Browsing by Subject "VARIABILITY"

Sort by: Order: Results:

Now showing items 21-40 of 97
  • Kluger, Nicolas; Bouissou, Antoine; Tauzin, Laurent; Puechberty, Jacques; Dereure, Olivier (2014)
  • Luoto, Tomi P.; Ojala, Antti E.K. (2018)
    Arctic freshwater basins are diversity hotspots and sentinels of climate change, but their long-term variability and the environmental variables controlling them are not well defined. We examined four available lake sediment sequences from High Arctic Svalbard for their subfossil Chironomidae communities, biodiversity and functional traits and assessed the influence of climatic and limnological variability on the long-term ecological dynamics. Our results indicated that collector-filterers had an important role in the oligotrophic sites, whereas collector-gatherers dominated the nutrient-enriched sites with significant bird guano inputs. In the oligotrophic sites, benthic production, taxon richness and taxonomic and functional diversity were highest during the early Holocene, when temperatures showed a rapid increase. An increase in subfossil abundance and diversity metrics was also found in recent samples of the oligotrophic sites, but not in the bird-impacted sites, where the trends were decreasing. When partitioning out the environmental forcing on chironomid communities, the influence of climate was significant in all the sites, whereas in-lake production (organic matter) was significant in two of the sites and catchment erosion (magnetic susceptibility) had only minor influence. The findings suggest that major changes in Arctic chironomid assemblages were driven by climate warming with increasing diversity in oligotrophic sites, but deteriorating ecological functions in environmentally stressed sites. We found that although taxonomic and functional diversity were always coupled, taxonomical and functional turnovers were coupled only in the oligotrophic sites suggesting that the ecological functions operated by chironomids in these low-productivity sites may not be as resilient to future environmental change.
  • Lucena-Moya, Paloma; Duggan, Ian C. (2017)
    We tested whether variability in zooplankton assemblages was consistent with the categories of estuarine environments proposed by the 'Estuary Environment Classification' system (EEC) (Hume et al., 2007) across a variety of North Island, New Zealand, estuaries. The EEC classifies estuaries in to eight categories (A to F) based primarily on a combination of three abiotic controlling factors: ocean forcing, river forcing and basin morphometry. Additionally, we tested whether Remane's curve, which predicts higher diversities of benthic macrofauna and high and low salinities, can be applied to zooplankton assemblages. We focused on three of the eight EEC categories (B, D and F), which covered the range of estuaries with river inputs dominating (B) to ocean influence dominating (F). Additionally, we included samples from river (FW) and sea (MW) to encompass the entire salinity range. Zooplankton assemblages varied across the categories examined in accordance with a salinity gradient predicted by the EEC. Three groups of zooplankton were distinguishable: the first formed by the most freshwater categories, FW and B, and dominated by rotifers (primarily Bdelloidea) and estuarine copepods (Gladioferans pectinatus), a second group formed by categories D and F, of intermediate salinity, dominated by copepods (Euterpina acutifrons), and a final group including the purely marine category MW and dominated also by E. acutifrons along with other marine taxa. Zooplankton diversity responded to the salinity gradient in a manner expected from Remane's curve. The results of this study support others which have shown salinity to be the main factor driving zooplankton community composition and diversity. (C) 2016 Elsevier Ltd. All rights reserved.
  • Dugan, Hilary A.; Summers, Jamie C.; Skaff, Nicholas K.; Krivak-Tetley, Flora E.; Doubek, Jonathan P.; Burke, Samantha M.; Bartlett, Sarah L.; Arvola, Lauri; Jarjanazi, Hamdi; Korponai, Jnos; Kleeberg, Andreas; Monet, Ghislaine; Monteith, Don; Moore, Karen; Rogora, Michela; Hanson, Paul C.; Weathers, Kathleen C. (2017)
    Anthropogenic sources of chloride in a lake catchment, including road salt, fertilizer, and wastewater, can elevate the chloride concentration in freshwater lakes above background levels. Rising chloride concentrations can impact lake ecology and ecosystem services such as fisheries and the use of lakes as drinking water sources. To analyze the spatial extent and magnitude of increasing chloride concentrations in freshwater lakes, we amassed a database of 529 lakes in Europe and North America that had greater than or equal to ten years of chloride data. For each lake, we calculated climate statistics of mean annual total precipitation and mean monthly air temperatures from gridded global datasets. We also quantified land cover metrics, including road density and impervious surface, in buffer zones of 100 to 1,500m surrounding the perimeter of each lake. This database represents the largest global collection of lake chloride data. We hope that long-term water quality measurements in areas outside Europe and North America can be added to the database as they become available in the future.
  • Kari, Elina; Merkouriadi, Ioanna; Walve, Jakob; Leppäranta, Matti; Kratzer, Susanne (2018)
    Seasonal sea ice cover reduces wind-driven mixing and allows for under-ice stratification to develop. These under-ice plumes are a common phenomenon in the seasonal sea ice zone. They stabilize stratification and concentrate terrestrial runoff in the top layer, transporting it further offshore than during ice-free seasons. In this study, the effect of sea ice on spring stratification is investigated in Himmerfjärden bay in the NW Baltic Sea. Distinct under-ice plumes were detected during long ice seasons. The preconditions for the development of the under-ice plumes are described as well as the typical spatial and temporal dimensions of the resulting stratification patterns. Furthermore, the effect of the under-ice plume on the timing of the onset and the maximum of the phytoplankton spring bloom were investigated, in terms of chlorophyll-a (Chl-a) concentrations. At the head of the bay, bloom onset was delayed on average by 18 days in the event of an under-ice plume. However, neither the maximum concentration of Chl-a nor the timing of the Chl-a maximum were affected, implying that the growth period was shorter with a higher daily productivity. During this period from spring bloom onset to maximum Chl-a, the diatom biomass was higher and Mesodinium rubrum biomass was lower in years with under-ice plumes compared to years without under-ice plumes. Our results thus suggest that the projected shorter ice seasons in the future will reduce the probability of under-ice plume development, creating more dynamic spring bloom conditions. These dynamic conditions and the earlier onset of the spring bloom seem to favor the M. rubrum rather than diatoms.
  • Bousquet, Jean; Anto, Josep M.; Haahtela, Tari; Jousilahti, Pekka; Erhola, Marina; Basagana, Xavier; Czarlewski, Wienczyslawa; Odemyr, Mikaela; Palkonen, Susanna; Sofiev, Mikael; Velasco, Cesar; Bedbrook, Anna; Delgado, Rodrigo; Kouznetsov, Rostislav; Mäkelä, Mika; Palamarchuk, Yuliia; Saarinen, Kimmo; Tommila, Erja; Valovirta, Erkka; Vasankari, Tuula; Zuberbier, Torsten; Annesi-Maesano, Isabella; Benveniste, Samuel; Mathieu-Dupas, Eve; Pepin, Jean-Louis; Picard, Robert; Zeng, Stephane; Ayache, Julia; Calves Venturos, Nuria; Micheli, Yann; Jullian-Desayes, Ingrid; Laune, Daniel (2020)
    In December 2019, a conference entitled "Europe That Protects: Safeguarding Our Planet, Safeguarding Our Health" was held in Helsinki. It was co-organized by the Finnish Institute for Health and Welfare, the Finnish Environment Institute and the European Commission, under the auspices of Finland's Presidency of the EU. As a side event, a symposium organized as the final POLLAR (Impact of air POLLution on Asthma and Rhinitis) meeting explored the digital transformation of health and care to sustain planetary health in airway diseases. The Finnish Allergy Programme collaborates with MASK (Mobile Airways Sentinel NetworK) and can be considered as a proof-of-concept to impact Planetary Health. The Good Practice of DG Sante (The Directorate-General for Health and Food Safety) on digitally-enabled, patient-centred care pathways is in line with the objectives of the Finnish Allergy Programme. The ARIACARE-Digital network has been deployed in 25 countries. It represents an example of the digital cross-border exchange of real-world data and experience with the aim to improve patient care. The integration of information technology tools for climate, weather, air pollution and aerobiology in mobile Health applications will enable the development of an alert system. Citizens will thus be informed about personal environmental threats, which may also be linked to indicators of Planetary Health and sustainability. The digital transformation of the public health policy was also proposed, following the experience of the Agency for Health Quality and Assessment of Catalonia (AQuAS).
  • García Velázquez, Regina; Jokela, Markus; Rosenstrom, Tom Henrik (2020)
    Psychopathology could arise from direct interactions between symptoms. Evidence suggests that the mechanisms underlying somatic and cognitive-affective symptoms of depression are different. The aim of this study was to explore dynamic associations among cognitive-affective depression criteria. We used distribution-based direction of dependence models, which estimate whether the presence of symptom A is more likely to depend on the presence of symptom B than vice versa. We analyzed six large samples of adults from the United States (N = 34,963) and conducted a simulation study to test the performance of the algorithm with ordinal variables and a second simulation study focusing on Type I error. Our results were consistent with the literature: Depressed mood and anhedonia were reactive to changes in other symptoms, whereas suicidality may reinforce other symptoms or reflect factors doing so. We discuss the results in the context of other empirical findings and theories of depression, reflect on the potential of these methods in psychopathology, and consider some practical implications.
  • Kangasniemi, Oskari; Kuuluvainen, Heino; Heikkilä, Joni; Pirjola, Liisa; Niemi, Jarkko V.; Timonen, Hilkka; Saarikoski, Sanna; Rönkkö, Topi; Dal Maso, Miikka (2019)
    Traffic is a major source of ultrafine aerosol particles in urban environments. Recent studies show that a significant fraction of traffic-related particles are only few nanometers in diameter. Here, we study the dispersion of this nanocluster aerosol (NCA) in the size range 1.3-4 nm. We measured particle concentrations near a major highway in the Helsinki region of Finland, varying the distance from the highway. Additionally, modelling studies were performed to gain further information on how different transformation processes affect NCA dispersion. The roadside measurements showed that NCA concentrations fell more rapidly than the total particle concentrations, especially during the morning. However, a significant amount of NCA particles remained as the aerosol population evolved. Modelling studies showed that, while dilution is the main process acting on the total particle concentration, deposition also had a significant impact. Condensation and possibly enhanced deposition of NCA were the main plausible processes explaining why dispersion is faster for NCA than for total particle concentration, while the effect of coagulation on all size ranges was small. Based on our results, we conclude that NCA may play a significant role in urban environments, since, rather than being scavenged by larger particles, NCA particles remain in the particle population and grow by condensation.
  • Ruppel, Meri M.; Soares, Joana; Gallet, Jean-Charles; Isaksson, Elisabeth; Martma, Tonu; Svensson, Jonas; Kohler, Jack; Pedersen, Christina A.; Manninen, Sirkku; Korhola, Atte; Strom, Johan (2017)
    The climate impact of black carbon (BC) is notably amplified in the Arctic by its deposition, which causes albedo decrease and subsequent earlier snow and ice spring melt. To comprehensively assess the climate impact of BC in the Arctic, information on both atmospheric BC concentrations and deposition is essential. Currently, Arctic BC deposition data are very scarce, while atmospheric BC concentrations have been shown to generally decrease since the 1990s. However, a 300-year Svalbard ice core showed a distinct increase in EC (elemental carbon, proxy for BC) deposition from 1970 to 2004 contradicting atmospheric measurements and modelling studies. Here, our objective was to decipher whether this increase has continued in the 21st century and to investigate the drivers of the observed EC deposition trends. For this, a shallow firn core was collected from the same Svalbard glacier, and a regional-to-meso-scale chemical transport model (SILAM) was run from 1980 to 2015. The ice and firn core data indicate peaking EC deposition values at the end of the 1990s and lower values thereafter. The modelled BC deposition results generally support the observed glacier EC variations. However, the ice and firn core results clearly deviate from both measured and modelled atmospheric BC concentration trends, and the modelled BC deposition trend shows variations seemingly independent from BC emission or atmospheric BC concentration trends. wet-deposited at this Svalbard glacier, indicating that meteorological processes such as precipitation and scavenging efficiency have most likely a stronger influence on the BC deposition trend than BC emission or atmospheric concentration trends. BC emission source sectors contribute differently to the modelled atmospheric BC concentrations and BC deposition, which further supports our conclusion that different processes affect atmospheric BC concentration and deposition trends. Consequently, Arctic BC deposition trends should not directly be inferred based on atmospheric BC measurements, and more observational BC deposition data are required to assess the climate impact of BC in Arctic snow.
  • Calabro, Lorenzo; Bougouin, Wulfran; Cariou, Alain; De Fazio, Chiara; Skrifvars, Markus; Soreide, Eldar; Creteur, Jacques; Kirkegaard, Hans; Legriel, Stephane; Lascarrou, Jean-Baptiste; Megarbane, Bruno; Deye, Nicolas; Taccone, Fabio Silvio (2019)
    Background Although targeted temperature management (TTM) is recommended in comatose survivors after cardiac arrest (CA), the optimal method to deliver TTM remains unknown. We performed a meta-analysis to evaluate the effects of different TTM methods on survival and neurological outcome after adult CA. Methods We searched on the MEDLINE/PubMed database until 22 February 2019 for comparative studies that evaluated at least two different TTM methods in CA patients. Data were extracted independently by two authors. We used the Newcastle-Ottawa Scale and a modified Cochrane ROB tools for assessing the risk of bias of each study. The primary outcome was the occurrence of unfavorable neurological outcome (UO); secondary outcomes included overall mortality. Results Our search identified 6886 studies; 22 studies (n = 8027 patients) were included in the final analysis. When compared to surface cooling, core methods showed a lower probability of UO (OR 0.85 [95% CIs 0.75-0.96]; p = 0.008) but not mortality (OR 0.88 [95% CIs 0.62-1.25]; p = 0.21). No significant heterogeneity was observed among studies. However, these effects were observed in the analyses of non-RCTs. A significant lower probability of both UO and mortality were observed when invasive TTM methods were compared to non-invasive TTM methods and when temperature feedback devices (TFD) were compared to non-TFD methods. These results were significant particularly in non-RCTs. Conclusions Although existing literature is mostly based on retrospective or prospective studies, specific TTM methods (i.e., core, invasive, and with TFD) were associated with a lower probability of poor neurological outcome when compared to other methods in adult CA survivors (CRD42019111021).
  • Toth, Timea; Balassa, Tamas; Bara, Norbert; Kovacs, Ferenc; Kriston, Andras; Molnar, Csaba; Haracska, Lajos; Sukosd, Farkas; Horvath, Peter (2018)
    To answer major questions of cell biology, it is often essential to understand the complex phenotypic composition of cellular systems precisely. Modern automated microscopes produce vast amounts of images routinely, making manual analysis nearly impossible. Due to their efficiency, machine learningbased analysis software have become essential tools to perform single-cell-level phenotypic analysis of large imaging datasets. However, an important limitation of such methods is that they do not use the information gained from the cellular micro-and macroenvironment: the algorithmic decision is based solely on the local properties of the cell of interest. Here, we present how various features from the surrounding environment contribute to identifying a cell and how such additional information can improve single-cell-level phenotypic image analysis. The proposed methodology was tested for different sizes of Euclidean and nearest neighbour-based cellular environments both on tissue sections and cell cultures. Our experimental data verify that the surrounding area of a cell largely determines its entity. This effect was found to be especially strong for established tissues, while it was somewhat weaker in the case of cell cultures. Our analysis shows that combining local cellular features with the properties of the cell's neighbourhood significantly improves the accuracy of machine learning-based phenotyping.
  • Wu, Kai; Yang, Xianyu; Chen, Dean; Gu, Shan; Lu, Yaqiong; Jiang, Qi; Wang, Kun; Ou, Yihan; Qian, Yan; Shao, Ping; Lu, Shihua (2020)
    Biogenic volatile organic compounds (BVOC) play an important role in global environmental chemistry and climate. In the present work, biogenic emissions from China in 2017 were estimated based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN). The effects of BVOC emissions on ozone and secondary organic aerosol (SOA) formation were investigated using the WRF-CMAQ modeling system. Three parallel scenarios were developed to assess the impact of BVOC emissions on China's ozone and SOA formation in July 2017. Biogenic emissions were estimated at 23.54 Tg/yr, with a peak in the summer and decreasing from southern to northern China. The high BVOC emissions across eastern and southwestern China increased the surface ozone levels, particularly in the BTH (Beijing-Tianjin-Hebei), SCB (Sichuan Basin), YRD (Yangtze River Delta) and central PRD (Pearl River Delta) regions, with increases of up to 47 μg m−3 due to the sensitivity of VOC-limited urban areas. In summer, most SOA concentrations formed over China are from biogenic sources (national average of 70%). And SOA concentrations in YRD and SCB regions are generally higher than other regions. Excluding anthropogenic emissions while keeping biogenic emissions unchanged results that SOA concentrations reduce by 60% over China, which indicates that anthropogenic emissions can interact with biogenic emissions then facilitate biogenic SOA formation. It is suggested that controlling anthropogenic emissions would result in reduction of both anthropogenic and biogenic SOA.
  • Urraca, Ruben; Huld, Thomas; Gracia-Amillo, Ana; Martinez-de-Pison, Francisco Javier; Kaspar, Frank; Sanz-Garcia, Andres (2018)
    This study examines the progress made by two new reanalyses in the estimation of surface irradiance: ERAS, the new global reanalysis from the ECMWF, and COSMO-REA6, the regional reanalysis from the DWD for Europe. Daily global horizontal irradiance data were evaluated with 41 BSRN stations worldwide, 294 stations in Europe, and two satellite-derived products (NSRDB and SARAH). ERAS achieves a moderate positive bias worldwide and in Europe of + 4.05 W/m 2 and + 4.54 W/m 2 respectively, which entails a reduction in the average bias ranging from 50% to 75% compared to ERA-Interim and MERRA-2. This makes ERAS comparable with satellite-derived products in terms of the mean bias in most inland stations, but ERAS results degrade in coastal areas and mountains. The bias of ERAS varies with the cloudiness, overestimating under cloudy conditions and slightly underestimating under clear-skies, which suggests a poor prediction of cloud patterns and leads to larger absolute errors than that of satellite-based products. In Europe, the regional COSMO-REA6 underestimates in most stations (MBE = -5.29 W/m(2)) showing the largest deviations under clear-sky conditions, which is most likely caused by the aerosol climatology used. Above 45 degrees N the magnitude of the bias and absolute error of COSMO-REA6 are similar to ERAS while it outperforms ERA5 in the coastal areas due to its high-resolution grid (6.2 km). We conclude that ERAS and COSMO-REA6 have reduced the gap between reanalysis and satellite-based data, but further development is required in the prediction of clouds while the spatial grid of ERAS (31 km) remains inadequate for places with high variability of surface irradiance (coasts and mountains). Satellite-based data should be still used when available, but having in mind their limitations, ERAS is a valid alternative for situations in which satellite-based data are missing (polar regions and gaps in times series) while COSMO-REA6 complements ERA5 in Central and Northern Europe mitigating the limitations of ERA5 in coastal areas.
  • Hasan, Shah Md. Kamrul; Orro, Toomas; Valros, Anna; Junnikkala, Sami; Peltoniemi, Olli; Oliviero, Claudio (2019)
    The present study investigated sow colostrum yield (CY), colostrum composition and factors affecting them, and their relation to piglet survivability, growth and mortality. The study included 230 sows with 3,210 live-born piglets from five Finnish and one Dutch sow herd. Sow farrowing was supervised, and piglets were individually weighed at birth (BWB) and 24 h after birth of first piglet in order to calculate piglet CI and sow CY. Colostrum nutritional composition, immunoglobulin (Ig), serum amyloid A (SAA) and haptoglobin (Hp) contents were assessed. Sow plasma SAA, Hp and progesterone around farrowing were also assessed. Selected ear-tagged piglets were weighed at 3 to 4 weeks of age to calculate individual average daily gain. Sow CY was positively correlated with plasma Hp (P = 0.029) and number of live-born piglets (P < 0.01). An additional minute of farrowing duration lowered the CY by 2.2 g (P = 0.01). Piglet CI was positively associated with piglet weight at birth (P < 0.001) and negatively associated with the number of live-born piglets in the litter and percentage of protein in the colostrum (P < 0.001). Both piglet CI and birth weight were positively associated with piglet average daily gain (ADG) (P < 0.001). Piglet survival from birth to weaning depends on CI. We established that the risk of piglet death or of a piglet being treated with antibiotic before weaning increases with a decrease in sow back fat thickness at farrowing (P = 0.04). Similarly, we found that piglets from litters with low BWB and low CI had a higher risk of death before weaning (P < 0.001). Piglets born from sows with lower levels of colostrum IgA and SAA and high plasma progesterone at the end of farrowing had a higher risk of neonatal diarrhea (P = 0.04; P = 0.05; P = 0.04). Piglets born from sows having higher back fat thickness at weaning had a higher risk of developing weaning diarrhea (P = 0.02). In conclusion, longer farrowing duration can be detrimental and can negatively influence sow CY. Sow body condition and physiological status around farrowing can also affect CY, and thereby increase piglet mortality and use of antibiotics in neonatal piglets. Neonatal piglets can benefit from higher colostrum immunoglobulins, SAA, and decreased level of plasma progesterone in sows at the end of farrowing.
  • Karppinen, Jari E.; Rottensteiner, Mirva; Wiklund, Petri; Hamalainen, Kaisa; Laakkonen, Eija K.; Kaprio, Jaakko; Kainulainen, Heikki; Kujala, Urho M. (2019)
    Purpose We aimed to investigate if hereditary factors, leisure-time physical activity (LTPA) and metabolic health interact with resting fat oxidation (RFO) and peak fat oxidation (PFO) during ergometer cycling. Methods We recruited 23 male monozygotic twin pairs (aged 32-37 years) and determined their RFO and PFO with indirect calorimetry for 21 and 19 twin pairs and for 43 and 41 twin individuals, respectively. Using physical activity interviews and the Baecke questionnaire, we identified 10 twin pairs as LTPA discordant for the past 3 years. Of the twin pairs, 8 pairs participated in both RFO and PFO measurements, and 2 pairs participated in either of the measurements. We quantified the participants' metabolic health with a 2-h oral glucose tolerance test. Results Fat oxidation within co-twins was correlated at rest [intraclass correlation coefficient (ICC) = 0.54, 95% confidence interval (CI) 0.15-0.78] and during exercise (ICC = 0.67, 95% CI 0.33-0.86). The LTPA-discordant pairs had no pairwise differences in RFO or PFO. In the twin individual-based analysis, PFO was positively correlated with the past 12-month LTPA (r = 0.26, p = 0.034) and the Baecke score (r = 0.40, p = 0.022) and negatively correlated with the area under the curve of insulin (r = - 0.42, p = 0.015) and glucose (r = - 0.31, p = 0.050) during the oral glucose tolerance test. Conclusions Hereditary factors were more important than LTPA for determining fat oxidation at rest and during exercise. Additionally, PFO, but not RFO, was associated with better metabolic health.
  • Virtanen, Irina; Kalleinen, Nea; Urrila, Anna S.; Polo-Kantola, Päivi (2018)
    Objectives: In sleep laboratory studies, the new environment is generally considered to disturb sleep during the first night. However, older women have rarely been studied. Although menopause and hormone therapy affect sleep, their impact on the first-night effect is virtually unknown. Participants: Four groups of women with no sleep laboratory experience: young on hormonal contraceptives (n = 11, 23.1 [0.5] years), perimenopausal (n = 15, 48.0 (0.4] years), postmenopausal without hormone therapy (HT; off-HT, n = 22, 63.4 [0.8] years) and postmenopausal with HT (n = 16, 63.1 [0.9] years). Procedure: A cross-sectional study. Methods: Polysomnography was performed over two consecutive nights and the first-night effect and group differences were evaluated. Questionnaire-based insomnia and sleepiness scores were correlated to sleep variables and their between-night changes. Results: Although sleep in young women was deeper and less fragmented than in the other groups, first-night effect was similar in all study groups. Total sleep time, sleep efficiency, and S1 and S2 sleep increased, and wake after sleep onset, awakenings per hour of sleep, S2 and REM latencies, and percentage of SWS decreased from the first to the second night. Perimenopausal women had more insomnia complaints than other women. Insomnia complaints were associated with more disturbed sleep but not with the first-night effect. Conclusions: A first night in a sleep laboratory elicits a marked interference of sleep architecture in women of all ages, with a carryover effect of lighter sleep on the second study night. Menopausal state, HT use, or insomnia complaints do not modify this effect.
  • Forsell, Sabrina; Kalliala, Ilkka; Halttunen, Mervi; Redman, Charles W. E.; Leeson, Simon; Tropé, Ameli; Moss, Esther; Kyrgiou, Maria; Pyörälä, Eeva; Nieminen, Pekka (2020)
    Simple Summary Cervical cancer prevention is presently undergoing a thorough reformation due to introduction of human papillomavirus (HPV)-testing and vaccines in primary prevention. The screening program, however, is more than a single test or preventive intervention-the possible lesion has to be found, located and treated. Colposcopy plays a major role in this management. Literature dealing with training and learning, especially with colposcopy, is extremely scarce. The aim of the European Federation of Colposcopy, EFC, is to improve the education and training in colposcopy, e.g., by organizing colposcopy courses. The aim of our prospective interventional study was to pilot this intensive participant activating EFC Basic Colposcopy Course on the short- and long-term learning of colposcopy-related knowledge, image recognition and the diagnostic confidence. High-quality colposcopy is essential in cervical cancer prevention. We performed a multicentre prospective interventional pilot-study, evaluating the effect of a six-hour case-based colposcopy course on short- and long-term learning of colposcopy-related knowledge, diagnostic accuracy levels and confidence. We recruited 213 colposcopists participating in three European Federation of Colposcopy (EFC) basic colposcopy courses (Finland, Norway, UK). The study consisted of three tests with identical content performed before, after and 2 months after the course, including ten colposcopic images, ten patient cases and scales for marking confidence in the answers. Outcome measures where mean scores in correct case-management, diagnosis (including high-grade lesion recognition), transformation-zone recognition and confidence in answers. Results were compared between the three tests and stratified according to experience. Mean test scores improved after the course for all participants. The increase was highest for beginners. Confidence in answers improved and the number of colposcopists showing high confidence with low scores decreased. A structured case-based course improves skills and confidence especially for inexperienced colposcopists; however, trainers should be aware of the risk of overconfidence. To complement theoretical training, further hands-on training including high-quality feedback is recommended. Conclusions drawn from long-term learning are limited due to the low participation in the follow-up test.
  • Odriozola, Inaki; Abrego, Nerea; Tlaskal, Vojtech; Zrustova, Petra; Morais, Daniel; Vetrovsky, Tomas; Ovaskainen, Otso; Baldrian, Petr (2021)
    Fungal-bacterial interactions play a key role in the functioning of many ecosystems. Thus, understanding their interactive dynamics is of central importance for gaining predictive knowledge on ecosystem functioning. However, it is challenging to disentangle the mechanisms behind species associations from observed co occurrence patterns, and little is known about the directionality of such interactions. Here, we applied joint species distribution modeling to high-throughput sequencing data on co-occurring fungal and bacterial communities in deadwood to ask whether fungal and bacterial co-occurrences result from shared habitat use (i.e., deadwood's properties) or whether there are fungal-bacterial interactive associations after habitat characteristics are taken into account. Moreover, we tested the hypothesis that the interactions are mainly modulated through fungal communities influencing bacterial communities. For that, we quantified how much the predictive power of the joint species distribution models for bacterial and fungal community improved when accounting for the other community. Our results show that fungi and bacteria form tight association networks (i.e., some species pairs co-occur more frequently and other species pairs co-occur less frequently than expected by chance) in deadwood that include common (or opposite) responses to the environment as well as (potentially) biotic interactions. Additionally, we show that information about the fungal occurrences and abundances increased the power to predict the bacterial abundances substantially, whereas information about the bacterial occurrences and abundances increased the power to predict the fungal abundances much less. Our results suggest that fungal communities may mainly affect bacteria in deadwood. IMPORTANCE Understanding the interactive dynamics between fungal and bacterial communities is important to gain predictive knowledge on ecosystem functioning. However, little is known about the mechanisms behind fungal-bacterial associations and the directionality of species interactions. Applying joint species distribution modeling to high-throughput sequencing data on co-occurring fungal-bacterial communities in deadwood, we found evidence that nonrandom fungal-bacterial associations derive from shared habitat use as well as (potentially) biotic interactions. Importantly, the combination of cross-validations and conditional cross-validations helped us to answer the question about the directionality of the biotic interactions, providing evidence that suggests that fungal communities may mainly affect bacteria in deadwood. Our modeling approach may help gain insight into the directionality of interactions between different components of the microbiome in other environments.
  • Gaia Collaboration; Eyer, L.; Muinonen, K.; Fedorets, G.; Granvik, M.; Siltala, L. (2019)
    Context. The ESA Gaia mission provides a unique time-domain survey for more than 1.6 billion sources with G less than or similar to 21 mag. Aims. We showcase stellar variability in the Galactic colour-absolute magnitude diagram (CaMD). We focus on pulsating, eruptive, and cataclysmic variables, as well as on stars that exhibit variability that is due to rotation and eclipses. Methods. We describe the locations of variable star classes, variable object fractions, and typical variability amplitudes throughout the CaMD and show how variability-related changes in colour and brightness induce "motions". To do this, we use 22 months of calibrated photometric, spectro-photometric, and astrometric Gaia data of stars with a significant parallax. To ensure that a large variety of variable star classes populate the CaMD, we crossmatched Gaia sources with known variable stars. We also used the statistics and variability detection modules of the Gaia variability pipeline. Corrections for interstellar extinction are not implemented in this article. Results. Gaia enables the first investigation of Galactic variable star populations in the CaMD on a similar, if not larger, scale as was previously done in the Magellanic Clouds. Although the observed colours are not corrected for reddening, distinct regions are visible in which variable stars occur. We determine variable star fractions to within the current detection thresholds of Gaia. Finally, we report the most complete description of variability-induced motion within the CaMD to date. Conclusions. Gaia enables novel insights into variability phenomena for an unprecedented number of stars, which will benefit the understanding of stellar astrophysics. The CaMD of Galactic variable stars provides crucial information on physical origins of variability in a way that has previously only been accessible for Galactic star clusters or external galaxies. Future Gaia data releases will enable significant improvements over this preview by providing longer time series, more accurate astrometry, and additional data types (time series BP and RP spectra, RVS spectra, and radial velocities), all for much larger samples of stars.
  • Rödenbeck, C.; Zaehle, S.; Keeling, R.; Heimann, M. (2018)
    Interannual variations in the large-scale net ecosystem exchange (NEE) of CO2 between the terrestrial biosphere and the atmosphere were estimated for 1957-2017 from sustained measurements of atmospheric CO2 mixing ratios. As the observations are sparse in the early decades, available records were combined into a 'quasi-homogeneous' dataset based on similarity in their signals, to minimize spurious variations from beginning or ending data records. During El Nino events, CO2 is anomalously released from the tropical band, and a few months later also in the northern extratropical band. This behaviour can approximately be represented by a linear relationship of the NEE anomalies and local air temperature anomalies, with sensitivity coefficients depending on geographical location and season. The apparent climate sensitivity of global total NEE against variations in pan-tropically averaged annual air temperature slowly changed over time during the 1957-2017 period, first increasing (though less strongly than in previous studies) but then decreasing again. However, only part of this change can be attributed to actual changes in local physiological or ecosystem processes, the rest probably arising from shifts in the geographical area of dominating temperature variations. This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Nino on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.