Browsing by Subject "STAPHYLOCOCCUS-AUREUS"

Sort by: Order: Results:

Now showing items 21-29 of 29
  • Gilbert-Girard, Shella; Savijoki, Kirsi; Yli-Kauhaluoma, Jari; Fallarero, Adyary (2020)
    In an effort to find new repurposed antibacterial compounds, we performed the screening of an FDA-approved compounds library against Staphylococcus aureus American Type Culture Collection (ATCC) 25923. Compounds were evaluated for their capacity to prevent both planktonic growth and biofilm formation as well as to disrupt pre-formed biofilms. One of the identified initial hits was fingolimod (FTY720), an immunomodulator approved for the treatment of multiple sclerosis, which was then selected for follow-up studies. Fingolimod displayed a potent activity against S. aureus and S. epidermidis with a minimum inhibitory concentration (MIC) within the range of 12-15 mu M at which concentration killing of all the bacteria was confirmed. A time-kill kinetic study revealed that fingolimod started to drastically reduce the viable bacterial count within two hours and we showed that no resistance developed against this compound for up to 20 days. Fingolimod also displayed a high activity against Acinetobacter baumannii (MIC 25 mu M) as well as a modest activity against Escherichia coli and Pseudomonas aeruginosa. In addition, fingolimod inhibited quorum sensing in Chromobacterium violaceum and might therefore target this signaling pathway in certain Gram-negative bacteria. In conclusion, we present the identification of fingolimod from a compound library and its evaluation as a potential repurposed antibacterial compound.
  • Manner, Suvi; Fallarero, Adyary (2018)
    Owing to the failure of conventional antibiotics in biofilm control, alternative approaches are urgently needed. Inhibition of quorum sensing (QS) represents an attractive target since it is involved in several processes essential for biofilm formation. In this study, a compound library of natural product derivatives (n = 3040) was screened for anti-quorum sensing activity using Chromobacterium violaceum as reporter bacteria. Screening assays, based on QS-mediated violacein production and viability, were performed in parallel to identify non-bactericidal QS inhibitors (QSIs). Nine highly active QSIs were identified, while 328 compounds were classified as moderately actives and 2062 compounds as inactives. Re-testing of the highly actives at a lower concentration against C. violaceum, complemented by a literature search, led to the identification of two flavonoid derivatives as the most potent QSIs, and their impact on biofilm maturation in Escherichia coli and Pseudomonas aeruginosa was further investigated. Finally, effects of these leads on swimming and swarming motility of P. aeruginosa were quantified. The identified flavonoids affected all the studied QS-related functions at micromolar concentrations. These compounds can serve as starting points for further optimization and development of more potent QSIs as adjunctive agents used with antibiotics in the treatment of biofilms.
  • Fedorowicz, Joanna; Saczewski, Jaroslaw; Konopacka, Agnieszka; Waleron, Krzysztof; Lejnowski, Dawid; Ciura, Krzesimir; Tomasic, Tihomir; Skok, Ziga; Savijoki, Kirsi; Morawska, Malgorzata; Gilbert-Girard, Sheila; Fallarero, Adyary (2019)
    A series of novel fluoroquinolone-Safirinium dye hybrids was synthesized by means of tandem Mannich-electrophilic amination reactions from profluorophoric isoxazolones and antibiotics bearing a secondary amino group at position 7 of the quinoline ring. The obtained fluorescent spiro fused conjugates incorporating quaternary nitrogen atoms were characterized by H-1 NMR, IR, MS, and elemental analysis. All the synthetic analogues (3a-h and 4a-h) were evaluated for their in vitro antimicrobial, bactericidal, and antibiofilm activities against a panel of Gram positive and Gram-negative pathogenic bacteria. The most active Safirinium Q derivatives of lomefloxacin (4d) and ciprofloxacin (4e) exhibited molar-based antibacterial activities comparable to the unmodified drugs and displayed considerable inhibitory potencies in E. coli DNA gyrase supercoiling assays with IC50 values in the low micromolar range. Zwiterionic hybrids were noticeably less lipophilic than the parent quinolones in micellar electrokinetic chromatography (MECK) experiments. The tests performed in the presence of phenylalanine-arginine-beta-naphthylamide (PA beta N) or carbonyl cyanide m-chlorophenylhydrazone (CCCP) revealed that the conjugates are to some extent subject to bacterial efflux and cellular accumulation, respectively. Moreover, the hybrids did not exhibit notable cytotoxicity towards the HEK 293 control cell line and demonstrated low propensity for resistance development, as exemplified for compounds 3g and 4b. Finally, molecular docking experiments revealed that the synthesized compounds were able to bind in the fluoroquinolone-binding mode at S. aureus DNA gyrase and S. pneumoniae topoisomerase IV active sites. (C) 2019 Elsevier Masson SAS. All rights reserved.
  • Durcik, Martina; Tammela, Päivi Sirpa Marjaana; Barančoková, Michaela; Tomašič, Tihomir; Ilaš, Janez; Kikelj, Danijel; Zidar, Nace (2018)
    ATP-competitive inhibitors of DNA gyrase and topoisomerase IV are among the most interesting classes of antibacterial drugs that are unrepresented in the antibacterial pipeline. We developed 32 new N-phenylpyrrolamides and evaluated them against DNA gyrase and topoisomerase IV from E.coli and Staphylococcus aureus. Antibacterial activities were studied against Gram-positive and Gram-negative bacterial strains. The most potent compound displayed an IC50 of 47 nm against E.coli DNA gyrase, and a minimum inhibitory concentration (MIC) of 12.5 mu m against the Gram-positive Enterococcus faecalis. Some compounds displayed good antibacterial activities against an efflux-pump-deficient E.coli strain (MIC=6.25 mu m) and against wild-type E.coli in the presence of efflux pump inhibitor PA beta N (MIC=3.13 mu m). Here we describe new findings regarding the structure-activity relationships of N-phenylpyrrolamide DNA gyrase B inhibitors and investigate the factors that are important for the antibacterial activity of this class of compounds.
  • Fyhrquist, Nanna (2019)
    Allergic diseases have been increasing to epidemic proportions during the past century, especially in high-income countries. Recent evidence suggests there might be a link between the allergy epidemic and reduced microbial exposures, resulting from a rapidly evolved modern lifestyle, including changed diets, health and hygiene standards, and daily habits. Recently it has become clear that the microbial communities in our respiratory system and our gut, as well as on our skin, may play a key role in shaping our physiology, and influencing our health. We are only beginning to understand the mechanisms by which the human microbiota may be regulating the immune system, and sudden changes in the composition of the microbiota may have profound effects, linked with an increased risk of developing chronic inflammatory disorders, including allergies.
  • Douillard, Francois P.; Rasinkangas, Pia; Bhattacharjee, Arnab; Palva, Airi; de Vos, Willem M. (2016)
    Predominantly identified in pathogenic Gram-positive bacteria, sortase-dependent pili are also found in commensal species, such as the probiotic-marketed strain Lactobacillus rhamnosus strain GG. Pili are typically associated with host colonization, immune signalling and biofilm formation. Comparative analysis of the N-terminal domains of pilin-specific sortases from various piliated Gram-positive bacteria identified a conserved motif, called GYPSY, within the signal sequence. We investigated the function and role of the GYPSY residues by directed mutagenesis in homologous (rod-shaped) and heterologous (coccoid-shaped) expression systems for pilus formation. Substitutions of some of the GYPSY residues, and more specifically the proline residue, were found to have a direct impact on the degree of piliation of Lb. rhamnosus GG. The present findings uncover a new signalling element involved in the functionality of pilin-specific sortases controlling the pilus biogenesis of Lb. rhamnosus GG and related piliated Gram-positive species.
  • Radtke, Aleksandra; Ehlert, Michalina; Jcdrzejewski, Tomasz; Sadowska, Beata; Wieckowska-Szakiel, Marzena; Holopainen, Jani; Ritala, Mikko; Leskelä, Markku; Bartmanski, Michal; Szkodo, Marek; Piszczek, Piotr (2019)
    Titanium dioxide nanotubes/hydroxyapatite nanocomposites were produced on a titanium alloy (Ti6Al4V/TNT/HA) and studied as a biocompatible coating for an implant surface modification. As a novel approach for this type of nanocomposite fabrication, the atomic layer deposition (ALD) method with an extremely low number of cycles was used to enrich titania nanotubes (TNT) with a very thin hydroxyapatite coating. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for determination of the structure and the surface morphology of the fabricated nanocoatings. The biointegration activity of the layers was estimated based on fibroblasts' proliferation on the TNT/HA surface. The antibacterial activity was determined by analyzing the ability of the layers to inhibit bacterial colonization and biofilm formation. Mechanical properties of the Ti6Al4V /TNT/HA samples were estimated by measuring the hardness, Young's module, and susceptibility to scratching. The results revealed that the nanoporous titanium alloy coatings enriched with a very thin hydroxyapatite layer may be a promising way to achieve the desired balance between biofunctional and biomechanical properties of modern implants.
  • Nicol, Marion; Alexandre, Stephane; Luizet, Jean-Baptiste; Skogman, Malena; Jouenne, Thierry; Salcedo, Suzana P.; De, Emmanuelle (2018)
    The increasing threat of Acinetobacter baumannii as a nosocomial pathogen is mainly due to the occurrence of multidrug-resistant strains that are associated with the real problem of its eradication from hospital wards. The particular ability of this pathogen to form biofilms contributes to its persistence, increases antibiotic resistance, and promotes persistent/device-related infections. We previously demonstrated that virstatin, which is a small organic compound known to decrease virulence of Vibrio cholera via an inhibition of T4-pili expression, displayed very promising activity to prevent A. baumannii biofilm development. Here, we examined the antibiofilm activity of mono-unsaturated chain fatty acids, palmitoleic (PoA), and myristoleic (MoA) acids, presenting similar action on V. cholerae virulence. We demonstrated that PoA and MoA (at 0.02 mg/mL) were able to decrease A. baumannii ATCC 17978 biofilm formation up to 38% and 24%, respectively, presented a biofilm dispersing effect and drastically reduced motility. We highlighted that these fatty acids decreased the expression of the regulator abaR from the LuxIR-type quorum sensing (QS) communication system AbaIR and consequently reduced the N-acyl-homoserine lactone production (AHL). This effect can be countered by addition of exogenous AHLs. Besides, fatty acids may have additional non-targeted effects, independent from QS. Atomic force microscopy experiments probed indeed that PoA and MoA could also act on the initial adhesion process in modifying the material interface properties. Evaluation of fatty acids effect on 22 clinical isolates showed a strain-dependent antibiofilm activity, which was not correlated to hydrophobicity or pellicle formation ability of the tested strains, and suggested a real diversity in cell-to-cell communication systems involved in A. baumannii biofilm formation.
  • Moreno-Cinos, Carlos; Sassetti, Elisa; Salado, Irene G.; Witt, Gesa; Benramdane, Siham; Reinhardt, Laura; Cruz, Cristina D.; Joossens, Jurgen; Van der Veken, Pieter; Brötz-Oesterhelt, Heike; Tammela, Päivi Sirpa Marjaana; Winterhalter, Mathias; Gribbon, Philip; Windshügel, Björn; Augustyns, Koen (2019)
    Increased Gram-negative bacteria resistance to antibiotics is becoming a global problem, and new classes of antibiotics with novel mechanisms of action are required. The caseinolytic protease subunit P (ClpP) is a serine protease conserved among bacteria that is considered as an interesting drug target. ClpP function is involved in protein turnover and homeostasis, stress response, and virulence among other processes. The focus of this study was to identify new inhibitors of Escherichia coli ClpP and to understand their mode of action. A focused library of serine protease inhibitors based on diaryl phosphonate warheads was tested for ClpP inhibition, and a chemical exploration around the hit compounds was conducted. Altogether, 14 new potent inhibitors of E. coli ClpP were identified. Compounds 85 and 92 emerged as most interesting compounds from this study due to their potency and, respectively, to its moderate but consistent antibacterial properties as well as the favorable cytotoxicity profile.