Browsing by Subject "Picea abies"

Sort by: Order: Results:

Now showing items 21-40 of 168
  • Rikala, Risto; Jozefek, Helen J. (Suomen metsätieteellinen seura, 1990)
  • Höyhtyä, Riitta; Hänninen, Heikki (Suomen metsätieteellinen seura, 1991)
  • Kubin, Eero; Kemppainen, Lauri (The Society of Forestry in Finland - The Finnish Forest Research Institute, 1994)
    The effect of scarification, ploughing and cross-directional plouhing on temperature conditions in the soil and adjacent air layer have been studied during 11 consecutive growth periods by using an unprepared clear-cut area as a control site. The maximum and minimum temperatures were measured daily in the summer months, and other temperature observations were made at four-hour intervals by means of a Grant measuring instrument. The development of the seedling stand was also followed in order to determine its shading effect on the soil surface. Soil preparation decreased the daily temperature amplitude of the air at the height of 10 cm. The maximum temperatures on sunny days were lower in the tilts of the ploughed and in the humps of the cross-directional ploughed sites compared with the unprepared area. Correspondingly, the night temperatures were higher and so the soil preparation considerably reduced the risk of night frost. In the soil at the depth of 5 cm, soil preparation increased daytime temperatures and reduced night temperatures compared with unprepared area. The maximum increase in monthly mean temperatures was almost 5 °C, and the daily variation in the surface parts of the tilts and humps increased so that excessively high temperatures for the optimal growth of the root system were measured from time to time. The temperature also rose at the depths of 50 and 100 cm. Soil preparation also increased the cumulative temperature sum. The highest sums accumulated during the summer months were recorded at the depth of 5 cm in the humps of cross-directional ploughed area (1127 dd.) and in the tilts of the ploughed area (1106 dd.), while the corresponding figure in the unprepared soil was 718 dd. At the height of 10 cm the highest temperature sum was 1020 dd. in the hump, the corresponding figure in the unprepared area being 925 dd. The incidence of high temperature amplitudes and percentage of high temperatures at the depth of 5 cm decreased most rapidly in the humps of cross-directional ploughed area and in the ploughing tilts towards the end of the measurement period. The decrease was attributed principally to the compressing of tilts, the ground vegetation succession and the growth of seedlings. The mean summer temperature in the unprepared area was lower than in the prepared area and the difference did not diminish during the period studied. The increase in temperature brought about by soil preparation thus lasts at least more than 10 years.
  • Pukkala, Timo; Kolström, Taneli (Suomen metsätieteellinen seura, 1991)
  • Kärkkäinen, Matti (Suomen metsätieteellinen seura, 1984)
  • Hänninen, Heikki; Pelkonen, Paavo (Suomen metsätieteellinen seura, 1988)
  • Mannerkoski, Hannu (Suomen metsätieteellinen seura, 1973)
  • Ollinmaa, Paavo J. (Suomen metsätieteellinen seura, 1960)
  • Kalliokoski, Tuomo; Mäkinen, Harri; Linkosalo, Tapio; Mäkelä-Carter, Annikki (2017)
    The evaluation of process-based models (PBM) includes ascertaining their ability to produce results consistent with forest growth in the past. In this study, we parameterized and evaluated the hybrid model PipeQual with datasets containing traditional mensuration variables collected from permanent sample plots (PSP) of even-aged Norway spruce (Picea abies (L.) Karst.) stands in Finland. To initialize the model in the middle of stand development and reproduce observed changes in Norway spruce crown structure, the built-in empirical relationships of crown characteristics were made explicitly dependent on the light environment. After these modifications, the model accuracy at the whole dataset level was high, with slope values of linear regressions between the observations and simulations ranging from 0.77 to 0.99 depending on the variable. The average bias ranged between -0.72 and 0.07 m in stand dominant height, -0.68 and 0.57 cm in stand mean diameter, -2.62 and 1.92 m(2) in stand basal area, and 20 and 29 m(3) in stand total stem volume. Stand dynamics after thinning also followed reasonable closely the observed patterns. Accurate predictions illustrate the potential of the model for predicting forest stand growth and forest management effects in changing environmental conditions.
  • Hagman, Max (Suomen metsätieteellinen seura, 1980)
  • Zubizarreta-Gerendiain, Ane; Pellikka, Petri; Garcia-Gonzalo, Jordi; Ikonen, Veli-Pekka; Peltola, Heli (2012)
  • Ingves, Jonas (Helsingin yliopisto, 2021)
    The underlying bedrock is known to have effects on metal contents in soil and water, and thereby onto the major and trace nutrient balances in plants. Heavy metal contents in different rock types are highly variable and changes in the composition of the bedrock can happen over small distances. In Finland, the locally relatively abundant black shales in the eastern part of the country contain elevated amounts of several heavy metals, while the generally more common felsic rock types are in comparison depleted in them. The influence of elemental contents in bedrock on metal distribution in nature can be assessed through comparing metal amounts in various kinds of environmental samples, which at the same time enables identification of areas of potential environmental concern. The aim of this study is to assess the influence of bedrock on heavy metal contents in peat, ditch water, and needle samples between areas underlain by felsic or black shale bedrock in nine peatland catchments in Kainuu in eastern Finland. In addition to comparing differences in elemental contents, effort is put into evaluating strengths of correlations between metal concentrations and ash contents in peat samples and to assess which metals have a tendency of occurring together in peat. For ditch water samples, correlations will be evaluated between concentrations of metals and of dissolved organic carbon (DOC) and of amounts of precipitation. In addition to influences of bedrock, other possible reasons behind differences in heavy metal amounts between areas will be looked at. Comparisons with data from other publications will in places also be made. The study is based on material collected by the Natural Resources Institute Finland in the years 2008–2015, which here includes 70 peat, 634 ditch water, and 80 needle samples. All samples were collected in nine separate forestry drained peatland catchments. Five of the catchments were located on areas underlain by felsic bedrock and four by black shales. The peat samples examined in this study range from the surface of the peat layers to 40 cm depth. The ditch water samples were collected from outlet ditches from all nine peatland catchments and needle samples were taken in eight catchments from either Scots pine (Pinus sylvestris L.) or Norway spruce (Picea abies [L.] Karst). Half of the samples were of current year’s and half of previous year’s needles. Laboratory analyses of peat samples included measurements of As, Cd, Co, Cr, Cu, Mn, Ni, Pb, U, and Zn concentrations by either ICP-MS or ICP-AES -methods and of ash contents through loss-on-ignition (LOI). Ditch water samples were analysed for Cd, Cr, Cu, Mn, Ni, Pb, and Zn concentrations with the ICP-AES method, for DOC concentrations by TOC-V CPH/CPN analysis and for sulphate (SO4-S) by ion chromatography. Tree needles were measured for contents of Cr, Cu, Mn, Ni and Zn with ICP-AES. Statistical differences in metal amounts in samples by bedrock were tested with the Mann–Whitney U test and correlations using Spearman’s rank correlation coefficient or the Pearson correlation coefficient. Metal concentrations in peat samples were for some tests recalculated to take into account ash contents using a linear general model. Metal stocks in peat layers (mg/m2) were also calculated for the sampling sites. As the main results, the ash corrected metal concentrations in peat were statistically significantly higher in samples collected on black shale as opposed to felsic bedrock in terms of As, Cd, Co, Mn, Ni, and Zn, while metal stocks in peat were significantly different in terms of Ni. In ditch water, samples from black shale areas had significantly higher concentrations of Cd, Cr, Cu, Ni, and Zn, and in tree needle samples similar significances were observed for Ni. The only cases were samples from felsic areas had significantly higher concentrations than those form black shale areas were the ash corrected concentrations of U and Cu concentrations in needle samples. Regardless of the underlying bedrock, large variations in metal amounts in all sample types were observed between catchment areas. Correlations between metal concentrations and ash contents in peat were generally relatively strong. Correlations between metals in peat were variable, and often stronger in samples collected in felsic areas. In water samples, correlations between metal and DOC concentrations were variable both between metals and catchments. The correlations between precipitation and metal concentrations in ditch water were generally weak. Overall, the composition of the bedrock was noticed to have some effects on metal concentrations in all sample types. But it was evident by the results that there are also other factors controlling metal amounts between catchments.
  • Selander, Jukka; Nuorteva, Matti (Suomen metsätieteellinen seura, 1980)
  • Leppälammi-Kujansuu, Jaana; Aro, Lasse; Salemaa, Maija; Hansson, Karna; Kleja, Dan Berggren; Helmisaari, Heljä-Sisko (2014)
  • Luukkanen, Olavi; Johansson, Stig (Suomen metsätieteellinen seura, 1980)
  • Kallio, Tauno; Selander, Jukka; Uusi-Rauva, Antti (Suomen metsätieteellinen seura, 1974)
  • Etverk, I. (Suomen metsätieteellinen seura, 1980)