Browsing by Subject "VIRUS"

Sort by: Order: Results:

Now showing items 21-40 of 62
  • Sironen, Tarja; Sane, Jussi; Lokki, Marja-Liisa; Meri, Seppo; Andersson, Leif C.; Hautala, Timo; Kauma, Heikki; Vuorinen, Sakari; Rasmuson, Johan; Evander, Magnus; Ahlm, Clas; Vaheri, Antti (2017)
    The case-fatality rate of hantavirus disease depends strongly on the causative hantavirus, ranging from 0.1% to 40%. However, the pathogenesis is not fully understood, and at present no licensed therapies exist. We describe fatal cases caused by Puumala hantavirus indicating involvement of complement activation and vascular leakage.
  • Inamdar, Kaushik; Tsai, Feng-Ching; Dibsy, Rayane; de Poret, Aurore; Manzi, John; Merida, Peggy; Muller, Remi; Lappalainen, Pekka; Roingeard, Philippe; Mak, Johnson; Bassereau, Patricia; Favard, Cyril; Muriaux, Delphine (2021)
    During HIV-1 particle formation, the requisite plasma membrane curvature is thought to be solely driven by the retroviral Gag protein. Here, we reveal that the cellular I-BAR protein IRSp53 is required for the progression of HIV-1 membrane curvature to complete particle assembly. siRNA-mediated knockdown of IRSp53 gene expression induces a decrease in viral particle production and a viral bud arrest at half completion. Single-molecule localization microscopy at the cell plasma membrane shows a preferential localization of IRSp53 around HIV-1 Gag assembly sites. In addition, we observe the presence of IRSp53 in purified HIV-1 particles. Finally, HIV-1 Gag protein preferentially localizes to curved membranes induced by IRSp53 I-BAR domain on giant unilamellar vesicles. Overall, our data reveal a strong interplay between IRSp53 I-BAR and Gag at membranes during virus assembly. This highlights IRSp53 as a crucial host factor in HIV-1 membrane curvature and its requirement for full HIV-1 particle assembly.
  • Petersen, Eskild; Kantele, Anu; Koopmans, Marion; Asogun, Danny; Yinka-Ogunleye, Adesola; Ihekweazu, Chikwe; Zumla, Alimuddin (2019)
    Recently, concern has been raised about the emergence of human monkeypox virus and the occasionally severe clinical presentation bearing resemblance to that of smallpox. In 2018, 3 patients in the UK were diagnosed with monkeypox, and the frequency and geographic distribution of cases across West and Central Africa have increased in recent years. In Nigeria, most monkeypox patients are aged
  • Jiang, Miao; Österlund, Pamela; Poranen, Minna; Julkunen, Ilkka (2020)
    Mammalian cells express different types of RNA molecules that can be classified as protein coding RNAs (mRNA) and non-coding RNAs (ncRNAs) the latter of which have housekeeping and regulatory functions in cells. Cellular RNAs are not recognized by cellular pattern recognition receptors (PRRs) and innate immunity is not activated. RNA viruses encode and express RNA molecules that usually differ from cell-specific RNAs and they include for instance 5'capped and 5-mono- and triphosphorylated RNAs, small viral RNAs and viral RNA-protein complexes called vRNPs. These molecules are recognized by certain members of Toll-like receptor (TLR) and RIG-I-like receptor (RLR) families leading to activation of innate immune responses and the production of antiviral cytokines, such as type I and type III interferons (IFNs). Virus-specific ssRNA and dsRNA molecules that mimic the viral genomic RNAs or their replication intermediates can efficiently be produced by bacteriophage T7 DNA-dependent RNA polymerase and bacteriophage phi6 RNA-dependent RNA polymerase, respectively. These molecules can then be delivered into mammalian cells and the mechanisms of activation of innate immune responses can be studied. In addition, synthetic viral dsRNAs can be processed to small interfering RNAs (siRNAs) by a Dicer enzyme to produce a swarm of antiviral siRNAs. Here we describe the biology of RNAs, their in vitro production and delivery into mammalian cells as well as how these molecules can be used to inhibit virus replication and to study the mechanisms of activation of the innate immune system.
  • Parviainen, Suvi; Autio, Karoliina; Vähä-Koskela, Markus; Guse, Kilian; Pesonen, Sari; Rosol, Thomas J.; Zhao, Fang; Hemminki, Akseli (2015)
    Vaccinia virus is a large, enveloped virus of the poxvirus family. It has broad tropism and typically virus replication culminates in accumulation and lytic release of intracellular mature virus (IMV), the most abundant form of infectious virus, as well as release by budding of extracellular enveloped virus (EEV). Vaccinia viruses have been modified to replicate selectively in cancer cells and clinically tested as oncolytic agents. During preclinical screening of relevant cancer targets for a recombinant Western Reserve strain deleted for both copies of the thymidine kinase and vaccinia growth factor genes, we noticed that confluent monolayers of SCCF1 cat squamous carcinoma cells were not destroyed even after prolonged infection. Interestingly, although SCCF1 cells were not killed, they continuously secreted virus into the cell culture supernatant. To investigate this finding further, we performed detailed studies by electron microscopy. Both intracellular and secreted virions showed morphological abnormalities on ultrastructural inspection, suggesting compromised maturation and morphogenesis of vaccinia virus in SCCF1 cells. Our data suggest that SCCF1 cells produce a morphologically abnormal virus which is nevertheless infective, providing new information on the virus-host cell interactions and intracellular biology of vaccinia virus.
  • Airas, Niina; Hautaniemi, Maria; Syrja, Pernilla; Knuuttila, Anna; Putkuri, Niina; Coulter, Lesley; McInnes, Colin J.; Vapalahti, Olli; Huovilainen, Anita; Kinnunen, Paula M. (2016)
    A horse in Finland exhibited generalized granulomatous inflammation and severe proliferative dermatitis. After euthanization, we detected poxvirus DNA from a skin lesion sample. The virus sequence grouped with parapoxviruses, closely resembling a novel poxvirus detected in humans in the United States after horse contact. Our findings indicate horses may be a reservoir for zoonotic parapoxvirus.
  • Seppä-Lassila, Leena; Orro, Toomas; Lassen, Brian; Lasonen, Riikka; Autio, Tiina; Pelkonen, Sinikka; Soveri, Timo (2015)
    In this study, the association between Eimeria spp. related signs and innate immune response in dairy calves was examined. Calves (n= 100) aged 15-60 days were clinically examined and faecal samples, blood samples and deep nasopharyngeal swabs obtained. The samples were analysed for intestinal pathogens, acute phase proteins and WBC count, and respiratory tract pathogens, respectively. Diarrhoea was diagnosed in 32.6% (23.3-43.0%, 95% CI) of calves. An association between the pathogenic Eimeria spp. and diarrhoea was detected by multiple correspondence analysis. Eimeria related signs (diarrhoea, presence of pathogenic species and total oocyst count) were combined resulting a four level variable. Calves with weak signs of eimeriosis had decreased haptoglobin concentrations (p = 0.02) and increased fibrinogen concentrations (p = 0.048) compared to no signs. Increased haptoglobin and fibrinogen concentrations were associated with respiratory tract infection and umbilical infection. Serum amyloid A and WBC counts showed no association with signs of eimeriosis or clinical diagnoses. (C) 2015 Elsevier Ltd. All rights reserved.
  • Elbasani, Endrit; Falasco, Francesca; Gramolelli, Silvia; Nurminen, Veijo; Günther, Thomas; Weltner, Jere; Balboa, Diego; Grundhoff, Adam; Otonkoski, Timo; Ojala, Päivi M. (2020)
    CRISPR activation (CRISPRa) has revealed great potential as a tool to modulate the expression of targeted cellular genes. Here, we successfully applied the CRISPRa system to trigger the Kaposi's sarcoma-associated herpesvirus (KSHV) reactivation in latently infected cells by selectively activating ORF50 gene directly from the virus genome. We found that a nuclease-deficient Cas9 (dCas9) fused to a destabilization domain (DD) and 12 copies of the VP16 activation domain (VP192) triggered a more efficient KSHV lytic cycle and virus production when guided to two different sites on the ORF50 promoter, instead of only a single site. To our surprise, the virus reactivation induced by binding of the stable DD-dCas9-VP192 on the ORF50 promoter was even more efficient than reactivation induced by ectopic expression of ORF50. This suggests that recruitment of additional transcriptional activators to the ORF50 promoter, in addition to ORF50 itself, are needed for the efficient virus production. Further, we show that CRISPRa can be applied to selectively express the early lytic gene, ORF57, without disturbing the viral latency. Therefore, CRISPRa-based systems can be utilized to facilitate virus-host interaction studies by controlling the expression of not only cellular but also of specific KSHV genes.
  • Papa, Anna; Vaheri, Antti; LeDuc, James W.; Krueger, Detlev H.; Avsic-Zupanc, Tatjana; Arikawa, Jiro; Song, Jin-Won; Markotic, Alemka; Clement, Jan; Liang, Mifang; Li, Dexin; Yashina, Liudmila N.; Jonsson, Colleen B.; Schmaljohn, Connie S. (2016)
    The 10th International Conference on Hantaviruses, organized by the International Society on Hantaviruses, was held from May 31-June 3, 2016 at Colorado State University, Fort Collins, CO, USA. These conferences have been held every three years since 1980. The current report summarizes research presented on all aspects of hantavirology: ecology and epidemiology, virus replication, phylogeny, pathogenesis, immune response, clinical studies, vaccines and therapeutics. (C) 2016 Elsevier B.V. All rights reserved.
  • Lyytinen, Outi Leena; Starkova, Daria; Poranen, Minna Marjetta (2019)
    BackgroundCystoviruses have a phospholipid envelope around their nucleocapsid. Such a feature is unique among bacterial viruses (i.e., bacteriophages) and the mechanisms of virion envelopment within a bacterial host are largely unknown. The cystovirus Pseudomonas phage phi6 has an envelope that harbors five viral membrane proteins and phospholipids derived from the cytoplasmic membrane of its Gram-negative host. The phi6 major envelope protein P9 and the non-structural protein P12 are essential for the envelopment of its virions. Co-expression of P9 and P12 in a Pseudomonas host results in the formation of intracellular vesicles that are potential intermediates in the phi6 virion assembly pathway. This study evaluated the minimum requirements for the formation of phi6-specific vesicles and the possibility to localize P9-tagged heterologous proteins into such structures in Escherichia coli.ResultsUsing transmission electron microscopy, we detected membranous structures in the cytoplasm of E. coli cells expressing P9. The density of the P9-specific membrane fraction was lower (approximately 1.13g/cm(3) in sucrose) than the densities of the bacterial cytoplasmic and outer membrane fractions. A P9-GFP fusion protein was used to study the targeting of heterologous proteins into P9 vesicles. Production of the GFP-tagged P9 vesicles required P12, which protected the fusion protein against proteolytic cleavage. Isolated vesicles contained predominantly P9-GFP, suggesting selective incorporation of P9-tagged fusion proteins into the vesicles.ConclusionsOur results demonstrate that the phi6 major envelope protein P9 can trigger formation of cytoplasmic membrane structures in E. coli in the absence of any other viral protein. Intracellular membrane structures are rare in bacteria, thus making them ideal chasses for cell-based vesicle production. The possibility to locate heterologous proteins into the P9-lipid vesicles facilitates the production of vesicular structures with novel properties. Such products have potential use in biotechnology and biomedicine.
  • Alam, Chaudhary Mashhood; Iqbal, Asif; Sharma, Anjana; Schulman, Alan H.; Ali, Safdar (2019)
    The incidence, distribution, and variation of simple sequence repeats (SSRs) in viruses is instrumental in understanding the functional and evolutionary aspects of repeat sequences. Full-length genome sequences retrieved from NCBI were used for extraction and analysis of repeat sequences using IMEx software. We have also developed two MATLAB-based tools for extraction of gene locations from GenBank in tabular format and simulation of this data with SSR incidence data. Present study encompassing 147 Mycobacteriophage genomes revealed 25,284 SSRs and 1,127 compound SSRs (cSSRs) through IMEx. Mono-to hexa-nucleotide motifs were present. The SSR count per genome ranged from 78 (M100) to 342 (M58) while cSSRs incidence ranged from 1 (M138) to 17 (M28, M73). Though cSSRs were present in all the genomes, their frequency and SSR to cSSR conversion percentage varied from 1.08 (M138 with 93 SSRs) to 8.33 (M116 with 96 SSRs). In terms of localization, the SSRs were predominantly localized to coding regions (similar to 78%). Interestingly, genomes of around 50 kb contained a similar number of SSRs/cSSRs to that in a 110 kb genome, suggesting functional relevance for SSRs which was substantiated by variation in motif constitution between species with different host range. The three species with broad host range (M97, M100, M116) have around 90% of their mono-nucleotide repeat motifs composed of G or C and only M16 has both A and T mononucleotide motifs. Around 20% of the di-nucleotide repeat motifs in the genomes exhibiting a broad host range were CT/TC, which were either absent or represented to a much lesser extent in the other genomes.
  • Ahmed, Warish; Simpson, Stuart L.; Bertsch, Paul M.; Bibby, Kyle; Bivins, Aaron; Blackall, Linda L.; Bofill-Mas, Silvia; Bosch, Albert; Brandao, Joao; Choi, Phil M.; Ciesielski, Mark; Donner, Erica; D'Souza, Nishita; Farnleitner, Andreas H.; Gerrity, Daniel; Gonzalez, Raul; Griffith, John F.; Gyawali, Pradip; Haas, Charles N.; Hamilton, Kerry A.; Hapuarachchi, Hapuarachchige Chandithal; Harwood, Valerie J.; Haque, Rehnuma; Jackson, Greg; Khan, Stuart J.; Khan, Wesaal; Kitajima, Masaaki; Korajkic, Asja; La Rosa, Giuseppina; Layton, Blythe A.; Lipp, Erin; McLellan, Sandra L.; McMinn, Brian; Medema, Gertjan; Metcalfe, Suzanne; Meijer, Wim G.; Mueller, Jochen F.; Murphy, Heather; Naughton, Coleen C.; Noble, Rachel T.; Payyappat, Sudhi; Petterson, Susan; Pitkänen, Tarja; Rajal, Veronica B.; Reyneke, Brandon; Jr, Fernando A. Roman; Rose, Joan B.; Rusinol, Marta; Sadowsky, Michael J.; Sala-Comorera, Laura; Setoh, Yin Xiang; Sherchan, Samendra P.; Sirikanchana, Kwanrawee; Smith, Wendy; Steele, Joshua A.; Subburg, Rosalie; Symonds, Erin M.; Thai, Phong; Thomas, Kevin; Tynan, Josh; Toze, Simon; Thompson, Janelle; Whiteley, Andy S.; Wong, Judith Chui Ching; Sano, Daisuke; Wuertz, Stefan; Xagoraraki, Irene; Zhang, Qian; Zimmer-Faust, Amity G.; Shanks, Orin C. (2022)
    Wastewater surveillance for pathogens using reverse transcription-polymerase chain reaction (RT-PCR) is an effective and resource-efficient tool for gathering community-level public health information, including the incidence of coronavirus disease-19 (COVID-19). Surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in wastewater can potentially provide an early warning signal of COVID-19 infections in a community. The capacity of the world's environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is increasing rapidly. However, there are no standardized protocols or harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can cause false-positive and false-negative errors in the surveillance of SARS-CoV-2 RNA in wastewater, culminating in recommended strategies that can be implemented to identify and mitigate some of these errors. Recommendations include stringent QA/QC measures, representative sampling approaches, effective virus concentration and efficient RNA extraction, PCR inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularly when the incidence of SARS-CoV-2 in wastewater is low. Corrective and confirmatory actions must be in place for inconclusive results or results diverging from current trends (e.g., initial onset or reemergence of COVID-19 in a community). It is also prudent to perform interlaboratory comparisons to ensure results' reliability and interpretability for prospective and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization and detection for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance continues to be demonstrated during this global crisis. In the future, wastewater should also play an important role in the surveillance of a range of other communicable diseases. Crown Copyright (C) 2021 Published by Elsevier B.V.
  • Uusitalo, Ruut; Siljander, Mika; Dub, Timothee; Sane, Jussi; Sormunen, Jani J.; Pellikka, Petri; Vapalahti, Olli (2020)
    The numbers of reported human tick-borne encephalitis (TBE) cases in Europe have increased in several endemic regions (including Finland) in recent decades, indicative of an increasing threat to public health. As such, it is important to identify the regions at risk and the most influential factors associated with TBE distributions, particularly in understudied regions. This study aimed to identify the risk areas of TBE transmission in two different datasets based on human TBE disease cases from 2007 to 2011 (n = 86) and 2012-2017 (n = 244). We also examined which factors best explain the presence of human TBE cases. We used ensemble modelling to determine the relationship of TBE occurrence with environmental, ecological, and anthropogenic factors in Finland. Geospatial data including these variables were acquired from several open data sources and satellite and aerial imagery and, were processed in GIS software. Biomod2, an ensemble platform designed for species dis-tribution modelling, was used to generate ensemble models in R. The proportion of built-up areas, field, forest, and snow-covered land in November, people working in the primary sector, human population density, mean precipitation in April and July, and densities of European hares, white-tailed deer, and raccoon dogs best es-timated distribution of human TBE disease cases in the two datasets. Random forest and generalized boosted regression models performed with a very good to excellent predictive power (ROC = 0.89-0.96) in both time periods. Based on the predictive maps, high-risk areas for TBE transmission were located in the coastal regions in Southern and Western Finland (including the angstrom land Islands), several municipalities in Central and Eastern Finland, and coastal municipalities in Southern Lapland. To explore potential changes in TBE distributions in future climate, we used bioclimatic factors with current and future climate forecast data to reveal possible future hotspot areas. Based on the future forecasts, a slightly wider geographical extent of TBE risk was introduced in the angstrom land Islands and Southern, Western and Northern Finland, even though the risk itself was not increased. Our results are the first steps towards TBE-risk area mapping in current and future climate in Finland.
  • Saarinen, Niila V. V.; Lehtonen, Jussi; Veijola, Riitta; Lempainen, Johanna; Knip, Mikael; Hyöty, Heikki; Laitinen, Olli H.; Hytönen, Vesa P. (2020)
    Immunological assays detecting antibodies against enteroviruses typically use a single enterovirus serotype as antigen. This limits the ability of such assays to detect antibodies against different enterovirus types and to detect possible type-specific variation in antibody responses. We set out to develop a multiplexed assay for simultaneous detection of antibodies against multiple enterovirus and rhinovirus types encompassing all human infecting species. Seven recombinant VP1 proteins from enteroviruses EV-A to EV-D and rhinoviruses RV-A to RV-C species were produced. Using Meso Scale Diagnostics U-PLEX platform we were able to study antibody reactions against these proteins as well as non-structural enterovirus proteins in a single well with 140 human serum samples. Adults had on average 33-fold stronger antibody responses to these antigens (p<10(-11)) compared to children, but children had less cross-reactivity between different enterovirus types. The results suggest that this new high-throughput assay offers clear benefits in the evaluation of humoral enterovirus immunity in children, giving more exact information than assays that are based on a single enterovirus type as antigen.
  • Cantuti-Castelvetri, Ludovico; Ojha, Ravi; Pedro, Liliana D.; Djannatian, Minou; Franz, Jonas; Kuivanen, Suvi; van der Meer, Franziska; Kallio, Katri; Kaya, Tugberk; Anastasina, Maria; Smura, Teemu; Levanov, Lev; Szirovicza, Leonora; Tobi, Allan; Kallio-Kokko, Hannimari; Österlund, Pamela; Joensuu, Merja; Meunier, Frederic A.; Butcher, Sarah J.; Winkler, Martin Sebastian; Mollenhauer, Brit; Helenius, Ari; Gokce, Ozgun; Teesalu, Tambet; Hepojoki, Jussi; Vapalahti, Olli; Stadelmann, Christine; Balistreri, Giuseppe; Simons, Mikael (2020)
    The causative agent of coronavirus disease 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For many viruses, tissue tropism is determined by the availability of virus receptors and entry cofactors on the surface of host cells. In this study, we found that neuropilin-1 (NRP1), known to bind furin-cleaved substrates, significantly potentiates SARS-CoV-2 infectivity, an effect blocked by a monoclonal blocking antibody against NRP1. A SARS-CoV-2 mutant with an altered furin cleavage site did not depend on NRP1 for infectivity. Pathological analysis of olfactory epithelium obtained from human COVID-19 autopsies revealed that SARS-CoV-2 infected NRP1-positive cells facing the nasal cavity. Our data provide insight into SARS-CoV-2 cell infectivity and define a potential target for antiviral intervention.
  • Liimatainen, Hanna; Weseslindtner, Lukas; Strassl, Robert; Aberle, Stephan W.; Bond, Gregor; Auvinen, Eeva (2020)
    Background BKPyV is associated with polyomavirus-associated nephropathy (PVAN), a major cause of graft rejection in kidney transplant recipients (KTRs). Mutations occur in the transcriptional control region (TCR) of BKPyV, but whether they are required for the development of PVAN is not completely understood. To this end, we characterized BKPyV TCRs from KTRs to assess whether TCR mutations are associated with PVAN. Study design We analyzed urine and plasma samples of fifteen KTRs with biopsy-confirmed PVAN, presumptive PVAN, or probable PVAN in order to explore the contents of the BKPyV virome. BKPyV TCRs were amplified and deep sequenced to characterize the viral strains. Alterations in block structures and transcription factor binding sites were investigated. Results The majority of sequences in both urine and plasma samples represented archetype BKPyV TCR. Minor populations harboring rearranged TCRs were detected in all patient groups. In one biopsy-confirmed PVAN patient rearranged TCRs predominated, and in another patient half of all reads represented rearranged sequences. Conclusions Although archetype BKPyV predominated in most patients, highest proportions and highest numbers of rearranged strains were detected in association with PVAN. TCR mutations seem not necessary for the development of PVAN, but immunosuppression may allow increased viral replication giving rise to TCR variants with enhanced replication efficiency.
  • Ylösmäki, Erkko; Fusciello, Manlio; Martins, Beatriz; Feola, Sara; Hamdan, Firas; Chiaro, Jacopo; Ylösmäki, Leena; Vaughan, Matthew J.; Viitala, Tapani; Kulkarni, Prasad S.; Cerullo, Vincenzo (2021)
    Background Intratumoral BCG therapy, one of the earliest immunotherapies, can lead to infiltration of immune cells into a treated tumor. However, an increase in the number of BCG-induced tumor-specific T cells in the tumor microenvironment could lead to enhanced therapeutic effects. Methods Here, we have developed a novel cancer vaccine platform based on BCG that can broaden BCG-induced immune responses to include tumor antigens. By physically attaching tumor-specific peptides onto the mycobacterial outer membrane, we were able to induce strong systemic and intratumoral T cell-specific immune responses toward the attached tumor antigens. These therapeutic peptides can be efficiently attached to the mycobacterial outer membrane using a poly-lysine sequence N-terminally fused to the tumor-specific peptides. Results Using two mouse models of melanoma and a mouse model of colorectal cancer, we observed that the antitumor immune responses of BCG could be improved by coating the BCG with tumor-specific peptides. In addition, by combining this novel cancer vaccine platform with anti-programmed death 1 (anti-PD-1) immune checkpoint inhibitor (ICI) therapy, the number of responders to anti-PD-1 immunotherapy was markedly increased. Conclusions This study shows that intratumoral BCG immunotherapy can be improved by coating the bacteria with modified tumor-specific peptides. In addition, this improved BCG immunotherapy can be combined with ICI therapy to obtain enhanced tumor growth control. These results warrant clinical testing of this novel cancer vaccine platform.
  • Wang, Wen; Wang, Miao-Ruo; Lin, Xian-Dan; Guo, Wen-Ping; Li, Ming-Hui; Mei, Sheng-Hua; Li, Zhao-Mei; Cong, Mei-Li; Jiang, Rui-Lan; Zhou, Run-Hong; Holmes, Edward C.; Plyusnin, Alexander; Zhang, Yong-Zhen (2013)
  • Kuryk, Lukasz; Moller, Anne-Sophie W.; Vuolanto, Antti; Pesonen, Sari; Garofalo, Mariangela; Cerullo, Vincenzo; Jaderberg, Magnus (2019)
    Oncolytic adenoviruses can trigger lysis of tumor cells, induce an antitumor immune response, bypass classical chemotherapeutic resistance strategies of tumors, and provide opportunities for combination strategies. A major challenge is the development of scalable production methods for viral seed stocks and sufficient quantities of clinical grade viruses. Because of promising clinical signals in a compassionate use program (Advanced Therapy Access Program) which supported further development, we chose the oncolytic adenovirus ONCOS-401 as a testbed for a new approach to scale up. We found that the best viral production conditions in both T-175 flasks and HYPERFlasks included A549 cells grown to 220,000 cells/cm(2) (80% confluency), with ONCOS-401 infection at 30 multiplicity of infection (MOI), and an incubation period of 66 h. The Lysis A harvesting method with benzonase provided the highest viral yield from both T-175 and HYPERFlasks (10,887 +/- 100 and 14,559 +/- 802 infectious viral particles/cell, respectively). T-175 flasks and HYPERFlasks produced up to 2.1 x 10(9) +/- 0.2 and 1.75 x 10(9) +/- 0.08 infectious particles of ONCOS-401 per cm(2) of surface area, respectively. Our findings suggest a suitable stepwise process that can be applied to optimizing the initial production of other oncolytic viruses.
  • Ivaska, Lotta E.; Silvoniemi, Antti; Palomares, Oscar; Turunen, Riitta; Mikola, Emilia; Puhakka, Tuomo; Söderlund-Venermo, Maria; Akdis, Mübeccel; Akdis, Cezmi A.; Jartti, Tuomas (2021)
    Background Persistent human bocavirus 1 (HBoV1) infection is a common finding in patients suffering from chronic tonsillar disease. However, the associations between HBoV1 infection and specific immune reactions are not completely known. We aimed to compare in vivo expression of T-cell cytokines, transcription factors, and type I/III interferons in human tonsils between HBoV1-positive and -negative tonsillectomy patients. Methods Tonsil tissue samples, nasopharyngeal aspirate (NPA), and serum samples were obtained from 143 immunocompetent adult and child tonsillectomy patients. HBoV1 and 14 other respiratory viruses were detected in NPAs and tonsil tissues by polymerase chain reaction (PCR). Serology and semi-quantitative PCR were used for diagnosing HBoV1 infections. Expression of 14 cytokines and transcription factors (IFN-alpha, IFN-beta, IFN-gamma, IL-10, IL-13, IL-17, IL-28, IL-29, IL-37, TGF-beta, FOXP3, GATA3, RORC2, Tbet) was analyzed by quantitative reverse-transcription (RT)-PCR in tonsil tissues. Results HBoV1 was detected by PCR in NPA and tonsils from 25 (17%) study patients. Serology results indicated prior nonacute infections in 81% of cases. Tonsillar cytokine responses were affected by HBoV1 infection. The suppression of two transcription factors, RORC2 and FOXP3, was associated with HBoV1 infection (p < 0.05). Furthermore, intratonsillar HBoV1-DNA loads correlated negatively with IFN-lambda family cytokines and IL-13. Conclusions Our study shows distinctively decreased T-helper(17) and T-regulatory type immune responses in local lymphoid tissue in HBoV1-positive tonsillectomy patients. HBoV1 may act as a suppressive immune modulator.