which the structure of dense clumps can be determined from sub-millimetre data. Methods. We use standard statistical methods to characterise the GCC fields. Individual clumps are extracted using column density thresholding. Based on sub-millimetre measurements, we construct a three-dimensional radiative transfer (RT) model for each field. These are used to estimate the relative radiation field intensities, to probe the clump stability, and to examine the uncertainty of column density estimates. We examine the structural parameters of the clumps, including their radial column density profiles. Results. In the GCC fields, the structure noise follows the relations previously established at larger scales and in lower-density clouds. The fractal dimension has no significant dependence on column density and the values D-p = 1.25 +/- 0.07 are only slightly lower than in typical molecular clouds. The column density probability density functions (PDFs) exhibit large variations, for example, in the case of externally compressed clouds. At scales r > 0.1 pc, the radial column density distributions of the clouds follow an average relation of N similar to r(-1). In spite of a great variety of clump morphologies (and a typical aspect ratio of 1.5), clumps tend to follow a similar N similar to r(-1) relation below r similar to 0.1 pc. RT calculations indicate only factor 2.5 variation in the local radiation field intensity. The fraction of gravitationally bound clumps increases significantly in regions with A v > 5 mag but most bound objects appear to be pressure-confined. Conclusions. The host clouds of the cold clumps in the GCC sample have statistical properties similar to general molecular clouds. The gravitational stability, peak column density, and clump orientation are connected to the cloud background while most other statistical clump properties (e.g. D-p and radial profiles) are insensitive to the environment. The study of clump morphology should be continued with a comparison with numerical simulations.
  • Heliste, Juho; Chheda, Himanshu; Paatero, Ilkka; Salminen, Tiina A.; Akimov, Yevhen; Paavola, Jere; Elenius, Klaus; Aittokallio, Tero (2020)
    Background: To tackle the missing heritability of sporadic heart failure, we screened for novel heart failure associated genetic variants in the Finnish population and functionally characterized a novel variant in vitro and in vivo. Methods and results: Heart failure-associated variants were screened in genotyping array data of the FINRISK study, consisting of 994 cases and 20,118 controls. Based on logistic regression analysis, a potentially damaging variant in TRIM55 (rs138811034), encoding an E140K variant, was selected for validations. In HL-1 cardiomyocytes, we used CRISPR/Cas9 technology to introduce the variant in the endogenous locus, and additionally TRIM55 wildtype or E140K was overexpressed from plasmid. Functional responses were profiled using whole-genome RNA sequencing, RT-PCR and Western analyses, cell viability and cell cycle assays and cell surface area measurements. In zebrafish embryos, cardiac contractility was measured using videomicroscopy after CRISPR-mediated knockout of trim55a or plasmid overexpression of TRIM55 WT or E140K. Genes related to muscle contraction and cardiac stress were highly regulated in Trim55 E140K/- cardiomyocytes. When compared to the WT/WT cells, the variant cells demonstrated reduced viability, significant hypertrophic response to isoproterenol, p21 protein overexpression and impaired cell cycle progression. In zebrafish embryos, the deletion of trim55a or overexpression of TRIM55 E140K reduced cardiac contractility as compared to embryos with wild type genotype or overexpression of WT TRIM55, respectively. Conclusions: A previously uncharacterized TRIM55 E140K variant demonstrated a number of functional implications for cardiomyocyte functions in vitro and in vivo. These findings suggest a novel role for TRIM55 polymorphism in predisposing to heart failure.
  • Ali-Sisto, Toni; Tolmunen, Tommi; Viinamäki, Heimo; Mäntyselkä, Pekka; Valkonen-Korhonen, Minna; Koivumaa-Honkanen, Heli; Honkalampi, Kirsi; Ruusunen, Anu; Nandania, Jatin; Velagapudi, Vidya; Lehto, Soili M. (2018)
    Background: Major depressive disorder (MDD) is characterized by increased oxidative and nitrosative stress. We compared nitric oxide metabolism, i.e., the global arginine bioavailability ratio (GABR) and related serum amino acids, between MDD patients and non-depressed controls, and between remitted and non-remitted MDD patients. Methods: Ninety-nine MDD patients and 253 non-depressed controls, aged 20-71 years, provided background data via questionnaires. Fasting serum samples were analyzed using ultra-performance liquid chromatography coupled to mass spectrometry to determine the serum levels of ornithine, arginine, citrulline, and symmetric and asymmetric dimethylarginine. GABR was calculated as arginine divided by the sum of ornithine plus citrulline. We compared the above measures between: 1) MDD patients and controls, 2) remitted (n= 33) and non-remitted (n = 45) MDD patients, and 3) baseline and follow-up within the remitted and non-remitted groups. Results: Lower arginine levels (OR 0.98, 95% CI 0.97-0.99) and lower GABR (OR 0.13, 95% CI 0.03-0.50) were associated with the MDD vs. the non-depressed group after adjustments for potential confounders. The remitted group showed a decrease in GABR, arginine, and symmetric dimethylarginine, and an increase in ornithine after the follow-up compared with within-group baseline values. The non-remitted group displayed an increase in arginine and ornithine levels and a decrease in GABR. No significant differences were recorded between the remitted and non-remitted groups. Limitations: The MDD group was not medication-free. Conclusions: Arginine bioavailability may be decreased in MDD. This could impair the production of nitric oxide, and thus add to oxidative stress in the central nervous system.
  • Annala, Eemeli; Gorda, Tyler; Kurkela, Aleksi; Vuorinen, Aleksi (2018)
    The detection of gravitational waves originating from a neutron-star merger, GW170817, by the LIGO and Virgo Collaborations has recently provided new stringent limits on the tidal deformabilities of the stars involved in the collision. Combining this measurement with the existence of two-solar-mass stars, we generate a generic family of neutron-star-matter equations of state (EOSs) that interpolate between state-of-the-art theoretical results at low and high baryon density. Comparing the results to ones obtained without the tidal-deformability constraint, we witness a dramatic reduction in the family of allowed EOSs. Based on our analysis, we conclude that the maximal radius of a 1.4-solar-mass neutron star is 13.6 km, and that the smallest allowed tidal deformability of a similar-mass star is Lambda(1.4 M circle dot) = 120.
  • Leppäranta, Matti; Lindgren, Elisa; Arvola, Lauri (2016)
    Thermodynamics of a seasonal supraglacial lake were examined based on field data from three summers. At maximum, the lake body consisted of an upper layer with thin ice on top, and a lower layer with slush, hard ice and sediment at the bottom. Sublimation from the upper ice surface averaged to 0.7 mm d(-1), and melting in the ice interior averaged to 9.1 mm d(-1) during summer. Albedo was on average 0.6 and light attenuation coefficient was similar to 1 m(-1). Averaged over December and January, and over 3 different years, we found that the net solar heating was 137 W m(-2), while the losses averaged to 62 W m(-2) for the longwave radiation, 16 Wm(-2) for the sensible heat flux, 24 W m(-2) for the latent heat flux and 3 W m(-2) for the bottom flux. The depth scale is determined by the light attenuation distance and thermal diffusion coefficient, and the net liquid water volume ranged from 0.5 to 1.0 m in different years. The potential winter growth is more than summer melting, and thus the lake freezes up completely in winter in the present climate.
  • Laigle, C.; Davidzon, I.; Ilbert, O.; Devriendt, J.; Kashino, D.; Pichon, C.; Capak, P.; Arnouts, S.; de la Torre, S.; Dubois, Y.; Gozaliasl, G.; Le Borgne, D.; Lilly, S.; McCracken, H. J.; Salvato, M.; Slyz, A. (2019)
    Using the light-cone from the cosmological hydrodynamical simulation horizon-AGN, we produced a photometric catalogue over 0 <z <4 with apparent magnitudes in COSMOS, Dark Energy Survey, Large Synoptic Survey Telescope (LSST)-like, and Euclid-like filters at depths comparable to these surveys. The virtual photometry accounts for the complex star formation history (SFH) and metal enrichment of horizon-AGN galaxies, and consistently includes magnitude errors, dust attenuation, and absorption by intergalactic medium. The COSMOS-like photometry is fitted in the same configuration as the COSMOS2015 catalogue. We then quantify random and systematic errors of photometric redshifts, stellar masses, and star formation rates (SFR). Photometric redshifts and redshift errors capture the same dependencies on magnitude and redshift as found in COSMOS2015, excluding the impact of source extraction. COSMOS-like stellar masses are well recovered with a dispersion typically lower than 0.1 dex. The simple SFHs and metallicities of the templates induce a systematic underestimation of stellar masses at z <1.5 by at most 0.12 dex. SFR estimates exhibit a dust-induced bimodality combined with a larger scatter (typically between 0.2 and 0.6 dex). We also use our mock catalogue to predict photometric redshifts and stellar masses in future imaging surveys. We stress that adding Euclid near-infrared photometry to the LSST-like baseline improves redshift accuracy especially at the faint end and decreases the outlier fraction by a factor similar to 2. It also considerably improves stellar masses, reducing the scatter up to a factor 3. It would therefore be mutually beneficial for LSST and Euclid to work in synergy.
  • Janiszewski, Mateusz; Hernandez, Enrique Caballero; Siren, Topias; Uotinen, Lauri; Kukkonen, Ilmo; Rinne, Mikael (2018)
    Accurate and fast numerical modelling of the borehole heat exchanger (BHE) is required for simulation of long-term thermal energy storage in rocks using boreholes. The goal of this study was to conduct an in situ experiment to validate the proposed numerical modelling approach. In the experiment, hot water was circulated for 21 days through a single U-tube BHE installed in an underground research tunnel located at a shallow depth in crystalline rock. The results of the simulations using the proposed model were validated against the measurements. The numerical model simulated the BHE's behaviour accurately and compared well with two other modelling approaches from the literature. The model is capable of replicating the complex geometrical arrangement of the BHE and is considered to be more appropriate for simulations of BHE systems with complex geometries. The results of the sensitivity analysis of the proposed model have shown that low thermal conductivity, high density, and high heat capacity of rock are essential for maximising the storage efficiency of a borehole thermal energy storage system. Other characteristics of BHEs, such as a high thermal conductivity of the grout, a large radius of the pipe, and a large distance between the pipes, are also preferred for maximising efficiency.