Browsing by Subject "Parkinson's disease"

Sort by: Order: Results:

Now showing items 21-40 of 63
  • Chmielarz, Piotr; Er, Safak; Konovalova, Julia; Bandres, Laura; Hlushchuk, Irena; Albert, Katrina; Panhelainen, Anne; Luk, Kelvin; Airavaara, Mikko; Domanskyi, Andrii (2020)
    Background Parkinson's disease (PD) is associated with proteostasis disturbances and accumulation of misfolded alpha-synuclein (alpha-syn), a cytosolic protein present in high concentrations at pre-synaptic neuronal terminals. It is a primary constituent of intracellular protein aggregates known as Lewy neurites or Lewy bodies. Progression of Lewy pathology caused by the prion-like self-templating properties of misfolded alpha-syn is a characteristic feature in the brains of PD patients. Glial cell line-derived neurotrophic factor (GDNF) promotes survival of mature dopamine (DA) neurons in vitro and in vivo. However, the data on its effect on Lewy pathology is controversial. Objectives We studied the effects of GDNF on misfolded alpha-syn accumulation in DA neurons. Methods Lewy pathology progression was modeled by the application of alpha-syn preformed fibrils in cultured DA neurons and in the adult mice. Results We discovered that GDNF prevented accumulation of misfolded alpha-syn in DA neurons in culture and in vivo. These effects were abolished by deletion of receptor tyrosine kinase rearranged during transfection (RET) or by inhibitors of corresponding signaling pathway. Expression of constitutively active RET protected DA neurons from fibril-induced alpha-syn accumulation. Conclusions For the first time, we have shown the neurotrophic factor-mediated protection against the misfolded alpha-syn propagation in DA neurons, uncovered underlying receptors, and investigated the involved signaling pathways. These results demonstrate that activation of GDNF/RET signaling can be an effective therapeutic approach to prevent Lewy pathology spread at early stages of PD. (c) 2020 International Parkinson and Movement Disorder Society
  • Koski, Sini K.; Leino, Sakari; Panula, Pertti; Rannanpää, Saara; Salminen, Outi (2020)
    The brain histaminergic and dopaminergic systems closely interact, and some evidence also suggests significant involvement of histamine in Parkinson’s disease (PD), where dopaminergic neurons degenerate. To further investigate histamine-dopamine interactions, particularly in the context of PD, a genetic lack of histamine and a mouse model of PD and levodopa-induced dyskinesia were here combined. Dopaminergic lesions were induced in histidine decarboxylase knockout and wildtype mice by 6-hydroxydopamine injections into the medial forebrain bundle. Post-lesion motor dysfunction was studied by measuring drug-induced rotational behavior and dyskinesia. Striatal tissue from both lesioned and naïve animals was used to investigate dopaminergic, serotonergic and histaminergic biomarkers. Histamine deficiency increased amphetamine-induced rotation but did not affect levodopa-induced dyskinesia. qPCR measurements revealed increased striatal expression of D1 and D2 receptor, DARPP-32, and H3 receptor mRNA, and synaptosomal release experiments in naïve mice indicated increased dopamine release. A lack of histamine thus causes pre- and postsynaptic upregulation of striatal dopaminergic neurotransmission which may be reflected in post-lesion motor behavior. Disturbances or manipulations of the histaminergic system may thus have significant consequences for dopaminergic neurotransmission and motor behavior in both healthy and disease conditions. The findings also represent new evidence for the complex interplay between dopamine and histamine within the nigrostriatal pathway.
  • Evsyukov, Valentin; Domanskyi, Andrii; Bierhoff, Holger; Gispert, Suzana; Mustafa, Rasem; Schlaudraff, Falk; Liss, Birgit; Parlato, Rosanna (2017)
    Genetic mutations underlying neurodegenerative disorders impair ribosomal DNA (rDNA) transcription suggesting that nucleolar dysfunction could be a novel pathomechanism in polyglutamine diseases and in certain forms of amyotrophic lateral sclerosis/frontotemporal dementia. Here, we investigated nucleolar activity in pre-symptomatic digenic models of Parkinson's disease (PD) that model the multifactorial aetiology of this disease. To this end, we analysed a novel mouse model mildly overexpressing mutant human alpha-synuclein (hA53T-SNCA) in a PTEN-induced kinase 1 (PINK1/ PARK6) knockout background and mutant mice lacking both DJ-1 (also known as PARK7) and PINK1. We showed that overexpressed hA53T-SNCA localizes to the nucleolus. Moreover, these mutants show a progressive reduction of rDNA transcription linked to a reduced mouse lifespan. By contrast, rDNA transcription is preserved in DJ-1/PINK1 double knockout (DKO) mice. mRNA levels of the nucleolar transcription initiation factor 1A (TIF-IA, also known as RRN3) decrease in the substantia nigra of individuals with PD. Because loss of TIF-IA, as a tool to mimic nucleolar stress, increases oxidative stress and because DJ-1 and PINK1 mutations result in higher vulnerability to oxidative stress, we further explored the synergism between these PD-associated genes and impaired nucleolar function. By the conditional ablation of TIF-IA, we blocked ribosomal RNA (rRNA) synthesis in adult dopaminergic neurons in a DJ-1/PINK1 DKO background. However, the early phenotype of these triple knockout mice was similar to those mice exclusively lacking TIF-IA. These data sustain a model in which loss of DJ-1 and PINK1 does not impair nucleolar activity in a pre-symptomatic stage. This is the first study to analyse nucleolar function in digenic PD models. We can conclude that, at least in these models, the nucleolus is not as severely disrupted as previously shown in DA neurons from PD patients and neurotoxin-based PD mouse models. The results also show that the early increase in rDNA transcription and nucleolar integrity may represent specific homeostatic responses in these digenic pre-symptomatic PD models.
  • Mahato, Arun Kumar; Kopra, Jaakko; Renko, Juho-Matti; Visnapuu, Tanel; Korhonen, Ilari; Pulkkinen, Nita; Bespalov, Maxim M.; Domanskyi, Andrii; Ronken, Eric; Piepponen, T. Petteri; Voutilainen, Merja H.; Tuominen, Raimo K.; Karelson, Mati; Sidorova, Yulia A.; Saarma, Mart (2020)
    Background Motor symptoms of Parkinson's disease (PD) are caused by degeneration and progressive loss of nigrostriatal dopamine neurons. Currently, no cure for this disease is available. Existing drugs alleviate PD symptoms but fail to halt neurodegeneration. Glial cell line-derived neurotrophic factor (GDNF) is able to protect and repair dopamine neurons in vitro and in animal models of PD, but the clinical use of GDNF is complicated by its pharmacokinetic properties. The present study aimed to evaluate the neuronal effects of a blood-brain-barrier penetrating small molecule GDNF receptor Rearranged in Transfection agonist, BT13, in the dopamine system. Methods We characterized the ability of BT13 to activate RET in immortalized cells, to support the survival of cultured dopamine neurons, to protect cultured dopamine neurons against neurotoxin-induced cell death, to activate intracellular signaling pathways both in vitro and in vivo, and to regulate dopamine release in the mouse striatum as well as BT13's distribution in the brain. Results BT13 potently activates RET and downstream signaling cascades such as Extracellular Signal Regulated Kinase and AKT in immortalized cells. It supports the survival of cultured dopamine neurons from wild-type but not from RET-knockout mice. BT13 protects cultured dopamine neurons from 6-Hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+)-induced cell death only if they express RET. In addition, BT13 is absorbed in the brain, activates intracellular signaling cascades in dopamine neurons both in vitro and in vivo, and also stimulates the release of dopamine in the mouse striatum. Conclusion The GDNF receptor RET agonist BT13 demonstrates the potential for further development of novel disease-modifying treatments against PD. (c) 2019 International Parkinson and Movement Disorder Society
  • Sarkamo, Teppo; Sihvonen, Aleksi J. (2018)
    During the last decades, there have been major advances in mapping the brain regions that underlie our ability to perceive, experience, and produce music and how musical training can shape the structure and function of the brain. This progress has fueled and renewed clinical interest towards uncovering the neural basis for the impaired or preserved processing of music in different neurological disorders and how music-based interventions can be used in their rehabilitation and care. This article reviews our contribution to and the state-of-the-art of this field. We will provide a short overview outlining the key brain networks that participate in the processing of music and singing in the healthy brain and then present recent findings on the following key music-related research topics in neurological disorders: (i) the neural architecture underlying deficient processing of music (amusia), (ii) the preservation of singing in aphasia and music-evoked emotions and memories in Alzheimer's disease, (iii) the mnemonic impact of songs as a verbal learning tool, and (iv) the cognitive, emotional, and neural efficacy of music-based interventions and activities in the rehabilitation and care of major ageing-related neurological illnesses (stroke, Alzheimer's disease, and Parkinson's disease). (C) 2018 Elsevier Ltd. All rights reserved.
  • Plassais, Jonathan; Gbikpi-Benissan, Guillaume; Figarol, Marine; Scheperjans, Filip; Gorochov, Guy; Derkinderen, Pascal; Cervino, Alessandra C. L. (2021)
    The gut-brain axis may play a central role in the pathogenesis of neurological disorders. Dozens of case-control studies have been carried out to identify bacterial markers by the use of targeted metagenomics. Alterations of several taxonomic profiles have been confirmed across several populations, however, no consensus has been made regarding alpha-diversity. A recent publication has described and validated a novel method based on richness and evenness measures of the gut microbiome in order to reduce the complexity and multiplicity of alpha-diversity indices. We used these recently described richness and evenness composite measures to investigate the potential link between gut microbiome alpha-diversity and neurological disorders and to determine to what extent it could be used as a marker to diagnose neurological disorders from stool samples. We performed an exhaustive review of the literature to identify original published clinical studies including 16S rRNA gene sequencing on Parkinson's disease, multiple Sclerosis and Alzheimer's disease. Richness and evenness factors loadings were quantified from sequencing files in addition with the Shannon diversity index. For each disease, we performed a meta-analysis comparing the indices between patients and healthy controls. Seven studies were meta-analysed for Parkinson's disease, corresponding to 1067 subjects (631 Parkinson's Disease/436 healthy controls). Five studies were meta-analysed for multiple sclerosis, corresponding to 303 subjects (164 Multiple Sclerosis/139 healthy controls). For Alzheimer's disease, the meta-analysis was not done as only two studies matched our criteria. Neither richness nor evenness was significantly altered in Parkinson's disease and multiple sclerosis patients in comparison to healthy controls (P-value > 0.05). Shannon index was neither associated with neurological disorders (P-value > 0.05). After adjusting for age and sex, none of the alpha-diversity measures were associated with Parkinson's Disease. This is the first report investigating systematically alpha-diversity and its potential link to neurological disorders. Our study has demonstrated that unlike in other gastro-intestinal, immune and metabolic disorders, loss of bacterial diversity is not associated with Parkinson's disease and multiple sclerosis.
  • Aho, Velma T. E.; Pereira, Pedro A. B.; Voutilainen, Sari; Paulin, Lars; Pekkonen, Eero; Auvinen, Petri; Scheperjans, Filip (2019)
    Background: Several publications have described differences in cross-sectional comparisons of gut microbiota between patients with Parkinson's disease and control subjects, with considerable variability of the reported differentially abundant taxa. The temporal stability of such microbiota alterations and their relationship to disease progression have not been previously studied with a high-throughput sequencing based approach. Methods: We collected clinical data and stool samples from 64 Parkinson's patients and 64 control subjects twice, on average 2.25 years apart. Disease progression was evaluated based on changes in Unified Parkinson's Disease Rating Scale and Levodopa Equivalent Dose, and microbiota were characterized with 16S rRNA gene amplicon sequencing. Findings: We compared patients to controls, and patients with stable disease to those with faster progression. There were significant differences between microbial communities of patients and controls when corrected for confounders, but not between timepoints. Specific bacterial taxa that differed between patients and controls at both timepoints included several previously reported ones, such as Roseburia, Prevotella and Bifidobacterium. In progression comparisons, differentially abundant taxa were inconsistent across methods and timepoints, but there was some support for a different distribution of enterotypes and a decreased abundance of Prevotella in faster-progressing patients. Interpretation: The previously detected gut microbiota differences between Parkinson's patients and controls persisted after 2 years. While we found some evidence for a connection between microbiota and disease progression, a longer follow-up period is required to confirm these findings. (C) 2019 The Authors. Published by Elsevier B.V.
  • Runeberg-Roos, Pia; Penn, Richard D. (2020)
    The last decade has been a frustrating time for investigators who had envisioned major advances in the treatment of Parkinson's disease using neurotrophic factors. The first trials of glial cell line-derived neurotrophic factor for treating Parkinson's disease were very promising. Later blinded control trials were disappointing, not reaching the predetermined outcomes for improvement in motor function. Consideration of the problems in the studies as well as the biology of the neurotrophins used can potentially lead to more effective therapies. Parkinson's disease presents a multitude of opportunities for the cell biologist wanting to understand its pathology and to find possible new avenues for treatment.
  • Galli, Emilia; Planken, Anu; Kadastik-Eerme, Liis; Saarma, Mart; Taba, Pille; Lindholm, Päivi (2019)
    Background: Mesencephalic astrocyte-derived neurotrophic factor (MANF) and cerebral dopamine neurotrophic factor (CDNF) promote the survival of midbrain dopamine neurons in animal models of Parkinson's disease (PD). However, little is known about endogenous concentrations of MANF and CDNF in human PD patients, and their relation to PD pathogenesis. Our main objective was to study whether circulating concentrations of MANF and CDNF differ between PD patients and controls, and if they correlate with clinical parameters. Levels of circulating CDNF were studied for the first time. Methods: MANF and CDNF levels were measured from serum samples of 34 PD patients and 35 controls using validated in-lab-designed enzyme-linked immunosorbent assay (ELISAs). MANF and CDNF mRNA levels in whole blood samples of 60 PD patients and 30 controls were measured by quantitative real time polymerase chain reaction (qRT-PCR). MANF concentrations in different blood cell types were measured by ELISA. Results: Circulating MANF concentrations were significantly higher in PD patients compared to controls (P <0.001) and were positively correlated with Beck Depression Inventory (BDI) depression rating. MANF protein was present in blood cells, however, MANF mRNA levels in the blood did not differ between PD patients and controls (P = 0.44). The mean concentration of serum CDNF was 33 pg/ml in the controls. CDNF levels were not altered in PD patients (P = 0.25). Conclusion: MANF but not CDNF level was increased in the blood of PD patients. It would be interesting to examine the blood level of MANF from early stage PD patients in future studies to test whether MANF can be used as a clinical marker of PD.
  • Konovalova, Julia; Gerasymchuk, Dmytro; Parkkinen, Ilmari; Chmielarz, Piotr; Domanskyi, Andrii (2019)
    MicroRNAs are post-transcriptional regulators of gene expression, crucial for neuronal differentiation, survival, and activity. Age-related dysregulation of microRNA biogenesis increases neuronal vulnerability to cellular stress and may contribute to the development and progression of neurodegenerative diseases. All major neurodegenerative disorders are also associated with oxidative stress, which is widely recognized as a potential target for protective therapies. Albeit often considered separately, microRNA networks and oxidative stress are inextricably entwined in neurodegenerative processes. Oxidative stress affects expression levels of multiple microRNAs and, conversely, microRNAs regulate many genes involved in an oxidative stress response. Both oxidative stress and microRNA regulatory networks also influence other processes linked to neurodegeneration, such as mitochondrial dysfunction, deregulation of proteostasis, and increased neuroinflammation, which ultimately lead to neuronal death. Modulating the levels of a relatively small number of microRNAs may therefore alleviate pathological oxidative damage and have neuroprotective activity. Here, we review the role of individual microRNAs in oxidative stress and related pathways in four neurodegenerative conditions: Alzheimer's (AD), Parkinson's (PD), Huntington's (HD) disease, and amyotrophic lateral sclerosis (ALS). We also discuss the problems associated with the use of oversimplified cellular models and highlight perspectives of studying microRNA regulation and oxidative stress in human stem cell-derived neurons.
  • Mertsalmi, TH; But, A; Pekkonen, E; Scheperjans, F (2021)
    Background: The gastrointestinal tract is considered as a potential origin of Parkinson's disease (PD) pathology. Besides constipation, appendectomy and inflammatory bowel disease have also been associated with a higher PD-risk, but findings have been inconsistent. To date, there is only one previous study suggesting that irritable bowel syndrome (IBS) is associated with an increased risk of PD. Objective: To evaluate whether IBS is associated with a higher risk of PD. Methods: In this retrospective registry-based cohort study, we identified 28,150 patients that were diagnosed with IBS (IBS+) during the years 1998-2014, using data from the Finnish Care Register for Health Care. In addition, 98,789 IBS-free reference subjects (IBS-) of same age and gender and living in the same municipality were included. The study subjects were followed until the end of the year 2014 to analyze the incidence of PD. The association between IBS and PD was assessed by a Cox proportional hazards model. Results: Diagnosis of IBS was associated with a higher hazard of PD with an adjusted hazard ratio (aHR) of 1.70 (95% CI 1.27-2.26). However, the ratio of hazard rates for PD between IBS+ and IBS- subjects was not constant over time. The Cox model with time-varying coefficient for IBS status showed that the hazard of PD was significantly higher in IBS patients only during the first two years of follow-up (aHR 2.96, 95% CI 1.78-4.92). Conclusion: Our findings indicate that the association between IBS and PD is likely explained by reverse causation and detection bias. It remains open whether IBS is an actual risk factor or a prodromal symptom of PD.
  • Tamas, Gertrud; Fabbri, Margherita; Falup-Pecurariu, Cristian; Teodoro, Tiago; Kurtis, Monica M.; Aliyev, Rahim; Bonello, Michael; Brozova, Hana; Coelho, Miguel Soares; Contarino, Maria Fiorella; Corvol, Jean-Christophe; Dietrichs, Espen; Ben Djebara, Mouna; Elmgreen, Soren Bruno; Groppa, Sergiu; Kadastik-Eerme, Liis; Khatiashvili, Irine; Kostic, Vladimir; Krismer, Florian; Mansour, Alia Hassan; Odin, Per; Gavriliuc, Olga; Olszewska, Diana Angelika; Relja, Maja; Scheperjans, Filip; Skorvanek, Matej; Smilowska, Katarzyna; Taba, Pille; Tavadyan, Zaruhi; Valante, Ramona; Vujovic, Balsa; Waldvogel, Daniel; Yalcin-Cakmakli, Gul; Chitnis, Shilpa; Ferreira, Joaquim J. (2020)
    Background: Little information is available on the official postgraduate and subspecialty training programs in movement disorders (MD) in Europe and North Africa. Objective: To survey the accessible MD clinical training in these regions. Methods: We designed a survey on clinical training in MD in different medical fields, at postgraduate and specialized levels. We assessed the characteristics of the participants and the facilities for MD care in their respective countries. We examined whether there are structured, or even accredited postgraduate, or subspecialty MD training programs in neurology, neurosurgery, internal medicine, geriatrics, neuroradiology, neuropediatrics, and general practice. Participants also shared their suggestions and needs. Results: The survey was completed in 31/49 countries. Structured postgraduate MD programs in neurology exist in 20 countries; structured neurology subspecialty training exists in 14 countries and is being developed in two additional countries. Certified neurology subspecialty training was reported to exist in 7 countries. Recommended reading lists, printed books, and other materials are the most popular educational tools, while courses, lectures, webinars, and case presentations are the most popular learning formats. Mandatory activities and skills to be certified were not defined in 15/31 countries. Most participants expressed their need for a mandatory postgraduate MD program and for certified MD sub-specialization programs in neurology. Conclusion: Certified postgraduate and subspecialty training exists only in a minority of European countries and was not found in the surveyed Egypt and Tunisia. MD training should be improved in many countries.
  • Ala-Kurikka, Tommi (Helsingfors universitet, 2013)
    Laminins are a family of heterotrimeric glycoproteins found mainly in basement membranes. They interact with numerous other extracellular matrix components and cell surface receptors, including integrins and α-dystroglycan. Laminins play roles in myriad of functions including tissue morphogenesis, organogenesis, maintenance of tissue integrity and compartmentalization. In central nervous system laminins are involved in every major developmental stage from neural tube closure to synaptogenesis. Laminin expression in central nervous system decreases after maturation but has been found inducible by injury after trauma or disease. Since laminins are known to promote neurite outgrowth and neuronal survival, this has been proposed as a regenerative response to injury. Although the effects of endogenous laminin are clearly inadequate for repair, laminin based compounds could be powerful therapeutic agents. In previous in vivo studies KDI-tripeptide, a neurite outgrowth promoting fragment from γ1-laminin, has proved effective neuroprotective and regeneration promoting compound. Encouraged by these results I set out to test whether KDI would rescue midbrain dopaminergic neurons in unilateral 6-hydroxydopamine-induced rat model of Parkinson's disease. KDI (1-30µg) was injected to the striatum six hours prior to 6-hydroxydopamine. The severity of the lesion was then evaluated by measuring D-amphetamine induced rotation 2, 4 and 6 weeks postlesion and by assessing the number of neurons in substantia nigra pars compacta and optical density of striatum after tyrosine hydroxylase immunostaining at week seven. The only effective KDI dose studied was 3 µg. Compared to control it decreased Damphetamine induced rotational behaviour significantly at week four. KDI, however, failed to save tyrosine hydroxylase positive dopaminergic neurons in substantia nigra pars compacta or their axons in striatum. KDI might be usable in treating Parkinson's disease but it's mode of action doesn't appear to rely on protecting dopaminergic neurons or promoting the branching of their axons. KDI is known to inhibit ionotropic glutamate receptors and could therefore improve motor function by opposing striatal denervation induced overactivity of glutamatergic subthalamic nucleus neurons.
  • Virachit, Sophie; Mathews, Kathryn J.; Cottam, Veronica; Werry, Eryn; Galli, Emilia; Rappou, Elisabeth; Lindholm, Pӓivi; Saarma, Mart; Halliday, Glenda M.; Weickert, Cynthia Shannon; Double, Kay L. (2019)
    Growth factors can facilitate hippocampus-based learning and memory and are potential targets for treatment of cognitive dysfunction via their neuroprotective and neurorestorative effects. Dementia is common in Parkinson's disease (PD), but treatment options are limited. We aimed to determine if levels of growth factors are altered in the hippocampus of patients with PD, and if such alterations are associated with PD pathology. Enzyme-linked immunosorbent assays were used to quantify seven growth factors in fresh frozen hippocampus from 10 PD and nine age-matched control brains. Western blotting and immunohistochemistry were used to explore cellular and inflammatory changes that may be associated with growth factor alterations. In the PD hippocampus, protein levels of glial cell line-derived neurotrophic factor were significantly decreased, despite no evidence of neuronal loss. In contrast, protein levels of fibroblast growth factor 2 and cerebral dopamine neurotrophic factor were significantly increased in PD compared to controls. Levels of the growth factors epidermal growth factor, heparin-binding epidermal growth factor, brain-derived neurotrophic factor and mesencephalic astrocyte-derived neurotrophic factor did not differ between groups. Our data demonstrate changes in specific growth factors in the hippocampus of the PD brain, which potentially represent targets for modification to help attenuate cognitive decline in PD. These data also suggest that multiple growth factors and direction of change needs to be considered when approaching growth factors as a potential treatment for cognitive decline.
  • Ruonala, Verneri; Pekkonen, Eero; Airaksinen, Olavi; Kankaanpää, Markku; Karjalainen, Pasi A.; Rissanen, Saara M. (2018)
    Levodopa medication is the most efficient treatment for motor symptoms of Parkinson's disease (PD). Levodopa significantly alleviates rigidity, rest tremor, and bradykinesia in PD. The severity of motor symptoms can be graded with UPDRS-III scale. Levodopa challenge test is routinely used to assess patients' eligibility to deep-brain stimulation (DBS) in PD. Feasible and objective measurements to assess motor symptoms of PD during levodopa challenge test would be helpful in unifying the treatment. Twelve patients with advanced PD who were candidates for DBS treatment were recruited to the study. Measurements were done in four phases before and after levodopa challenge test. Rest tremor and rigidity were evaluated using UPDRS-III score. Electromyographic (EMG) signals from biceps brachii and kinematic signals from forearm were recorded with wireless measurement setup. The patients performed two different tasks: arm isometric tension and arm passive flexion-extension. The electromyographic and the kinematic signals were analyzed with parametric, principal component, and spectrum-based approaches. The principal component approach for isometric tension EMG signals showed significant decline in characteristics related to PD during levodopa challenge test. The spectral approach on passive flexion-extension EMG signals showed a significant decrease on involuntary muscle activity during the levodopa challenge test. Both effects were stronger during the levodopa challenge test compared to that of patients' personal medication. There were no significant changes in the parametric approach for EMG and kinematic signals during the measurement. The results show that a wireless and wearable measurement and analysis can be used to study the effect of levodopa medication in advanced Parkinson's disease.
  • Nousiainen, Sini (Helsingfors universitet, 2016)
    Parkinson's disease is a progressive neurodegenerative disease where dopaminergic neurons die in the substantia nigra pars compacta. Dopamine depletion induces typical parkinsonian motor symptoms which are treated by the golden standard medication levodopa and compounds enhancing the effect of levodopa. However in 4-6 years after the initiation of the chronic levodopa therapy abnormal involuntary movements (AIMs, also called levodopa-induced dyskinesia, LID) often develop and can notably worsen the quality of life. The most effective treatment for LID is deep brain stimulation (DBS), but as an invasive method its use is rare and not suitable for all patients. To date the only effective therapy for LID with marketing authorisation is amantadine. The disadvantage of amantadine is loss of efficacy which might appear less than a year after the initiation of medication. The pathophysiology of LID is a diverse phenomenon and includes dysfunctions in several different neurotransmitter systems both in the basal ganglia and in surrounding brain areas. The role of nicotinic acetylcholine receptors (nAChRs) in the pathophysiology of LID has been studied recently. Both nicotine and several nicotine-like agents have been shown to alleviate LID in preclinical studies and nicotine itself has been tested in a clinical phase II study as a potential LID medication. Of various different nAChR subtypes, the α7 receptor seems to be a potential option for future therapy of LID. It has been shown that α7 nAChR knock out mice display an increase in LID suggesting that this nicotinic receptor subtype has an inhibitory impact on the development of LID. Other studies have confirmed this view by showing that a selective α7 nAChR agonist (ABT-107) alleviates LID in primates and is neuroprotective for dopaminergic neurons in rats. Based on these observations, the aim of this study was to examine the effect of a novel α7 nAChR agonist (AZD0328) on LID in a 6-OHDA mouse model of Parkinson's disease. C57BL/6J female mice (n=17) were injected unilaterally 6-OHDA solution (3 µg) into the right medial forebrain bundle (MFB). Degeneration of dopaminergic neurons was detected two weeks after the 6-OHDA injection by measuring the motor performance in rotating rod with accelerated speed and with amphetamine-induced rotametry (2.5 mg/kg, i.p.). In the beginning of the chronic treatment, levodopa (4.5 mg/kg, s.c.) was administered twice daily for four days and then continued once daily (from Mon to Sun) to the end of the experiments. Levodopa treatment had been ongoing for 10 days before the first testing of drug effects. The pretreatment (AZD0328 0.06, 0.19, 1.9 mg/kg or 0.9 % saline, s.c.) was given 30 minutes before levodopa. The study was conducted using a within subject design so that each mouse received all four treatments on four test days during three weeks. Mice were videorecorded for 1 minute 20, 40, 60, 80 and 100 minutes after the levodopa injection was given. After the last recording day mice were killed under anesthesia via perfusion fixation and brains were collected for immunohistochemical staining to measure the extent of degeneration of dopaminergic neurons. 54 % of mice who survived from surgery (13/17) were dyskinetic (n=7). AZD0328 alleviated axial dyskinesia statistically significantly 40 minutes after levodopa injection but the statistical analysis did not reveal which of the doses was the most effective. The pretreatment with AZD0328 did not affect orolingual or forepaw dyskinesia. A potential mechanism of AZD0328 in alleviating LID might be the desensitization of α7 nAChRs which would happen only at very low doses. This means that LID are only attenuated when receptors are temporarily activated and then immediately gradually inactivated. The doses used in this study might have only activated the α7 nAChRs which might explain why no clear alleviation of LID was observed. On the other hand, the acute treatment may also be insufficient to develop desensitization. Additional studies are needed to investigate the effects of chronic administration of AZD0328 on LID in mice.
  • Murros, Kari; Wasiljeff, Joonas; Macías-Sánchez, Elena; Faivre, Damien; Soinne, Lauri; Valtonen, Jussi; Pohja, Marjatta; Saari, Pekka; Pesonen, Lauri J.; Salminen, Johanna M. (2019)
    Magnetic iron oxide nanoparticles, magnetite/maghemite, have been identified in human tissues, including the brain, meninges, heart, liver, and spleen. As these nanoparticles may play a role in the pathogenesis of neurodegenerative diseases, a pilot study explored the occurrence of these particles in the cervical (neck) skin of 10 patients with Parkinson's disease and 10 healthy controls. Magnetometry and transmission electron microscopy analyses revealed magnetite/maghemite nanoparticles in the skin samples of every study participant. Regarding magnetite/maghemite concentrations of the single-domain particles, no significant between-group difference was emerged. In low-temperature magnetic measurement, a magnetic anomaly at similar to 50 K was evident mainly in the dermal samples of the Parkinson group. This anomaly was larger than the effect related to the magnetic ordering of molecular oxygen. The temperature range of the anomaly, and the size-range of magnetite/maghemite, both refute the idea of magnetic ordering of any iron phase other than magnetite. We propose that the explanation for the finding is interaction between clusters of superparamagnetic and single-domain-sized nanoparticles. The source and significance of these particles remains speculative.
  • Koivu, Maija; Huotarinen, Antti; Scheperjans, Filip; Laakso, Aki; Kivisaari, Riku; Pekkonen, Eero (2018)
    Objectives: To evaluate the efficacy and adverse effects of subthalamic deep brain stimulation (STN-DBS) in patients with advanced Parkinson's disease (PD) and the possible correlation between electrode location and clinical outcome. Methods: We retrospectively reviewed 87 PD-related STN-DBS operations at Helsinki University Hospital (HUH) from 2007 to 2014. The changes of Unified Parkinson's Disease Rating Scale (UPDRS) part III score, Hoehn & Yahr stage, antiparkinson medication, and adverse effects were studied. We estimated the active electrode location in three different coordinate systems: direct visual analysis of MRI correlated to brain atlas, location in relation to the nucleus borders and location in relation to the midcommisural point. Results: At 6 months after operation, both levodopa equivalent doses (LEDs; 35%, Wilcoxon signed-rank test = 0.000) and UPDRS part III scores significantly decreased (38%, Wilcoxon signed-rank test = 0.000). Four patients (5%) suffered from moderate DBS-related dysarthria. The generator and electrodes had to be removed in one patient due to infection (1%). Electrode coordinates in the three coordinate systems correlated well with each other. On the left side, more ventral location of the active contact was associated with greater LED decrease. Conclusions: STN-DBS improves motor function and enables the reduction in anti-parkinson medication with an acceptable adverse effect profile. More ventral location of the active contact may allow stronger LED reduction. Further research on the correlation between contact location, clinical outcome, and LED reduction is warranted.
  • Jasmin, Melissa; Ahn, Eun Hee; Voutilainen, Merja H.; Fombonne, Joanna; Guix, Catherine; Viljakainen, Tuulikki; Kang, Seong Su; Yu, Li-ying; Saarma, Mart; Mehlen, Patrick; Ye, Keqiang (2021)
    The netrin-1/DCC ligand/receptor pair has key roles in central nervous system (CNS) development, mediating axonal, and neuronal navigation. Although expression of netrin-1 and DCC is maintained in the adult brain, little is known about their role in mature neurons. Notably, netrin-1 is highly expressed in the adult substantia nigra, leading us to investigate a role of the netrin-1/DCC pair in adult nigral neuron fate. Here, we show that silencing netrin-1 in the adult substantia nigra of mice induces DCC cleavage and a significant loss of dopamine neurons, resulting in motor deficits. Because loss of adult dopamine neurons and motor impairments are features of Parkinson's disease (PD), we studied the potential impact of netrin-1 in different animal models of PD. We demonstrate that both overexpression of netrin-1 and brain administration of recombinant netrin-1 are neuroprotective and neurorestorative in mouse and rat models of PD. Of interest, we observed that netrin-1 levels are significantly reduced in PD patient brain samples. These results highlight the key role of netrin-1 in adult dopamine neuron fate, and the therapeutic potential of targeting netrin-1 signaling in PD.
  • Renko, Juho-Matti; Mahato, Arun Kumar; Visnapuu, Tanel; Valkonen, Konsta; Karelson, Mati; Voutilainen, Merja H.; Saarma, Mart; Tuominen, Raimo K.; Sidorova, Yulia A. (2021)
    Background: Parkinson's disease (PD) is a progressive neurological disorder where loss of dopamine neurons in the substantia nigra and dopamine depletion in the striatum cause characteristic motor symptoms. Currently, no treatment is able to halt the progression of PD. Glial cell line-derived neurotrophic factor (GDNF) rescues degenerating dopamine neurons both in vitro and in animal models of PD. When tested in PD patients, however, the outcomes from intracranial GDNF infusion paradigms have been inconclusive, mainly due to poor pharmacokinetic properties. Objective: We have developed drug-like small molecules, named BT compounds that activate signaling through GDNF's receptor, the transmembrane receptor tyrosine kinase RET, both in vitro and in vivo and are able to penetrate through the blood-brain barrier. Here we evaluated the properties of BT44, a second generation RET agonist, in immortalized cells, dopamine neurons and rat 6-hydroxydopamine model of PD. Methods: We used biochemical, immunohistochemical and behavioral methods to evaluate the effects of BT44 on dopamine system in vitro and in vivo. Results: BT44 selectively activated RET and intracellular pro-survival AKT and MAPK signaling pathways in immortalized cells. In primary midbrain dopamine neurons cultured in serum-deprived conditions, BT44 promoted the survival of the neurons derived from wild-type, but not from RET knockout mice. BT44 also protected cultured wild-type dopamine neurons fromMPP+-induced toxicity. In a rat 6-hydroxydopamine model of PD, BT44 reduced motor imbalance and seemed to protect dopaminergic fibers in the striatum. Conclusion: BT44 holds potential for further development into a novel, possibly disease-modifying, therapy for PD.