Browsing by Subject " urine"

Sort by: Order: Results:

Now showing items 1-8 of 8
  • Becker, Anna; Schalin-Jäntti, Camilla; Itkonen, Outi (2021)
    Context: Patients with serotonin-secreting neuroendocrine neoplasms (NENs) have increased serum 5-hydroxyindoleacetic acid (5HIAA) concentrations. Serum 5HIAA thus serves as a biomarker in NEN. Objective: To evaluate an improved tandem mass spectrometric serum 5HIAA assay for diagnosis and follow-up of NEN in a clinical cohort. Design: A retrospective study during 2016-2018 at the Diagnostic Center and Department of Endocrinology at Helsinki University Hospital, Finland. Methods: Detailed patient data was obtained from 116 patients. Serum 5HIAA was analyzed by 2 different liquid chromatography with tandem mass spectrometry (LC-MS/MS) assays with samples prepared either by protein precipitation or solid phase extraction. Twenty-four-hour urine 5HIAA samples (n = 33) were analyzed by amperometric LC, and the results were compared. Specificity and sensitivity were calculated by receiver operating characteristic (ROC) analysis. Results: We achieved 5 to 10 000 nmol/L linearity and Conclusion: Serum 5HIAA by LC-MS/MS after protein precipitation performs equally well for the diagnosis of NEN as urinary 5HIAA LC assay. The outcome and sensitivity for serum and 24-h urine assays are convergent. Due to much more reliable and convenient sampling, we recommend serum instead of 24-h urine 5HIAA for diagnosis and follow-up of NEN patients.
  • Lindfors, Pia (Helsingfors universitet, 2010)
    The most important part in bioanalysis is the sample cleanup process which is usually the most laborious and time consuming part of the analysis and very susceptible to errors. A functional bioanalysis has to be quick, easily automated, sensitive, selective and stable. It also needs to be suitable for high throughput analysis. Desorption atmospheric pressure photoionization (DAPPI) is a novel direct desorption/ionization technique for mass spectrometry that enables direct analysis of solids from surfaces or liquid samples from a suitable sample plate often without any sample preparation. The suitability of DAPPI-MS for biological samples was investigated by measuring the limits of detection for selected opioids and benzodiazepines and screening them from authentic urine samples. Limits of detection were measured for standard solutions and spiked urine. Opioids and benzodiazepines were analyzed from post mortem urine samples with an optimized DAPPI-MS method. Post mortem urine samples were analyzed with and without sample preparation. Sample preparation improved the sensitivity of the method remarkably. About 50 % of the analytes were detected without sample preparation and almost 100 % after sample cleanup. It is however difficult to estimate the suitability of DAPPI-MS as a screening method because not all analyte concentrations of the urine samples were known. Therefore we cannot be certain weither the results obtained without sample preparation are caused by the suppression of the urine matrix or if the concentrations of the analytes are below the limits of detection. The reliability of the method can further be improved by investigating the metabolites of the analytes and improving the system towards automation. On grounds of this research DAPPI-MS should be used cautiously as a screening method for urine samples without sample preparation and with only high enough analyte concentrations. DAPPI-MS shows promise as a screening method for opioids and benzodiazepines from urine when the sample cleanup is used before the analysis.
  • Allen, John A.; Setälä, Heikki; Kotze, David Johan (2020)
    Urban residents and their pets utilize urban greenspaces daily. As urban dog ownership rates increase globally, urban greenspaces are under mounting pressure even as the benefits and services they provide become more important. The urine of dogs is high in nitrogen (N) and may represent a significant portion of the annual urban N load. We examined the spatial distribution and impact of N deposition from dog urine on soils in three urban greenspace typologies in Finland: Parks, Tree Alleys, and Remnant Forests. We analyzed soil from around trees, lampposts and lawn areas near walking paths, and compared these to soils from lawn areas 8 m away from pathways. Soil nitrate, ammonium, total N concentrations, and electrical conductivity were significantly higher and soil pH significantly lower near path-side trees and poles relative to the 8 m lawn plots. Also, stable isotope analysis indicates that the primary source of path-side N are distinct from those of the 8 m lawn plots, supporting our hypothesis that dogs are a significant source of N in urban greenspaces, but that this deposition occurs in a restricted zone associated with walking paths. Additionally, we found that Remnant Forests were the least impacted of the three typologies analyzed. We recommend that landscape planners acknowledge this impact, and design parks to reduce or isolate this source of N from the wider environment.
  • Vapalahti, K; Virtala, A. M; Joensuu, T. A; Tiira, K; Tahtinen, J; Lohi, H (2016)
  • Puhka, Maija; Takatalo, Maarit; Nordberg, Maria-Elisa; Valkonen, Sami; Nandania, Jatin; Aatonen, Maria; Yliperttula, Marjo; Laitinen, Saara; Velagapudi, Vidya; Mirtti, Tuomas; Kallioniemi, Olli; Rannikko, Antti; Siljander, Pia R-M; Af Hallstrom, Taija Maria (2017)
    Body fluids are a rich source of extracellular vesicles (EVs), which carry cargo derived from the secreting cells. So far, biomarkers for pathological conditions have been mainly searched from their protein, (mi) RNA, DNA and lipid cargo. Here, we explored the small molecule metabolites from urinary and platelet EVs relative to their matched source samples. As a proof-of-concept study of intra-EV metabolites, we compared alternative normalization methods to profile urinary EVs from prostate cancer patients before and after prostatectomy and from healthy controls. Methods: We employed targeted ultra-performance liquid chromatography-tandem mass spectrometry to profile over 100 metabolites in the isolated EVs, original urine samples and platelets. We determined the enrichment of the metabolites in the EVs and analyzed their subcellular origin, pathways and relevant enzymes or transporters through data base searches. EV-and urine-derived factors and ratios between metabolites were tested for normalization of the metabolomics data. Results: Approximately 1 x 10(10) EVs were sufficient for detection of metabolite profiles from EVs. The profiles of the urinary and platelet EVs overlapped with each other and with those of the source materials, but they also contained unique metabolites. The EVs enriched a selection of cytosolic metabolites including members from the nucleotide and spermidine pathways, which linked to a number of EV-resident enzymes or transporters. Analysis of the urinary EVs from the patients indicated that the levels of glucuronate, D-ribose 5-phosphate and isobutyryl-L-carnitine were 2-26-fold lower in all pre-prostatectomy samples compared to the healthy control and post-prostatectomy samples (p <0.05). These changes were only detected from EVs by normalization to EV-derived factors or with metabolite ratios, and not from the original urine samples. Conclusions: Our results suggest that metabolite analysis of EVs from different samples is feasible using a high-throughput platform and relatively small amount of sample material. With the knowledge about the specific enrichment of metabolites and normalization methods, EV metabolomics could be used to gain novel biomarker data not revealed by the analysis of the original EV source materials.
  • Takala, Anna (Helsingfors universitet, 2012)
    Neurosteroids are steroids which are active in the central nervous system. They have many biological and physiological functions in human body. Fluctuations of the neurosteroid concentrations are related to many diseases such as depression, schizophrenia and epilepsy. Neurosteroid levels are measured to understand their role in brain function and human behavior. The aim of the work was to develop a gas chromatographic-atmospheric pressure fotoionization-tandem mass spectrometric (GC-APPI-MS/MS) method for analyzing 19 neurosteroids and their metabolites in urine. Neurosteroids are excreted in urine mainly as conjugates, so they have to be hydrolyzed before analysis. Sample purification is done by liquid-liquid extraction and the analytes are subsequently derivatized to enhance their volatility. Because widely used β-glucuronidase/arylsulfatase-enzyme from Helix pomatia oxidases 3β-hydroxy-5-ene and 3β-hydroxy-5α-reduced steroids, we decided to use β-glucuronidase from Escherichia coli and acid hydrolysis instead of H. pomatia. The quantification of the total neurosteroid concentration in urine was challenging because β-glucuronidase enzyme from E. coli did not hydrolyze glucuronides completely and acid hydrolysis deconjugated also glucuronides in addition to sulfate conjugates. In addition the internal standard d4-allopregnanolone was noticed to be impure and degrade during acid hydrolysis. The limits of detection were reasonably low for the method (2 pg/ml-1 ng/ml). The retention times of the analyte peaks were very repeatable (RSD 0,06-0,11%) and the repeatability of the method was acceptable for all compounds (RSD < 27%). Urine samples from two males and two females were analyzed with the preliminary validated method. We could determine estimated concentrations for dehydroepiandrosterone, dihydrotestosterone, androstenedione, testosterone, estrone, β-estradiol, estriol, 5α-tetrahydrodeoxocorticosterone, cortisone, corticosterone and hydrocortisone. The developed method did not meet all the aims of this work. The method needs further validation and more exact investigation about the effect of the selected hydrolysis method on intact steroids. Also the internal standard should be changed to some other compound, preferably a non-deuterated one.
  • Kwon, Hyuk Nam; Lee, Hyuk; Park, Ji Won; Kim, Young-Ho; Park, Sunghyouk; Kim, Jae J. (2020)
    The early detection of gastric cancer (GC) could decrease its incidence and mortality. However, there are currently no accurate noninvasive markers for GC screening. Therefore, we developed a noninvasive diagnostic approach, employing urine nuclear magnetic resonance (NMR) metabolomics, to discover putative metabolic markers associated with GC. Changes in urine metabolite levels during oncogenesis were evaluated using samples from 103 patients with GC and 100 age- and sex-matched healthy controls. Approximately 70% of the patients with GC (n = 69) had stage I GC, with the majority (n = 56) having intramucosal cancer. A multivariate statistical analysis of the urine NMR data well discriminated between the patient and control groups and revealed nine metabolites, including alanine, citrate, creatine, creatinine, glycerol, hippurate, phenylalanine, taurine, and 3-hydroxybutyrate, that contributed to the difference. A diagnostic performance test with a separate validation set exhibited a sensitivity and specificity of more than 90%, even with the intramucosal cancer samples only. In conclusion, the NMR-based urine metabolomics approach may have potential as a convenient screening method for the early detection of GC and may facilitate consequent endoscopic examination through risk stratification.
  • Viskari, Eeva-Liisa; Lehtoranta, Suvi; Malila, Riikka (Sanitation Project, Research Institute for Humanity and Nature, 2021)
    Sanitation Value Chain 5:1