Browsing by Subject "OSCILLATIONS"

Sort by: Order: Results:

Now showing items 21-26 of 26
  • Seitola, Teija; Silen, Johan; Järvinen, Heikki (2015)
    In this article, we introduce a new algorithm called randomised multichannel singular spectrum analysis (RMSSA), which is a generalisation of the traditional multichannel singular spectrum analysis (MSSA) into problems of arbitrarily large dimension. RMSSA consists of (1) a dimension reduction of the original data via random projections, (2) the standard MSSA step and (3) a recovery of the MSSA eigenmodes from the reduced space back to the original space. The RMSSA algorithm is presented in detail and additionally we show how to integrate it with a significance test based on a red noise null-hypothesis by Monte-Carlo simulation. Finally, RMSSA is applied to decompose the 20th century global monthly mean near-surface temperature variability into its low-frequency components. The decomposition of a reanalysis data set and two climate model simulations reveals, for instance, that the 2-6 yr variability centred in the Pacific Ocean is captured by all the data sets with some differences in statistical significance and spatial patterns.
  • Kiviniemi, Vesa; Korhonen, Vesa; Kortelainen, Jukka; Rytky, Seppo; Keinanen, Tuija; Tuovinen, Timo; Isokangas, Matti; Sonkajarvi, Eila; Siniluoto, Topi; Nikkinen, Juha; Alahuhta, Seppo; Tervonen, Osmo; Turpeenniemi-Hujanen, Taina; Myllyla, Teemu; Kuittinen, Outi; Voipio, Juha (2017)
    Chemotherapy aided by opening of the blood-brain barrier with intra-arterial infusion of hyperosmolar mannitol improves the outcome in primary central nervous system lymphoma. Proper opening of the blood-brain barrier is crucial for the treatment, yet there are no means available for its real-time monitoring. The intact blood-brain barrier maintains a mV-level electrical potential difference between blood and brain tissue, giving rise to a measurable electrical signal at the scalp. Therefore, we used direct-current electroencephalography ( DC-EEG) to characterize the spatiotemporal behavior of scalp-recorded slow electrical signals during blood-brain barrier opening. Nine anesthetized patients receiving chemotherapy were monitored continuously during 47 blood-brain barrier openings induced by carotid or vertebral artery mannitol infusion. Left or right carotid artery mannitol infusion generated a strongly lateralized DC-EEG response that began with a 2 min negative shift of up to 2000 mu V followed by a positive shift lasting up to 20 min above the infused carotid artery territory, whereas contralateral responses were of opposite polarity. Vertebral artery mannitol infusion gave rise to a minimally lateralized and more uniformly distributed slow negative response with a posterior-frontal gradient. Simultaneously performed near-infrared spectroscopy detected a multiphasic response beginning with mannitol-bolus induced dilution of blood and ending in a prolonged increase in the oxy/deoxyhemoglobin ratio. The pronounced DC-EEG shifts are readily accounted for by opening and sealing of the blood-brain barrier. These data show that DC-EEG is a promising real-time monitoring tool for bloodbrain barrier disruption augmented drug delivery.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2018)
    A search for a heavy neutral lepton N of Majorana nature decaying into a W boson and a charged lepton is performed using the CMS detector at the LHC. The targeted signature consists of three prompt charged leptons in any flavor combination of electrons and muons. The data were collected in proton-proton collisions at a center-of-mass energy of 13 TeV, with an integrated luminosity of 35.9 fb(-1). The search is performed in the N mass range between 1 GeV and 1.2 TeV. The data are found to be consistent with the expected standard model background. Upper limits are set on the values of vertical bar V-eN vertical bar(2) and vertical bar V-mu N vertical bar(2), where V-lN is the matrix element describing the mixing of N with the standard model neutrino of flavor l. These are the first direct limits for N masses above 500 GeV and the first limits obtained at a hadron collider for N masses below 40 GeV.
  • Luoma, Jarkko; Pekkonen, Eero; Airaksinen, Katja; Helle, Liisa; Nurminen, Jussi; Taulu, Samu; Mäkelä, Jyrki P. (2018)
    Advanced Parkinson's disease (PD) is characterized by an excessive oscillatory beta band activity in the sub thalamic nucleus (STN). Deep brain stimulation (DBS) of STN alleviates motor symptoms in PD and suppresses the STN beta band activity. The effect of DBS on cortical sensorimotor activity is more ambiguous; both increases and decreases of beta band activity have been reported. Non-invasive studies with simultaneous DBS are problematic due to DBS-induced artifacts. We recorded magnetoencephalography (MEG) from 16 advanced PD patients with and without STN DBS during rest and wrist extension. The strong magnetic artifacts related to stimulation were removed by temporal signal space separation. MEG oscillatory activity at 5-25 Hz was suppressed during DBS in a widespread frontoparietal region, including the sensorimotor cortex identified by the cortico-muscular coherence. The strength of suppression did not correlate with clinical improvement. Our results indicate that alpha and beta band oscillations are suppressed at the frontoparietal cortex by STN DBS in PD.
  • Getto, Philipp; Gyllenberg, Mats; Nakata, Yukihiko; Scarabel, Francesca (2019)
    We consider a mathematical model describing the maturation process of stem cells up to fully mature cells. The model is formulated as a differential equation with state-dependent delay, where maturity is described as a continuous variable. The maturation rate of cells may be regulated by the amount of mature cells and, moreover, it may depend on cell maturity: we investigate how the stability of equilibria is affected by the choice of the maturation rate. We show that the principle of linearised stability holds for this model, and develop some analytical methods for the investigation of characteristic equations for fixed delays. For a general maturation rate we resort to numerical methods and we extend the pseudospectral discretisation technique to approximate the state-dependent delay equation with a system of ordinary differential equations. This is the first application of the technique to nonlinear state-dependent delay equations, and currently the only method available for studying the stability of equilibria by means of established software packages for bifurcation analysis. The numerical method is validated on some cases when the maturation rate is independent of maturity and the model can be reformulated as a fixed-delay equation via a suitable time transformation. We exploit the analytical and numerical methods to investigate the stability boundary in parameter planes. Our study shows some drastic qualitative changes in the stability boundary under assumptions on the model parameters, which may have important biological implications.
  • Cowley, Benjamin Ultan (2018)
    Sustained attention plays an important role in everyday life, for work, learning, or when affected by attention disorders. Studies of the neural correlates of attention commonly treat sustained attention as an isolated construct, measured with computerized continuous performance tests. However, in any ecological context, sustained attention interacts with other executive functions and depends on lower level perceptual processing. Such interactions occur, for example, in inhibition of interference, and processing of complex hierarchical stimuli; both of which are important for successful ecological attention. Motivated by the need for more studies on neural correlates of higher cognition, I present an experiment to investigate these interactions of attention in 17 healthy participants measured with high-resolution electroencephalography. Participants perform a novel 2-alternative forced-choice computerised performance test, the Primed Subjective Illusory Contour Attention Task (PSICAT), which presents gestalt-stimuli targets with distractor primes to induce interference inhibition during complex-percept processing. Using behavioural and brain-imaging analyses, I demonstrate the novel result that task-irrelevant incongruency can evoke stronger behavioural and neural responses than the task-relevant stimulus condition; a potentially important finding in attention disorder research. PSICAT is available as an open-source code repository at the following url, allowing researchers to reuse and adapt it to their requirements.