Browsing by Subject "VIRULENCE"

Sort by: Order: Results:

Now showing items 21-40 of 51
  • Chiner-Oms, Á.; Sánchez-Busó, L.; Corander, J.; Gagneux, S.; Harris, S. R.; Young, D.; González-Candelas, F.; Comas, I. (2019)
    Models on how bacterial lineages differentiate increase our understanding of early bacterial speciation events and the genetic loci involved. Here, we analyze the population genomics events leading to the emergence of the tuberculosis pathogen. The emergence is characterized by a combination of recombination events involving core pathogenesis functions and purifying selection on early diverging loci. We identify the phoR gene, the sensor kinase of a two-component system involved in virulence, as a key functional player subject to pervasive positive selection after the divergence of the Mycobacterium tuberculosis complex from its ancestor. Previous evidence showed that phoR mutations played a central role in the adaptation of the pathogen to different host species. Now, we show that phoR mutations have been under selection during the early spread of human tuberculosis, during later expansions, and in ongoing transmission events. Our results show that linking pathogen evolution across evolutionary and epidemiological time scales points to past and present virulence determinants.
  • Castro, Hanna; Jaakkonen, Anniina; Hakakorpi, Anna; Hakkinen, Marjaana; Isidro, Joana; Korkeala, Hannu; Lindström, Miia; Hallanvuo, Saija (2019)
    Packaged raw milk contaminated with Yersinia pseudotuberculosis mediated a large yersiniosis outbreak in southern Finland in 2014. The outbreak was traced back to a single dairy farm in southern Finland. Here we explore risk factors leading to the outbreak through epidemiologic investigation of the outbreak farm and through genomic and phenotypic characterization of the farm's outbreak and non-outbreak associated Y. pseudotuberculosis strains. We show that the outbreak strain persisted on the farm throughout the 7-month study, whereas the non-outbreak strains occurred sporadically. Phylogenomic analysis illustrated that the outbreak strain was related to previously published genomes of wild animal isolates from Finland, implying that wild animals were a potential source of the outbreak strain to the farm. We observed allelic differences between the farm's outbreak and non-outbreak strains in several genes associated with virulence, stress response and biofilm formation, and found that the outbreak strain formed biofilm in vitro and maintained better growth fitness during cold stress than the non-outbreak strains. Finally, we demonstrate the rapid growth of the outbreak strain in packaged raw milk during refrigerated storage. This study provides insight of the risk factors leading to the Y. pseudotuberculosis outbreak, highlights the importance of pest control to avoid the spread of pathogens from wild to domestic animals, and demonstrates that the cold chain is insufficient as the sole risk management strategy to control Y. pseudotuberculosis risk associated with raw drinking milk.
  • Shepheard, Marcus A.; Fleming, Vicki M.; Connor, Thomas R.; Corander, Jukka; Feil, Edward J.; Fraser, Christophe; Hanage, William P. (2013)
  • Pimentel, Andre C.; Beraldo, Camila S.; Cogni, Rodrigo (2021)
    Host shifts, when a cross-species transmission of a pathogen can lead to successful infections, are the main cause of emerging infectious diseases, such as COVID-19. A complex challenge faced by the scientific community is to address the factors that determine whether the cross-species transmissions will result in spillover or sustained onwards infections. Here we review recent literature and present a perspective on current approaches we are using to understand the mechanisms underlying host shifts. We highlight the usefulness of the interactions between Drosophila species and viruses as an ideal study model. Additionally, we discuss how cross-infection experiments - when pathogens from a natural reservoir are intentionally injected in novel host species-can test the effect cross-species transmissions may have on the fitness of virus and host, and how the host phylogeny may influence this response. We also discuss experiments evaluating how cooccurrence with other viruses or the presence of the endosymbiont bacteria Wolbachia may affect the performance of new viruses in a novel host. Finally, we discuss the need of surveys of virus diversity in natural populations using next-generation sequencing technologies. In the long term, these approaches can contribute to a better understanding of the basic biology of host shifts.
  • Nowak, J.; Visnovsky, S. B.; Cruz, C. D.; Fletcher, G. C.; van Vliet, A. H. M.; Hedderley, D.; Butler, R.; Flint, S.; Palmer, J.; Pitman, A. R. (2021)
    Aims To understand the genetics involved in surface attachment and biofilm formation ofListeria monocytogenes. Methods and Results Anin vitroscreen of a Himar1 transposon library ofL. monocytogenesstrain 15G01 identified three transposants that produced significantly different biofilm levels when compared to the wild-type strain; two mutants exhibited enhanced biofilm formation and one produced less biofilm biomass than the wild-type. The mutant 15G01mprF::Himar1, which had a transposon insertion in themprFgene, was selected for further analysis. The mutant produced a more densely populated biofilm on solid surfaces such as stainless steel and polystyrene, as determined using scanning electron and light microscopy. The 15G01mprF::Himar1 mutant remained viable in biofilms, but showed an increase in sensitivity to the cationic antimicrobial gallidermin. The mutant also displayed reduced invasiveness in CaCo-2 intestinal cells, suggesting virulence properties are compromised by the inactivation ofmprF. Conclusions Biofilm formation and gallidermin resistance ofL. monocytogenesis influenced bymprF, but this trait is associated with a compromise in invasiveness. Significance and Impact of the Study The presence of pathogenic microorganisms in the food processing environment can cause a significant problem, especially when these microorganisms are established as biofilms. This study shows that the inactivation of themprFgene results in enhanced biofilm formation and abiotic surface attachment ofL. monocytogenes.
  • Ahlstrand, Tuuli; Torittu, Annamari; Elovaara, Heli; Välimaa, Hannamari; Pöllänen, Marja T.; Kasvandik, Sergo; Högbom, Martin; Ihalin, Riikka (2018)
    Naturally competent bacteria acquire DNA from their surroundings to survive in nutrient-poor environments and incorporate DNA into their genomes as new genes for improved survival. The secretin HofQ from the oral pathogen Aggregatibacter actinomycetemcomitans has been associated with DNA uptake. Cytokine sequestering is a potential virulence mechanism in various bacteria and may modulate both host defense and bacterial physiology. The objective of this study was to elucidate a possible connection between natural competence and cytokine uptake in A. actinomycetemcomitans. The extramembranous domain of HofQ (emHofQ) was shown to interact with various cytokines, of which IL-8 exhibited the strongest interaction. The dissociation constant between emHofQ and IL-8 was 43nM in static settings and 2.4M in dynamic settings. The moderate binding affinity is consistent with the hypothesis that emHofQ recognizes cytokines before transporting them into the cells. The interaction site was identified via crosslinking and mutational analysis. By structural comparison, relateda type I KH domain with a similar interaction site was detected in the Neisseria meningitidis secretin PilQ, which has been shown to participate in IL-8 uptake. Deletion of hofQ from the A. actinomycetemcomitans genome decreased the overall biofilm formation of this organism, abolished the response to cytokines, i.e., decreased eDNA levels in the presence of cytokines, and increased the susceptibility of the biofilm to tested -lactams. Moreover, we showed that recombinant IL-8 interacted with DNA. These results can be used in further studies on the specific role of cytokine uptake in bacterial virulence without interfering with natural-competence-related DNA uptake.
  • Zhang, Yingmiao; Ying, Xiaoling; He, Yingxia; Jiang, Lingyu; Zhang, Song; Bartra, Sara Schesser; Plano, Gregory; Klena, John D.; Skurnik, Mikael; Chen, Hongxiang; Cai, Huahua; Chen, Tie (2020)
    Yersinia pestis, a Gram-negative bacterium, is the etiologic agent of plague. A hallmark of Y. pestis infection is the organism's ability to rapidly disseminate through an animal host. Y. pestis expresses the outer membrane protein, Ail (Attachment invasion locus), which is associated with host invasion and serum resistance. However, whether Ail plays a role in host dissemination remains unclear. In this study, C57BL/6J mice were challenged with a defined Y. pestis strain, KimD27, or an isogenic ail-deleted mutant derived from KimD27 via metacarpal paw pad inoculation, nasal drops, orogastric infection, or tail vein injection to mimic bubonic, pneumonic, oral, or septicemic plague, respectively. Our results showed that ail-deleted Y. pestis KimD27 lost the ability to invade host cells, leading to failed host dissemination in the pneumonic and oral plague models but not in the bubonic or septicemic plague models, which do not require invasiveness. Therefore, this study demonstrated that whether Ail plays a role in Y. pestis pathogenesis depends on the infection route.
  • Laanto, Elina; Hoikkala, Ville; Ravantti, Janne; Sundberg, Lotta-Riina (2017)
    Antagonistic coevolution of parasite infectivity and host resistance may alter the biological functionality of species, yet these dynamics in nature are still poorly understood. Here we show the molecular details of a long-term phage-bacterium arms race in the environment. Bacteria (Flavobacterium columnare) are generally resistant to phages from the past and susceptible to phages isolated in years after bacterial isolation. Bacterial resistance selects for increased phage infectivity and host range, which is also associated with expansion of phage genome size. We identified two CRISPR loci in the bacterial host: a type II-C locus and a type VI-B locus. While maintaining a core set of conserved spacers, phage-matching spacers appear in the variable ends of both loci over time. The spacers mostly target the terminal end of the phage genomes, which also exhibit the most variation across time, resulting in arms-race-like changes in the protospacers of the coevolving phage population.
  • Jaakkonen, Anniina; Castro, Hanna; Hallanvuo, Saija; Ranta, Jukka; Rossi, Mirko; Isidro, Joana; Lindström, Miia; Hakkinen, Marjaana (2019)
    Shiga toxin-producing Escherichia coli (STEC) and Campylobacter jejuni are notable health hazards associated with the consumption of raw milk. These bacteria may colonize the intestines of asymptomatic cattle and enter bulk tank milk via fecal contamination during milking. We studied the frequency of STEC O157:H7 and C. jejuni contamination in tank milk (n = 785) and the in-line milk filters of milking machines (n = 631) versus the frequency of isolation from cattle feces (n = 257) on three Finnish dairy farms for 1 year. Despite simultaneous isolation of STEC O157:H7 (17%) or C. jejuni (53%) from cattle, these bacteria were rarely isolated from milk filters (2% or = 11 months, and several other C. jejuni types were detected sporadically. The stx gene carried by STEC was detected more frequently from milk filters (37%) than from milk (7%), suggesting that milk filters are more suitable sampling targets for monitoring than milk. A questionnaire of on-farm practices suggested lower stx contamination of milk when major cleansing in the barn, culling, or pasturing of dairy cows was applied, while a higher average outdoor temperature was associated with higher stx contamination. Because pathogen contamination occurred despite good hygiene and because pathogen detection from milk and milk filters proved challenging, we recommend heat treatment for raw milk before consumption. The increased popularity of raw milk consumption has created demand for relaxing legislation, despite the risk of contamination by pathogenic bacteria, notably STEC and C. jejuni. However, the epidemiology of these milk-borne pathogens on the herd level is still poorly understood, and data are lacking on the frequency of milk contamination on farms with cattle shedding these bacteria in their feces. This study suggests (i) that STEC contamination in milk can be reduced, but not prevented, by on-farm hygienic measures while fecal shedding is observable, (ii) that milk filters are more suitable sampling targets for monitoring than milk although pathogen detection from both sample matrices may be challenging, and (iii) that STEC and C. jejuni genotypes may persist in cattle herds for several months. The results can be utilized in developing and targeting pathogen monitoring and risk management on the farm level and contributed to the revision of Finnish legislation in 2017.
  • Bozcal, Elif; Dagdeviren, Melih; Uzel, Atac; Skurnik, Mikael (2017)
    It is crucial to understand the in vitro and in vivo regulation of the virulence factor genes of bacterial pathogens. In this study, we describe the construction of a versatile reporter system for Yersinia enterocolitica serotype O:3 (YeO3) based on the luxCDABE operon. In strain YeO3-luxCDE we integrated the luciferase substrate biosynthetic genes, luxCDE, into the genome of the bacterium so that the substrate is constitutively produced. The luxAB genes that encode the luciferase enzyme were cloned into a suicide vector to allow cloning of any promoter-containing fragment upstream the genes. When the obtained suicide-construct is mobilized into YeO3-luxCDE bacteria, it integrates into the recipient genome via homologous recombination between the cloned promoter fragment and the genomic promoter sequence and thereby generates a single-copy and stable promoter reporter. Lipopolysaccharide (LPS) O-antigen (O-ag) and outer core hexasaccharide (OC) of YeO3 are virulence factors necessary to colonization of the intestine and establishment of infection. To monitor the activities of the OC and O-ag gene cluster promoters we constructed the reporter strains YeO3-P-oc::luxAB and YeO3-P-op1::luxAB, respectively. In vitro, at 37 degrees C both promoter activities were highest during logarithmic growth and decreased when the bacteria entered stationary growth phase. At 22 degrees C the OC gene cluster promoter activity increased during the late logarithmic phase. Both promoters were more active in late stationary phase. To monitor the promoter activities in vivo, mice were infected intragastrically and the reporter activities monitored by the IVIS technology. The mouse experiments revealed that both LPS promoters were well expressed in vivo and could be detected by IVIS, mainly from the intestinal region of orally infected mice.
  • Falgenhauer, Linda; Schwengers, Oliver; Schmiedel, Judith; Baars, Christian; Lambrecht, Oda; Hess, Stefanie; Berendonk, Thomas U.; Falgenhauer, Jane; Chakraborty, Trinad; Imirzalioglu, Can (2019)
    Water is considered to play a role in the dissemination of antibiotic-resistant Gram-negative bacteria including those encoding Extended-spectrum beta-lactamases (ESBL) and carbapenemases. To investigate the role of water for their spread in more detail, we characterized ESBL/Carbapenemase-producing bacteria from surface water and sediment samples using phenotypic and genotypic approaches. ESBL/Carbapenemase-producing isolates were obtained from water/sediment samples. Species and antibiotic resistance were determined. A subset of these isolates (n = 33) was whole-genome-sequenced and analyzed for the presence of antibiotic resistance genes and virulence determinants. Their relatedness to isolates associated with human infections was investigated using multilocus sequence type and cgMLST-based analysis. Eighty-nine percent of the isolates comprised of clinically relevant species. Fifty-eight percent exhibited a multidrug-resistance phenotype. Two isolates harbored the mobile colistin resistance gene mcr-1. One carbapenemase-producing isolate identified as Enterobacter kobei harbored bla(VIM-)(1). Two Escherichia coli isolates had sequence types (ST) associated with human infections (ST131 and ST1485) and a Klebsiella pneumoniae isolate was classified as hypervirulent. A multidrug-resistant (MDR) Pseudomonas aeruginosa isolate encoding known virulence genes associated with severe lung infections in cystic fibrosis patients was also detected. The presence of MDR and clinically relevant isolates in recreational and surface water underlines the role of aquatic environments as both reservoirs and hot spots for MDR bacteria. Future assessment of water quality should include the examination of the multidrug resistance of clinically relevant bacterial species and thus provide an important link regarding the spread of MDR bacteria in a One Health context.
  • Baron, Ludivine; Paatero, Anja Onerva; Morel, Jean-David; Impens, Francis; Guenin-Mace, Laure; Saint-Auret, Sarah; Blanchard, Nicolas; Dillmann, Rabea; Niang, Fatoumata; Pellegrini, Sandra; Taunton, Jack; Paavilainen, Ville O.; Demangel, Caroline (2016)
    Mycolactone, an immunosuppressive macrolide released by the human pathogen Mycobacterium ulcerans, was previously shown to impair Sec61-dependent protein translocation, but the underlying molecular mechanism was not identified. In this study, we show that mycolactone directly targets the alpha subunit of the Sec61 translocon to block the production of secreted and integral membrane proteins with high potency. We identify a single-amino acid mutation conferring resistance to mycolactone, which localizes its interaction site near the lumenal plug of Sec61 alpha. Quantitative proteomics reveals that during T cell activation, mycolactone-mediated Sec61 blockade affects a selective subset of secretory proteins including key signal-transmitting receptors and adhesion molecules. Expression of mutant Sec61 alpha in mycolactone-treated T cells rescued their homing potential and effector functions. Furthermore, when expressed in macrophages, the mycolactone-resistant mutant restored IFN-gamma receptor-mediated antimicrobial responses. Thus, our data provide definitive genetic evidence that Sec61 is the host receptor mediating the diverse immunomodulatory effects of mycolactone and identify Sec61 as a novel regulator of immune cell functions.
  • Merikanto, Ilona; Laakso, Jouni T.; Kaitala, Veijo (2018)
    Background: Environmentally growing pathogens present an increasing threat for human health, wildlife and food production. Treating the hosts with antibiotics or parasitic bacteriophages fail to eliminate diseases that grow also in the outside-host environment. However, bacteriophages could be utilized to suppress the pathogen population sizes in the outside-host environment in order to prevent disease outbreaks. Here, we introduce a novel epidemiological model to assess how the phage infections of the bacterial pathogens affect epidemiological dynamics of the environmentally growing pathogens. We assess whether the phage therapy in the outside-host environment could be utilized as a biological control method against these diseases. We also consider how phage-resistant competitors affect the outcome, a common problem in phage therapy. The models give predictions for the scenarios where the outside-host phage therapy will work and where it will fail to control the disease. Parameterization of the model is based on the fish columnaris disease that causes significant economic losses to aquaculture worldwide. However, the model is also suitable for other environmentally growing bacterial diseases. Results: Transmission rates of the phage determine the success of infectious disease control, with high-transmission phage enabling the recovery of the host population that would in the absence of the phage go asymptotically extinct due to the disease. In the presence of outside-host bacterial competition between the pathogen and phage-resistant strain, the trade-off between the pathogen infectivity and the phage resistance determines phage therapy outcome from stable coexistence to local host extinction. Conclusions: We propose that the success of phage therapy strongly depends on the underlying biology, such as the strength of trade-off between the pathogen infectivity and the phage-resistance, as well as on the rate that the phages infect the bacteria. Our results indicate that phage therapy can fail if there are phage-resistant bacteria and the trade-off between pathogen infectivity and phage resistance does not completely inhibit the pathogen infectivity. Also, the rate that the phages infect the bacteria should be sufficiently high for phage-therapy to succeed.
  • Zakham, Fathiah; Sironen, Tarja; Vapalahti, Olli; Kant, Ravi (2021)
    Tuberculosis (TB) is an airborne communicable disease with high morbidity and mortality rates, especially in developing countries. The causal agents of TB belong to the complex Mycobacterium tuberculosis (MTBc), which is composed of different human and animal TB associated species. Some animal associated species have zoonotic potential and add to the burden of TB management. The BCG ("Bacillus Calmette-Guerin") vaccine is widely used for the prevention against TB, but its use is limited in immunocompromised patients and animals due to the adverse effects and disseminated life-threatening complications. In this study, we aimed to carry out a comparative genome analysis between the human adapted species including BCG vaccine strains to identify and pinpoint the conserved genes related to the virulence across all the species, which could add a new value for vaccine development. For this purpose, the sequences of 183 Mycobacterium tuberculosis (MTB) strains were retrieved from the freely available WGS dataset at NCBI. The species included: 168 sensu stricto MTB species with other human MTB complex associated strains: M. tuberculosis var. africanum (3), M. tuberculosis var. bovis (2 draft genomes) and 10 BCG species, which enabled the analysis of core genome which contains the conserved genes and some virulence factor determinants. Further, a phylogenetic tree was constructed including the genomes of human (183); animals MTB adapted strains (6) and the environmental Mycobacterium strain "M. canettii". Our results showed that the core genome consists of 1166 conserved genes among these species, which represents a small portion of the pangenome (7036 genes). The remaining genes in the pangenome (5870) are accessory genes, adding a high inter-species diversity. Further, the core genome includes several virulence-associated genes and this could explain the rare infectiousness potential of some attenuated vaccine strains in some patients. This study reveals that low number of conserved genes in human adapted MTBc species and high inter-species diversity of the pan-genome could be considered for vaccine candidate development.
  • Kovanen, Sara; Rossi, Mirko; Pohja-Mykrä, Mari; Nieminen, Timo; Raunio-Saarnisto, Mirja; Sauvala, Mikaela; Fredriksson-Ahomaa, Maria; Hänninen, Marja-Liisa; Kivistö, Rauni Inari (2019)
    Poultry are considered a major reservoir and source of human campylobacteriosis, but the roles of environmental reservoirs, including wild birds, have not been assessed in depth. In this study, we isolated and characterized Campylobacter jejuni from western jackdaws (n = 91, 43%), mallard ducks (n = 82, 76%), and pheasants (n = 9, 9%). Most of the western jackdaw and mallard duck C. jejuni isolates represented multilocus sequence typing (MLST) sequence types (STs) that diverged from those previously isolated from human patients and various animal species, whereas all pheasant isolates represented ST-19, a common ST among human patients and other hosts worldwide. Whole-genome MLST revealed that mallard duck ST-2314 and pheasant ST-19 isolates represented bacterial clones that were genetically highly similar to human isolates detected previously. Further analyses revealed that in addition to a divergent ClonalFrame genealogy, certain genomic characteristics of the western jackdaw C. jejuni isolates, e.g., a novel cdtABC gene cluster and the type VI secretion system (T6SS), may affect their host specificity and virulence. Game birds may thus pose a risk for acquiring campylobacteriosis; therefore, hygienic measures during slaughter and meat handling warrant special attention. IMPORTANCE The roles of environmental reservoirs, including wild birds, in the molecular epidemiology of Campylobacter jejuni have not been assessed in depth. Our results showed that game birds may pose a risk for acquiring campylobacteriosis, because they had C. jejuni genomotypes highly similar to human isolates detected previously. Therefore, hygienic measures during slaughter and meat handling warrant special attention. On the contrary, a unique phylogeny was revealed for the western jackdaw isolates, and certain genomic characteristics identified among these isolates are hypothesized to affect their host specificity and virulence. Comparative genomics within sequence types (STs), using whole-genome multilocus sequence typing (wgMLST), and phylogenomics are efficient methods to analyze the genomic relationships of C. jejuni isolates.
  • Ketola, Tarmo; Hiltunen, Teppo (2014)
    Rapid evolutionary adaptions to new and previously detrimental environmental conditions can increase the risk of invasion by novel pathogens. We tested this hypothesis with a 133-day-long evolutionary experiment studying the evolution of the pathogenic Serratia marcescens bacterium at salinity niche boundary and in fluctuating conditions. We found that S.marcescens evolved at harsh (80g/L) and extreme (100g/L) salt conditions had clearly improved salt tolerance than those evolved in the other three treatments (ancestral conditions, nonsaline conditions, and fluctuating salt conditions). Evolutionary theories suggest that fastest evolutionary changes could be observed in intermediate selection pressures. Therefore, we originally hypothesized that extreme conditions, such as our 100g/L salinity treatment, could lead to slower adaptation due to low population sizes. However, no evolutionary differences were observed between populations evolved in harsh and extreme conditions. This suggests that in the study presented here, low population sizes did not prevent evolution in the long run. On the whole, the adaptive potential observed here could be important for the transition of pathogenic S.marcescens bacteria from human-impacted freshwater environments, such as wastewater treatment plants, to marine habitats, where they are known to infect and kill corals (e.g., through white pox disease).
  • Murray, Susan; Pascoe, Ben; Meric, Guillaume; Mageiros, Leonardos; Yahara, Koji; Hitchings, Matthew D.; Friedmann, Yasmin; Wilkinson, Thomas S.; Gormley, Fraser J.; Mack, Dietrich; Bray, James E.; Lamble, Sarah; Bowden, Rory; Jolley, Keith A.; Maiden, Martin C. J.; Wendlandt, Sarah; Schwarz, Stefan; Corander, Jukka; Fitzgerald, J. Ross; Sheppard, Samuel K. (2017)
    Staphylococcus aureus are globally disseminated among farmed chickens causing skeletal muscle infections, dermatitis, and septicaemia. The emergence of poultry-associated lineages has involved zoonotic transmission from humans to chickens but questions remain about the specific adaptations that promote proliferation of chicken pathogens. We characterized genetic variation in a population of genome-sequenced S. aureus isolates of poultry and humanorigin. Genealogical analysis identified a dominant poultry-associated sequence cluster within the CC5 clonal complex. Poultry and human CC5 isolates were significantly distinct from each other and more recombination events were detected in the poultry isolates. We identified 44 recombination events in 33 genes along the branch extending to the poultry-specific CC5 cluster, and 47 genes were found more often in CC5 poultry isolates compared with those from humans. Many of these gene sequences were common in chicken isolates from other clonal complexes suggesting horizontal gene transfer among poultry associated lineages. Consistent with functional predictions for putative poultry-associated genes, poultry isolates showed enhanced growth at 42 degrees C and greater erythrocyte lysis on chicken blood agar in comparison with human isolates. By combining phenotype information with evolutionary analyses of staphylococcal genomes, we provide evidence of adaptation, following a human-to-poultry host transition. This has important implications for the emergence and dissemination of new pathogenic clones associated with modern agriculture.
  • Willems, Rob J. L.; Top, Janetta; van Schaik, Willem; Leavis, Helen; Bonten, Marc; Siren, Jukka; Hanage, William P.; Corander, Jukka (2012)
  • Pöntinen, Anna; Lindström, Miia; Skurnik, Mikael; Korkeala, Hannu (2017)
    To study the role of each two-component system (TCS) histidine kinase (HK) in stress tolerance of Listeria monocytogenes EGD-e, we monitored the growth of individual HIC deletion mutant strains under heat (42.5 degrees C), acid (pH 5.6), alkali (pH 9.4), osmotic (6% NaCl), ethanol (3.5 vol%), and oxidative (5 mM H2O2) stresses. The growth of Delta liaS (Delta lmo1021) strain was impaired under each stress, with the most notable decrease under heat and osmotic stresses. The Delta ivirS (Delta lmo1741) strain showed nearly completely restricted growth at high temperature and impaired growth in ethanol. The growth of Delta agrC (Delta lmo0050) strain was impaired under osmotic stress and slightly under oxidative stress. We successfully complemented the HIC mutations using a novel allelic exchange based approach. This approach avoided the copy-number problems associated with in trans complementation from a plasmid. The mutant phenotypes were restored to the wild-type level in the complemented strains. This study reveals novel knowledge on the HKs needed for growth of L monocytogenes EGD-e under abovementioned stress conditions, with LiaS playing multiple roles in stress tolerance of L monocytogenes EGD-e. (C) 2017 Elsevier Ltd. All rights reserved.