Browsing by Subject "1184 Genetics, developmental biology, physiology"

Sort by: Order: Results:

Now showing items 1-20 of 895
  • Vakkilainen, Svetlana; Constantini, Alice; Taskinen, Mervi; Wartiovaara-Kautto, Ulla; Mäkitie, Outi (2019)
  • Weiss, Alexander; Baselmans, Bart M. L.; Hofer, Edith; Yang, Jingyun; Okbay, Aysu; Lind, Penelope A.; Miller, Mike B.; Nolte, Ilja M.; Zhao, Wei; Hagenaars, Saskia P.; Hottenga, Jouke-Jan; Matteson, Lindsay K.; Snieder, Harold; Faul, Jessica D.; Hartman, Catharina A.; Boyle, Patricia A.; Tiemeier, Henning; Mosing, Miriam A.; Pattie, Alison; Davies, Gail; Liewald, David C.; Schmidt, Reinhold; De Jager, Philip L.; Heath, Andrew C.; Jokela, Markus; Starr, John M.; Oldehinkel, Albertine J.; Johannesson, Magnus; Cesarini, David; Hofman, Albert; Harris, Sarah E.; Smith, Jennifer A.; Keltikangas-Järvinen, Liisa; Pulkki-Råback, Laura; Schmidt, Helena; Smith, Jacqui; Iacono, William G.; McGue, Matt; Bennett, David A.; Pedersen, Nancy L.; Magnusson, Patrik K. E.; Deary, Ian J.; Martin, Nicholas G.; Boomsma, Dorret I.; Bartels, Meike; Luciano, Michelle (2016)
    Approximately half of the variation in wellbeing measures overlaps with variation in personality traits. Studies of non-human primate pedigrees and human twins suggest that this is due to common genetic influences. We tested whether personality polygenic scores for the NEO Five-Factor Inventory (NEO-FFI) domains and for item response theory (IRT) derived extraversion and neuroticism scores predict variance in wellbeing measures. Polygenic scores were based on published genome-wide association (GWA) results in over 17,000 individuals for the NEO-FFI and in over 63,000 for the IRT extraversion and neuroticism traits. The NEO-FFI polygenic scores were used to predict life satisfaction in 7 cohorts, positive affect in 12 cohorts, and general wellbeing in 1 cohort (maximal N = 46,508). Meta-analysis of these results showed no significant association between NEO-FFI personality polygenic scores and the wellbeing measures. IRT extraversion and neuroticism polygenic scores were used to predict life satisfaction and positive affect in almost 37,000 individuals from UK Biobank. Significant positive associations (effect sizes
  • Kondelin, Johanna; Tuupanen, Sari; Gylfe, Alexandra E.; Aavikko, Mervi; Renkonen-Sinisalo, Laura; Järvinen, Heikki; Bohm, Jan; Mecklin, Jukka-Pekka; Andersen, Claus L.; Vahteristo, Pia; Pitkanen, Esa; Aaltonen, Lauri A. (2015)
    Approximately 15 % of colorectal cancers exhibit instability of short nucleotide repeat regions, microsatellites. These tumors display a unique clinicopathologic profile and the microsatellite instability status is increasingly used to guide clinical management as it is known to predict better prognosis as well as resistance to certain chemotherapeutics. A panel of five repeats determined by the National Cancer Institute, the Bethesda panel, is currently the standard for determining the microsatellite instability status in colorectal cancer. Recently, a quasimonomorphic mononucleotide repeat 16T/U at the 3' untranslated region of the Ewing sarcoma breakpoint region 1 gene was reported to show perfect sensitivity and specificity in detecting mismatch repair deficient colorectal, endometrial, and gastric cancers in two independent populations. To confirm this finding, we replicated the analysis in 213 microsatellite unstable colorectal cancers from two independent populations, 148 microsatellite stable colorectal cancers, and the respective normal samples by PCR and fragment analysis. The repeat showed nearly perfect sensitivity for microsatellite unstable colorectal cancer as it was altered in 212 of the 213 microsatellite unstable (99.5 %) and none of the microsatellite stable colorectal tumors. This repeat thus represents the first potential single marker for detecting microsatellite instability.
  • Buettner, Ralf; Le Xuan Truong Nguyen,; Kumar, Bijender; Morales, Corey; Liu, Chao; Chen, Lisa S.; Pemovska, Tea; Synold, Timothy W.; Palmer, Joycelynne; Thompson, Ryan; Li, Ling; Dinh Hoa Hoang,; Zhang, Bin; Ghoda, Lucy; Kowolik, Claudia; Kontro, Mika; Leitch, Calum; Wennerberg, Krister; Yu, Xiaochun; Chen, Ching-Cheng; Horne, David; Gandhi, Varsha; Pullarkat, Vinod; Marcucci, Guido; Rosen, Steven T. (2019)
    Nucleoside analogs represent the backbone of several distinct chemotherapy regimens for acute myeloid leukemia (AML) and combination with tyrosine kinase inhibitors has improved survival of AML patients, including those harboring the poor-risk FLT3-ITD mutation. Although these compounds are effective in killing proliferating blasts, they lack activity against quiescent leukemia stem cells (LSCs), which contributes to initial treatment refractoriness or subsequent disease relapse. The reagent 8-chloro-adenosine (8-Cl-Ado) is a ribose-containing, RNA-directed nucleoside analog that is incorporated into newly transcribed RNA rather than in DNA, causing inhibition of RNA transcription. In this report, we demonstrate antileukemic activities of 8-Cl-Ado in vitro and in vivo and provide mechanistic insight into the mode of action of 8-Cl-Ado in AML. 8-Cl-Ado markedly induced apoptosis in LSC, with negligible effects on normal stem cells. 8-Cl-Ado was particularly effective against AML cell lines and primary AML blast cells harboring the FLT3-ITD mutation. FLT3-ITD is associated with high expression of miR-155. Furthermore, we demonstrate that 8-Cl-Ado inhibits miR-155 expression levels accompanied by induction of DNA-damage and suppression of cell proliferation, through regulation of miR-155/ErbB3 binding protein 1(Ebp1)/p53/PCNA signaling. Finally, we determined that combined treatment of NSG mice engrafted with FLT3-ITD (+) MV4-11 AML cells with 8-Cl-Ado and the FLT3 inhibitor AC220 (quizartinib) synergistically enhanced survival, compared with that of mice treated with the individual drugs, suggesting a potentially effective approach for FLT3-ITD AML patients.
  • Chew, Tracy; Haase, Bianca; Bathgate, Roslyn; Willet, Cali E.; Kaukonen, Maria K.; Mascord, Lisa J.; Lohi, Hannes T.; Wade, Claire M. (2017)
    Progressive retinal atrophy is a common cause of blindness in the dog and affects >100 breeds. It is characterized by gradual vision loss that occurs due to the degeneration of photoreceptor cells in the retina. Similar to the human counterpart retinitis pigmentosa, the canine disorder is clinically and genetically heterogeneous and the underlying cause remains unknown for many cases. We use a positional candidate gene approach to identify putative variants in the Hungarian Puli breed using genotyping data of 14 family-based samples (CanineHD BeadChip array, Illumina) and whole-genome sequencing data of two proband and two parental samples (Illumina HiSeq 2000). A single nonsense SNP in exon 2 of BBS4 (c.58A > T, p.Lys20*) was identified following filtering of high quality variants. This allele is highly associated (P-CHISQ = 3.425e(-14), n = 103) and segregates perfectly with progressive retinal atrophy in the Hungarian Puli. In humans, BBS4 is known to cause Bardet-Biedl syndrome which includes a retinitis pigmentosa phenotype. From the observed coding change we expect that no functional BBS4 can be produced in the affected dogs. We identified canine phenotypes comparable with Bbs4-null mice including obesity and spermatozoa flagella defects. Knockout mice fail to form spermatozoa flagella. In the affected Hungarian Puli spermatozoa flagella are present, however a large proportion of sperm are morphologically abnormal and
  • Radhakrishnan, Dhanya; Shanmukhan, Anju Pallipurath; Kareem, Abdul; Aiyaz, Mohammed; Varapparambathu, Vijina; Toms, Ashna; Kerstens, Merijn; Valsakumar, Devisree; Landge, Amit N.; Shaji, Anil; Mathew, Mathew K.; Sawchuk, Megan G.; Scarpella, Enrico; Krizek, Beth A.; Efroni, Idan; Mähönen, Ari Pekka; Willemsen, Viola; Scheres, Ben; Prasad, Kalika (2020)
    Aerial organs of plants, being highly prone to local injuries, require tissue restoration to ensure their survival. However, knowledge of the underlying mechanism is sparse. In this study, we mimicked natural injuries in growing leaves and stems to study the reunion between mechanically disconnected tissues. We show that PLETHORA (PLT) and AINTEGUMENTA (ANT) genes, which encode stem cell-promoting factors, are activated and contribute to vascular regeneration in response to these injuries. PLT proteins bind to and activate the CUC2 promoter. PLT proteins and CUC2 regulate the transcription of the local auxin biosynthesis gene YUC4 in a coherent feed-forward loop, and this process is necessary to drive vascular regeneration. In the absence of this PLT-mediated regeneration response, leaf ground tissue cells can neither acquire the early vascular identity marker ATHB8, nor properly polarise auxin transporters to specify new venation paths. The PLT-CUC2 module is required for vascular regeneration, but is dispensable for midvein formation in leaves. We reveal the mechanisms of vascular regeneration in plants and distinguish between the wound-repair ability of the tissue and its formation during normal development.
  • Thompson, Luke R.; Sanders, Jon G.; McDonald, Daniel; Amir, Amnon; Ladau, Joshua; Locey, Kenneth J.; Prill, Robert J.; Tripathi, Anupriya; Gibbons, Sean M.; Ackermann, Gail; Navas-Molina, Jose A.; Janssen, Stefan; Kopylova, Evguenia; Vazquez-Baeza, Yoshiki; Gonzalez, Antonio; Morton, James T.; Mirarab, Siavash; Xu, Zhenjiang Zech; Jiang, Lingjing; Haroon, Mohamed F.; Kanbar, Jad; Zhu, Qiyun; Song, Se Jin; Kosciolek, Tomasz; Bokulich, Nicholas A.; Lefler, Joshua; Brislawn, Colin J.; Humphrey, Gregory; Owens, Sarah M.; Hampton-Marcell, Jarrad; Berg-Lyons, Donna; McKenzie, Valerie; Fierer, Noah; Fuhrman, Jed A.; Clauset, Aaron; Stevens, Rick L.; Shade, Ashley; Pollard, Katherine S.; Goodwin, Kelly D.; Jansson, Janet K.; Gilbert, Jack A.; Knight, Rob; Earth Microbiome Project Consortiu; Hultman, Jenni (2017)
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.
  • Zoonomia Consortium; Genereux, Diane P.; Serres, Aitor; Armstrong, Joel; Kivioja, Teemu; Taipale, Jussi; Karlsson, Elinor K. (2020)
    A whole-genome alignment of 240 phylogenetically diverse species of eutherian mammal-including 131 previously uncharacterized species-from the Zoonomia Project provides data that support biological discovery, medical research and conservation. The Zoonomia Project is investigating the genomics of shared and specialized traits in eutherian mammals. Here we provide genome assemblies for 131 species, of which all but 9 are previously uncharacterized, and describe a whole-genome alignment of 240 species of considerable phylogenetic diversity, comprising representatives from more than 80% of mammalian families. We find that regions of reduced genetic diversity are more abundant in species at a high risk of extinction, discern signals of evolutionary selection at high resolution and provide insights from individual reference genomes. By prioritizing phylogenetic diversity and making data available quickly and without restriction, the Zoonomia Project aims to support biological discovery, medical research and the conservation of biodiversity.
  • Kjaerbolling, Inge; Vesth, Tammi; Frisvad, Jens C.; Nybo, Jane L.; Theobald, Sebastian; Kildgaard, Sara; Petersen, Thomas Isbrandt; Kuo, Alan; Sato, Atsushi; Lyhne, Ellen K.; Kogle, Martin E.; Wiebenga, Ad; Kun, Roland S.; Lubbers, Ronnie J. M.; Makela, Miia R.; Barry, Kerrie; Chovatia, Mansi; Clum, Alicia; Daum, Chris; Haridas, Sajeet; He, Guifen; LaButti, Kurt; Lipzen, Anna; Mondo, Stephen; Pangilinan, Jasmyn; Riley, Robert; Salamov, Asaf; Simmons, Blake A.; Magnuson, Jon K.; Henrissat, Bernard; Mortensen, Uffe H.; Larsen, Thomas O.; de Vries, Ronald P.; Grigoriev, Igor V.; Machida, Masayuki; Baker, Scott E.; Andersen, Mikael R. (2020)
    Section Flavi encompasses both harmful and beneficial Aspergillus species, such as Aspergillus oryzae, used in food fermentation and enzyme production, and Aspergillus flavus, food spoiler and mycotoxin producer. Here, we sequence 19 genomes spanning section Flavi and compare 31 fungal genomes including 23 Flavi species. We reassess their phylogenetic relationships and show that the closest relative of A. oryzae is not A. flavus, but A. minisclerotigenes or A. aflatoxiformans and identify high genome diversity, especially in sub-telomeric regions. We predict abundant CAZymes (598 per species) and prolific secondary metabolite gene clusters (73 per species) in section Flavi. However, the observed phenotypes (growth characteristics, polysaccharide degradation) do not necessarily correlate with inferences made from the predicted CAZyme content. Our work, including genomic analyses, phenotypic assays, and identification of secondary metabolites, highlights the genetic and metabolic diversity within section Flavi.
  • McWilliams, Thomas G.; Prescott, Alan R.; Villarejo-Zori, Beatriz; Ball, Graeme; Boya, Patricia; Ganleya, Ian G. (2019)
    Photoreception is pivotal to our experience and perception of the natural world; hence the eye is of prime importance for most vertebrate animals to sense light. Central to visual health is mitochondrial homeostasis, and the selective autophagic turnover of mitochondria (mitophagy) is predicted to play a key role here. Despite studies that link aberrant mitophagy to ocular dysfunction, little is known about the prevalence of basal mitophagy, or its relationship to general autophagy, in the visual system. In this study, we utilize the mito-QC mouse and a closely related general macroautophagy reporter model to profile basal mitophagy and macroautophagy in the adult and developing eye. We report that ocular macroautophagy is widespread, but surprisingly mitophagy does not always follow the same pattern of occurrence. We observe low levels of mitophagy in the lens and ciliary body, in stark contrast to the high levels of general MAP1LC3-dependent macroautophagy in these regions. We uncover a striking reversal of this process in the adult retina, where mitophagy accounts for a larger degree of the macroautophagy taking place, specifically in the photoreceptor neurons of the outer nuclear layer. We also show the developmental regulation of autophagy in a variety of ocular tissues. In particular, mitophagy in the adult mouse retina is reversed in localization during the latter stages of development. Our work thus defines the landscape of mitochondrial homeostasis in the mammalian eye, and in doing so highlights the selective nature of autophagy in vivo and the specificity of the reporters used.
  • Horesh, Gal; Blackwell, Grace A.; Tonkin-Hill, Gerry; Corander, Jukka; Heinz, Eva; Thomson, Nicholas R. (2021)
    Escherichia coli is a highly diverse organism that includes a range of commensal and pathogenic variants found across a range of niches and worldwide. In addition to causing severe intestinal and extraintestinal disease, E. coli is considered a priority pathogen due to high levels of observed drug resistance. The diversity in the E. coli population is driven by high genome plasticity and a very large gene pool. All these have made E. coli one of the most well- studied organisms, as well as a commonly used laboratory strain. Today, there are thousands of sequenced E. coli genomes stored in public databases. While data is widely available, accessing the information in order to perform analyses can still be a challenge. Collecting relevant available data requires accessing different sources, where data may be stored in a range of formats, and often requires further manipulation and processing to apply various analyses and extract useful information. In this study, we collated and intensely curated a collection of over 10 000 E. coli and Shigella genomes to provide a single, uniform, high- quality dataset. Shigella were included as they are considered specialized pathovars of E. coli. We provide these data in a number of easily accessible formats that can be used as the foundation for future studies addressing the biological differences between E. coli lineages and the distribution and flow of genes in the E. coli population at a high resolution. The analysis we present emphasizes our lack of understanding of the true diversity of the E. coli species, and the biased nature of our current understanding of the genetic diversity of such a key pathogen.
  • Kvist, Jouni; Athanasio, Camila Goncalves; Pfrender, Michael E.; Brown, James B.; Colbourne, John K.; Mirbahai, Leda (2020)
    Background Daphnia species reproduce by cyclic parthenogenesis involving both sexual and asexual reproduction. The sex of the offspring is environmentally determined and mediated via endocrine signalling by the mother. Interestingly, male and female Daphnia can be genetically identical, yet display large differences in behaviour, morphology, lifespan and metabolic activity. Our goal was to integrate multiple omics datasets, including gene expression, splicing, histone modification and DNA methylation data generated from genetically identical female and male Daphnia pulex under controlled laboratory settings with the aim of achieving a better understanding of the underlying epigenetic factors that may contribute to the phenotypic differences observed between the two genders. Results In this study we demonstrate that gene expression level is positively correlated with increased DNA methylation, and histone H3 trimethylation at lysine 4 (H3K4me3) at predicted promoter regions. Conversely, elevated histone H3 trimethylation at lysine 27 (H3K27me3), distributed across the entire transcript length, is negatively correlated with gene expression level. Interestingly, male Daphnia are dominated with epigenetic modifications that globally promote elevated gene expression, while female Daphnia are dominated with epigenetic modifications that reduce gene expression globally. For examples, CpG methylation (positively correlated with gene expression level) is significantly higher in almost all differentially methylated sites in male compared to female Daphnia. Furthermore, H3K4me3 modifications are higher in male compared to female Daphnia in more than 3/4 of the differentially regulated promoters. On the other hand, H3K27me3 is higher in female compared to male Daphnia in more than 5/6 of differentially modified sites. However, both sexes demonstrate roughly equal number of genes that are up-regulated in one gender compared to the other sex. Since, gene expression analyses typically assume that most genes are expressed at equal level among samples and different conditions, and thus cannot detect global changes affecting most genes. Conclusions The epigenetic differences between male and female in Daphnia pulex are vast and dominated by changes that promote elevated gene expression in male Daphnia. Furthermore, the differences observed in both gene expression changes and epigenetic modifications between the genders relate to pathways that are physiologically relevant to the observed phenotypic differences.
  • Comai, Glenda; Heude, Eglantine; Mella, Sebastian; Paisant, Sylvain; Pala, Francesca; Gallardo, Mirialys; Langa, Francina; Kardon, Gabrielle; Gopalakrishnan, Swetha; Tajbakhsh, Shahragim (2019)
    In most vertebrates, the upper digestive tract is composed of muscularized jaws linked to the esophagus that permits food ingestion and swallowing. Masticatory and esophagus striated muscles (ESM) share a common cardiopharyngeal mesoderm (CPM) origin, however ESM are unusual among striated muscles as they are established in the absence of a primary skeletal muscle scaffold. Using mouse chimeras, we show that the transcription factors Tbx1 and Isl1 are required cell-autonomously for myogenic specification of ESM progenitors. Further, genetic loss-of-function and pharmacological studies point to MET/HGF signaling for antero-posterior migration of esophagus muscle progenitors, where Hgf ligand is expressed in adjacent smooth muscle cells. These observations highlight the functional relevance of a smooth and striated muscle progenitor dialogue for ESM patterning. Our findings establish a Tbx1-Isl1-Met genetic hierarchy that uniquely regulates esophagus myogenesis and identify distinct genetic signatures that can be used as framework to interpret pathologies arising within CPM derivatives.
  • Lahtinen, Alexandra; Puttonen, Sampsa; Vanttola, Päivi; Viitasalo, Katriina; Sulkava, Sonja; Pervjakova, Natalia; Joensuu, Anni; Salo, Perttu; Toivola, Auli; Härmä, Mikko; Milani, Lili; Perola, Markus; Paunio, Tiina (2019)
    Short sleep duration or insomnia may lead to an increased risk of various psychiatric and cardio-metabolic conditions. Since DNA methylation plays a critical role in the regulation of gene expression, studies of differentially methylated positions (DMPs) might be valuable for understanding the mechanisms underlying insomnia. We performed a cross-sectional genome-wide analysis of DNA methylation in relation to self-reported insufficient sleep in individuals from a community-based sample (79 men, aged 39.3 +/- 7.3), and in relation to shift work disorder in an occupational cohort (26 men, aged 44.9 +/- 9.0). The analysis of DNA methylation data revealed that genes corresponding to selected DMPs form a distinctive pathway: "Nervous System Development" (FDR P value <0.05). We found that 78% of the DMPs were hypomethylated in cases in both cohorts, suggesting that insufficient sleep may be associated with loss of DNA methylation. A karyoplot revealed clusters of DMPs at various chromosomal regions, including 12 DMPs on chromosome 17, previously associated with Smith-Magenis syndrome, a rare condition comprising disturbed sleep and inverse circadian rhythm. Our findings give novel insights into the DNA methylation patterns associated with sleep loss, possibly modifying processes related to neuroplasticity and neurodegeneration. Future prospective studies are needed to confirm the observed associations.
  • Matsuda, Shinya; Blanco, Jorge; Shimmi, Osamu (2013)
    A variety of extracellular factors regulate morphogenesis during development. However, coordination between extracellular signaling and dynamic morphogenesis is largely unexplored. We address the fundamental question by studying posterior crossvein (PCV) development in Drosophila as a model, in which long-range BMP transport from the longitudinal veins plays a critical role during the pupal stages. Here, we show that RhoGAP Crossveinless-C (Cv-C) is induced at the PCV primordial cells by BMP signaling and mediates PCV morphogenesis cell-autonomously by inactivating members of the Rho-type small GTPases. Intriguingly, we find that Cv-C is also required non-cell-autonomously for BMP transport into the PCV region, while a long-range BMP transport is guided toward ectopic wing vein regions by loss of the Rho-type small GTPases. We present evidence that low level of ß-integrin accumulation at the basal side of PCV epithelial cells regulated by Cv-C provides an optimal extracellular environment for guiding BMP transport. These data suggest that BMP transport and PCV morphogenesis are tightly coupled. Our study reveals a feed-forward mechanism that coordinates the spatial distribution of extracellular instructive cues and morphogenesis. The coupling mechanism may be widely utilized to achieve precise morphogenesis during development and homeostasis.
  • Poczai, Péter (Felsőbbfokú Tanulmányok Intézete, 2019)
  • Hytönen, Marjo K.; Lohi, Hannes (2019)
    Hairlessness is a breed-specific feature selected for in some dog breeds but a rare abnormality in some others such as Scottish Deerhounds (SD). In SDs, the affected puppies are born with sparse hair but lose it within the first 2months leaving the dogs completely hairless. The previous studies have implicated variants in FOXI3 and SGK3 in hairlessness; however, the known variants do not explain hairlessness in all breeds such as SDs. We investigated the genetic cause in 66 SDs, including a litter with two hairless dogs. We utilized a combined approach of genome-wide homozygosity mapping and whole-genome sequencing of a hairless SD followed by recessive filtering according to a recessive model against 340 control genomes. Only two homozygous-coding variants were discovered in the homozygosity regions, including a 1-bp insertion in exon 2 of SGK3. This results in a predicted frameshift and very early truncation (49/490 amino acids) of the SGK3 protein. Additional screening of the recessive variant demonstrated a full segregation with the hairlessness and a 12% carrier frequency in the SD breed. The variant was not found in the related Irish Wolfhound breed. This study identifies the second hairless variant in the SGK3 gene in dogs and further highlights its role as a candidate gene for androgen-independent hair loss or alopecia in human.
  • Donner, Kristian; Yovanovich, Carola (2020)
    From the mid-19th century until the 1980's, frogs and toads provided important research models for many fundamental questions in visual neuroscience. In the present century, they have been largely neglected. Yet they are animals with highly developed vision, a complex retina built on the basic vertebrate plan, an accessible brain, and an experimentally useful behavioural repertoire. They also offer a rich diversity of species and life histories on a reasonably restricted physiological and evolutionary background. We suggest that important insights may be gained from revisiting classical questions in anurans with state-of-the-art methods. At the input to the system, this especially concerns the molecular evolution of visual pigments and photoreceptors, at the output, the relation between retinal signals, brain processing and behavioural decision-making.
  • Gutierrez, Alejandro P.; Bean, Tim P.; Hooper, Chantelle; Stenton, Craig A.; Sanders, Matthew B.; Paley, Richard K.; Rastas, Pasi; Bryrom, Michaela; Matika, Oswald; Houston, Ross D. (2018)
    Ostreid herpesvirus (OsHV) can cause mass mortality events in Pacific oyster aquaculture. While various factors impact on the severity of outbreaks, it is clear that genetic resistance of the host is an important determinant of mortality levels. This raises the possibility of selective breeding strategies to improve the genetic resistance of farmed oyster stocks, thereby contributing to disease control. Traditional selective breeding can be augmented by use of genetic markers, either via marker-assisted or genomic selection. The aim of the current study was to investigate the genetic architecture of resistance to OsHV in Pacific oyster, to identify genomic regions containing putative resistance genes, and to inform the use of genomics to enhance efforts to breed for resistance. To achieve this, a population of approximate to 1,000 juvenile oysters were experimentally challenged with a virulent form of OsHV, with samples taken from mortalities and survivors for genotyping and qPCR measurement of viral load. The samples were genotyped using a recently-developed SNP array, and the genotype data were used to reconstruct the pedigree. Using these pedigree and genotype data, the first high density linkage map was constructed for Pacific oyster, containing 20,353 SNPs mapped to the ten pairs of chromosomes. Genetic parameters for resistance to OsHV were estimated, indicating a significant but low heritability for the binary trait of survival and also for viral load measures (h2 0.12 - 0.25). A genome-wide association study highlighted a region of linkage group 6 containing a significant QTL affecting host resistance. These results are an important step toward identification of genes underlying resistance to OsHV in oyster, and a step toward applying genomic data to enhance selective breeding for disease resistance in oyster aquaculture.