Browsing by Subject "N"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Rong, Mark K.; Holtrop, Flip; Bobylev, Eduard O.; Nieger, Martin; Ehlers, Andreas W.; Slootweg, J. Chris; Lammertsma, Koop (2021)
    Novel seven-membered cyclic imine-based 1,3-P,N ligands were obtained by capturing a Beckmann nitrilium ion intermediate generated in situ from cyclohexanone with benzotriazole, and then displacing it by a secondary phosphane under triflic acid promotion. These "cycloiminophosphanes" possess flexible non-isomerizable tetrahydroazepine rings with a high basicity; this sets them apart from previously reported iminophophanes. The donor strength of the ligands was investigated by using their P-kappa(1)- and P,N-kappa(2)-tungsten(0) carbonyl complexes, by determining the IR frequency of the trans-CO ligands. Complexes with [RhCp*Cl-2](2) demonstrated the hemilability of the ligands, giving a dynamic equilibrium of kappa(1) and kappa(2) species; treatment with AgOTf gives full conversion to the kappa(2) complex. The potential for catalysis was shown in the Ru-II-catalyzed, solvent-free hydration of benzonitrile and the Ru-II- and Ir-I-catalyzed transfer hydrogenation of cyclohexanone in isopropanol. Finally, to enable access to asymmetric catalysts, chiral cycloiminophosphanes were prepared from l-menthone, as well as their P,N-kappa(2)-Rh-III and a P-kappa(1)-Ru-II complexes.
  • Pieristè, Marta; Chauvat, Matthieu; Kotilainen, Titta K.; Jones, Alan G.; Aubert, Michaël; Robson, T. Matthew; Forey, Estelle (2019)
    Sunlight can accelerate the decomposition process through an ensemble of direct and indirect processes known as photodegradation. Although photodegradation is widely studied in arid environments, there have been few studies in temperate regions. This experiment investigated how exposure to solar radiation, and specifically UV-B, UV-A, and blue light, affects leaf litter decomposition under a temperate forest canopy in France. For this purpose, we employed custom-made litterbags built using filters that attenuated different regions of the solar spectrum. Litter mass loss and carbon to nitrogen (C:N) ratio of three species: European ash (Fraxinus excelsior), European beech (Fagus sylvatica) and pedunculate oak (Quercus robur), differing in their leaf traits and decomposition rate, were analysed over a period of 7–10 months. Over the entire period, the effect of treatments attenuating blue light and solar UV radiation on leaf litter decomposition was similar to that of our dark treatment, where litter lost 20–30% less mass and had a lower C:N ratio than under the full-spectrum treatment. Moreover, decomposition was affected more by the filter treatment than mesh size, which controlled access by mesofauna. The effect of filter treatment differed among the three species and appeared to depend on litter quality (and especially C:N), producing the greatest effect in recalcitrant litter (F. sylvatica). Even under the reduced irradiance found in the understorey of a temperate forest, UV radiation and blue light remain important in accelerating surface litter decomposition.