Browsing by Subject "216 Materials engineering"

Sort by: Order: Results:

Now showing items 1-20 of 57
  • Vihervaara, Anton; Hatanpää, Timo; Mizohata, Kenichiro; Chundak, Mykhailo; Popov, Georgi; Ritala, Mikko (2022)
    In this work, we developed a new ALD process for nickel metal from dichlorobis(triethylphosphine)nickel(ii) (NiCl2(PEt3)(2)) and 1,4-bis(trimethylgermyl)-1,4-dihydropyrazine ((Me3Ge)(2)DHP). A series of phosphine adducts of nickel and cobalt halides were synthesized and characterized for their volatility and thermal stability. Also (Me3Ge)(2)DHP is a novel reducing agent in ALD. Smooth nickel films were deposited on different substrate materials at 110 degrees C, which is the lowest deposition temperature for Ni metal found in the literature. The growth rate is 0.2 angstrom per cycle when the film is not continuous and decreases to 0.1 angstrom per cycle after the film becomes pinhole-free. Besides a small amount (7 at%) of carbidic carbon, the films have only small amounts of impurities. Most notably, the chlorine content is below 0.2 at%, indicating efficient reduction. Furthermore, we think that (Me3Ge)(2)DHP can open new avenues for the ALD of other metals at low temperatures.
  • Sanz-Garcia, Andres; Sodupe-Ortega, Enrique; Pernia-Espinoza, Alpha; Shimizu, Tatsuya; Escobedo-Lucea, Carmen (2020)
    Three-dimensional (3D) bioprinting promises to be essential in tissue engineering for solving the rising demand for organs and tissues. Some bioprinters are commercially available, but their impact on the field of Tissue engineering (TE) is still limited due to their cost or difficulty to tune. Herein, we present a low-cost easy-to-build printhead for microextrusion-based bioprinting (MEBB) that can be installed in many desktop 3D printers to transform them into 3D bioprinters. We can extrude bioinks with precise control of print temperature between 2-60 degrees C. We validated the versatility of the printhead, by assembling it in three low-cost open-source desktop 3D printers. Multiple units of the printhead can also be easily put together in a single printer carriage for building a multi-material 3D bioprinter. Print resolution was evaluated by creating representative calibration models at different temperatures using natural hydrogels such as gelatin and alginate, and synthetic ones like poloxamer. Using one of the three modified low-cost 3D printers, we successfully printed cell-laden lattice constructs with cell viabilities higher than 90% after 24-h post printing. Controlling temperature and pressure according to the rheological properties of the bioinks was essential in achieving optimal printability and great cell viability. The cost per unit of our device, which can be used with syringes of different volume, is less expensive than any other commercially available product. These data demonstrate an affordable open-source printhead with the potential to become a reliable alternative to commercial bioprinters for any laboratory.
  • Sodupe-Ortega, Enrique; Sanz-Garcia, Andres; Pernia-Espinoza, Alpha; Escobedo-Lucea, Carmen (2018)
    Most of the studies in three-dimensional (3D) bioprinting have been traditionally based on printing a single bioink. Addressing the complexity of organ and tissue engineering, however, will require combining multiple building and sacrificial biomaterials and several cells types in a single biofabrication session. This is a significant challenge, and, to tackle that, we must focus on the complex relationships between the printing parameters and the print resolution. In this paper, we study the influence of the main parameters driven multi-material 3D bioprinting and we present a method to calibrate these systems and control the print resolution accurately. Firstly, poloxamer hydrogels were extruded using a desktop 3D printer modified to incorporate four microextrusion-based bioprinting (MEBB) printheads. The printed hydrogels provided us the particular range of printing parameters (mainly printing pressure, deposition speed, and nozzle z-offset) to assure the correct calibration of the multi-material 3D bioprinter. Using the printheads, we demonstrated the excellent performance of the calibrated system extruding different fluorescent bioinks. Representative multi-material structures were printed in both poloxamer and cell-laden gelatin-alginate bioinks in a single session corroborating the capabilities of our system and the calibration method. Cell viability was not significantly affected by any of the changes proposed. We conclude that our proposal has enormous potential to help with advancing in the creation of complex 3D constructs and vascular networks for tissue engineering.
  • Ajdary, Rubina; Huan, Siqi; Zanjanizadeh Ezazi, Nazanin; Xiang, Wenchao; Grande, Rafael; Santos, Hélder A.; Rojas, Orlando J. (2019)
    Nanocellulose has been demonstrated as a suitable material for cell culturing, given its similarity to extracellular matrices. Taking advantage of the shear thinning behavior, nanocellulose suits three-dimensional (3D) printing into scaffolds that support cell attachment and proliferation. Here, we propose aqueous suspensions of acetylated nanocellulose of a low degree of substitution for direct ink writing (DM). This benefits from the heterogeneous acetylation of precursor cellulosic fibers, which eases their deconstruction and confers the characteristics required for extrusion in DIW. Accordingly, the morphology of related 3D printed architectures and their performance during drying and rewetting as well as interactions with living cells are compared with those produced from typical unmodified and TEMPO-oxidized nanocelluloses. We find that a significantly lower concentration of acetylated nanofibrils is needed to obtain bioinks of similar performance, affording more porous structures. Together with their high surface charge and axial aspect, acetylated nanocellulose produces dimensionally stable monolithic scaffolds that support drying and rewetting, required for packaging and sterilization. Considering their potential uses in cardiac devices, we discuss the interactions of the scaffolds with cardiac myoblast cells. Attachment, proliferation, and viability for 21 days are demonstrated. Overall, the performance of acetylated nanocellulose bioinks opens the possibility for reliable and scaleup fabrication of scaffolds appropriate for studies on cellular processes and for tissue engineering.
  • Cheng, Ruoyu; Liu, Lili; Xiang, Yi; Lu, Yong; Deng, Lianfu; Zhang, Hongbo; Santos, Hélder A.; Cui, Wenguo (2020)
    Liposome is one of the most commonly used drug delivery systems in the world, due to its excellent biocompatibility, satisfactory ability in controlling drug release, and passive targeting capability. However, some drawbacks limit the application of liposomes in clinical, such as problems in transporting, storing, and difficulties in maintaining the drug concentration in the local area. Scaffolds usually are used as implants to supply certain mechanical supporting to the defective area or utilized as diagnosis and imaging methods. But, in general, unmodified scaffolds show limited abilities in promoting tissue regeneration and treating diseases. Therefore, liposome-scaffold composite systems are designed to take advantages of both liposomes’ biocompatibility and scaffolds’ strength to provide a novel system that is more suitable for clinical applications. This review introduces and discusses different types of liposomes and scaffolds, and also the application of liposome-scaffold composite systems in different diseases, such as cancer, diabetes, skin-related diseases, infection and human immunodeficiency virus, and in tissue regeneration like bone, teeth, spinal cord and wound healing.
  • Harjumaki, Riina; Zhang, Xue; Nugroho, Robertus Wahyu N.; Farooq, Muhammad; Lou, Yan-Ru; Yliperttula, Marjo; Valle-Delgado, Juan Jose; Osterberg, Monika (2020)
    Transmembrane protein integrins play a key role in cell adhesion. Cell-biomaterial interactions are affected by integrin expression and conformation, which are actively controlled by cells. Although integrin structure and function have been studied in detail, quantitative analyses of integrin-mediated cell-biomaterial interactions are still scarce. Here, we have used atomic force spectroscopy to study how integrin distribution and activation (via intracellular mechanisms in living cells or by divalent cations) affect the interaction of human pluripotent stem cells (WA07) and human hepatocarcinoma cells (HepG2) with promising biomaterials.human recombinant laminin-521 (LN-521) and cellulose nanofibrils (CNF). Cell adhesion to LN-521-coated probes was remarkably influenced by cell viability, divalent cations, and integrin density in WA07 colonies, indicating that specific bonds between LN-521 and activated integrins play a significant role in the interactions between LN-521 and HepG2 and WA07 cells. In contrast, the interactions between CNF and cells were nonspecific and not influenced by cell viability or the presence of divalent cations. These results shed light on the underlying mechanisms of cell adhesion, with direct impact on cell culture and tissue engineering applications.
  • Kanerva, M.; Puolakka, A.; Takala, T.M.; Elert, A.M.; Mylläri, V.; Jönkkäri, I.; Sarlin, E.; Seitsonen, J.; Ruokolainen, J.; Saris, P.; Vuorinen, J. (2019)
    The antibacterial features of natural pine/spruce rosin are well established, yet the functionality in various thermoplastics has not been surveyed. This work focuses on the processing of industrial grade purified rosin mixed with polyethylene (PE), polypropylene (PP), polylactic acid (PLA), polyamide (PA) and corn starch based biopolymer (CS). Homopolymer masterbatches were extrusion-compounded and melt-spun to form fibres for a wide range of products, such as filters, reinforcements, clothing and medical textiles. Due to the versatile chemical structure of rosin, it was observed compatible with all the selected polymers. In general, the rosin-blended systems were shear-thinning in a molten condition. The doped fibres spun of PE and PP indicated adequate melt-spinning capability and proper mechanical properties in terms of ultimate strength and Young's modulus. The antibacterial response was found dependent on the selected polymer. Especially PE with a 10 wt% rosin content showed significant antibacterial effects against Escherichia coli DH5α and Staphylococcus aureus ATCC 12598 when analysed in the Ringer's solution for 24 h.
  • Allolio, Christoph; Magarkar, Aniket; Jurkiewicz, Piotr; Baxova, Katarina; Javanainen, Matti; Mason, Philip E.; Sachl, Radek; Cebecauer, Marek; Hof, Martin; Horinek, Dominik; Heinz, Veronika; Rachel, Reinhard; Ziegler, Christine M.; Schröfel, Adam; Jungwirth, Pavel (2018)
    Arginine-rich cell-penetrating peptides do not enter cells by directly passing through a lipid membrane; they instead passively enter vesicles and live cells by inducing membrane multilamellarity and fusion. The molecular picture of this penetration mode, which differs qualitatively from the previously proposed direct mechanism, is provided by molecular dynamics simulations. The kinetics of vesicle agglomeration and fusion by an iconic cell-penetrating peptide-nonaarginine-are documented via real-time fluorescence techniques, while the induction of multilamellar phases in vesicles and live cells is demonstrated by a combination of electron and fluorescence microscopies. This concert of experiments and simulations reveals that the identified passive cell penetration mechanism bears analogy to vesicle fusion induced by calcium ions, indicating that the two processes may share a common mechanistic origin.
  • Pitkänen, S.; Paakinaho, K.; Pihlman, H.; Ahola, N.; Hannula, M.; Asikainen, S.; Manninen, M.; Morelius, M.; Keränen, P.; Hyttinen, J.; Kellomäki, M.; Laitinen-Vapaavuori, O.; Miettinen, S. (2019)
    Most synthetic bone grafts are either hard and brittle ceramics or paste-like materials that differ in applicability from the gold standard autologous bone graft, which restricts their widespread use. Therefore, the aim of the study was to develop an elastic, highly porous and biodegradable beta-tricalciumphosphate/poly(L-lactide-co-epsilon-caprolactone) (beta-TCP/PLCL) composite for bone applications using supercritical CO2 foaming. Ability to support osteogenic differentiation was tested in human adipose stem cell (hASC) culture for 21 d. Biocompatibility was evaluated for 24 weeks in a rabbit femur-defect model. Foamed composites had a high ceramic content (50 wt%) and porosity (65-67 %). After 50 % compression, in an aqueous environment at 37 degrees C, tested samples returned to 95 % of their original height. Hydrolytic degradation of beta-TCP/PLCL composite, during the 24-week follow-up, was very similar to that of porous PLCL scaffold both in vitro and in vivo. Osteogenic differentiation of hASCs was demonstrated by alkaline phosphatase activity analysis, alizarin red staining, soluble collagen analysis, immunocytochemical staining and qRT-PCR. In vitro, hASCs formed a pronounced mineralised collagen matrix. A rabbit femur defect model confirmed biocompatibility of the composite. According to histological Masson-Goldner's trichrome staining and micro-computed tomography, beta-TCP/PLCL composite did not elicit infection, formation of fibrous capsule or cysts. Finally, native bone tissue at 4 weeks was already able to grow on and in the beta-TCP/PLCL composite. The elastic and highly porous beta-TCP/PLCL composite is a promising bone substitute because it is osteoconductive and easy-to-use and mould intraoperatively.
  • Tuure, Juuso; Korpela, Antti; Hautala, Mikko; Rautkoski, Hille; Hakojarvi, Mikko; Mikkola, Hannu; Duplissy, Jonathan; Pellikka, Petri; Petaja, Tuukka; Kulmala, Markku; Alakukku, Laura (2020)
    Passive dew collection could be a viable option as a source of irrigation water in arid areas. The plastic foil acting as a condensing surface plays a key role in the passive dew collection regime. A laboratory method for comparing various plastic foils for dew collection was prepared and tested. The focus was on creating a method for measuring the attributes affecting dew condensation and the flow of dew droplets on the measured surface. A low-density polyethylene foil designed for dew collection, white polyethylene plastic, black polyethylene plastic, and white polyvinyl chloride plastic were used as the test plastics. The laboratory dew yields were compared with model calculations. In addition, field trials were conducted in arid conditions in Maktau, Kenya, to compare with the laboratory measurement. Results from the hardware model tests were not reflected in the results obtained from the field conditions. The laboratory tests showed that the dew-harvesting quality of plastic foils is difficult to evaluate using the laboratory test rig. A more comprehensive evaluation regime requires tests performed in field conditions or further development of the test rig used here. (C) 2020 IAgrE. Published by Elsevier Ltd. All rights reserved.
  • Hoque, Mohammad Ashraful; Nurmi, Petteri; Kumar, Arjun; Varjonen, Samu; Song, Junehwa; Pecht, Michael G.; Tarkoma, Sasu (2021)
    Accurately predicting the lifetime of lithium-ion batteries in the early stage is critical for faster battery production, tuning the production line, and predictive maintenance of energy storage systems and battery-powered devices. Diverse usage patterns, variability in the devices housing the batteries, and diversity in their operating conditions pose significant challenges for this task. The contributions of this paper are three-fold. First, a public dataset is used to characterize the behavior of battery internal resistance. Internal resistance has non-linear dynamics as the battery ages, making it an excellent candidate for reliable battery health prediction during early cycles. Second, using these findings, battery health prediction models for different operating conditions are developed. The best models are more than 95\% accurate in predicting battery health using the internal resistance dynamics of 100 cycles at room temperature. Thirdly, instantaneous voltage drops due to multiple pulse discharge loads are shown to be capable of characterizing battery heterogeneity in as few as five cycles. The results pave the way toward improved battery models and better efficiency within the production and use of lithium-ion batteries.
  • Shahbazi, Mohammad-Ali; Ghalkhani, Masoumeh; Maleki, Hajar (2020)
    Herein, the potential of directional freeze-casting techniques as a very generic, green, and straightforward approach for the processing of various functional porous materials is introduced. These materials include 3D monoliths, films, fibers, and microspheres/beads, which are obtained by the assembly of network building blocks originated from cryoassembly of the various aqueous-based systems. The process simply relies on 1) directional freezing of the slurry through contact with a cold surface, 2) maintaining the slurry at the frozen state for a particular time with controlling the freezing parameters and directions, and 3) sublimation of the created ice crystal templates inside the developed structure to translate the ice growth pattern to final porous structure. The materials developed with such a cryogenic process contain a highly complex porous structure, e.g., a hierarchical and well-aligned microstructure in different levels, which renders a high control over the physicochemical and mechanical functionalities. Due to the versatility and controllability of this technique, the process can also be extended for the mimicking of the structures found in natural materials to the bulk materials to assemble bioinspired porous composites with many useful mechanical and physical features. The aim, herein, is to give a brief overview of the recent advances in developing anisotropic porous inorganic, organic, hybrid, and carbonaceous materials with a particular emphasis on materials with biomimicking microstructure using directional ice templating approach and to highlight their recent breakthrough for different high-performance applications.
  • Ferreira, Mónica P. A.; Talman, Virpi; Torrieri, Giulia; Liu, Dongfei; Marques, Gonçalo; Moslova, Karina; Liu, Zehua; Pinto, João F.; Hirvonen, Jouni; Ruskoaho, Heikki; Santos, Hélder A. (2018)
    The inability of the heart to recover from an ischemic insult leads to the formation of fibrotic scar tissue and heart failure. From the therapeutic strategies under investigation, cardiac regeneration holds the promise of restoring the full functionality of a damaged heart. Taking into consideration the presence of vast numbers of fibroblasts and myofibroblasts in the injured heart, direct fibroblast reprogramming into cardiomyocytes using small drug molecules is an attractive therapeutic option to replenish the lost cardiomyocytes. Here, a spermine-acetalated dextran-based functional nanoparticle is developed for pH-triggered drug delivery of two poorly water soluble small molecules, CHIR99021 and SB431542, both capable of increasing the efficiency of direct reprogramming of fibroblast into cardiomyocytes. Upon functionalization with polyethylene glycol and atrial natriuretic peptide, the biocompatibility of the nanosystem is improved, and the cellular interactions with the cardiac nonmyocytes are specifically augmented. The dual delivery of the compounds is verified in vitro, and the compounds exerted concomitantly anticipate biological effects by stabilizing β-catenin (CHIR99021) and by preventing translocation of Smad3 to the nucleus of (myo)fibroblasts (SB431542). These observations highlight the potential of this nanoparticle-based system toward improved drug delivery and efficient direct reprogramming of fibroblasts into cardiomyocyte-like cells, and thus, potential cardiac regeneration therapy.
  • Sodupe Ortega, Enrique; Sanz-Garcia, Andres; Pernia-Espinoza, Alpha; Escobedo-Lucea, Carmen (2019)
    Hybrid constructs represent substantial progress in tissue engineering (TE) towards producing implants of a clinically relevant size that recapitulate the structure and multicellular complexity of the native tissue. They are created by interlacing printed scaffolds, sacrificial materials, and cell-laden hydrogels. A suitable biomaterial is a polycaprolactone (PCL); however, due to the higher viscosity of this biopolymer, three-dimensional (3D) printing of PCL is slow, so reducing PCL print times remains a challenge. We investigated parameters, such as nozzle shape and size, carriage speed, and print temperature, to find a tradeoff that speeds up the creation of hybrid constructs of controlled porosity. We performed experiments with conical, cylindrical, and cylindrical shortened nozzles and numerical simulations to infer a more comprehensive understanding of PCL flow rate. We found that conical nozzles are advised as they exhibited the highest shear rate, which increased the flow rate. When working at a low carriage speed, conical nozzles of a small diameter tended to form-flatten filaments and became highly inefficient. However, raising the carriage speed revealed shortcomings because passing specific values created filaments with a heterogeneous diameter. Small nozzles produced scaffolds with thin strands but at long building times. Using large nozzles and a high carriage speed is recommended. Overall, we demonstrated that hybrid constructs with a clinically relevant size could be much more feasible to print when reaching a tradeoff between temperature, nozzle diameter, and speed.
  • Ding, Yaping; Li, Wei; Zhang, Feng; Liu, Zehua; Ezazi, Nazanin Zanjanizadeh; Liu, Dongfei; Santos, Helder A. (2019)
    The versatile electrospinning technique is recognized as an efficient strategy to deliver active pharmaceutical ingredients and has gained tremendous progress in drug delivery, tissue engineering, cancer therapy, and disease diagnosis. Numerous drug delivery systems fabricated through electrospinning regarding the carrier compositions, drug incorporation techniques, release kinetics, and the subsequent therapeutic efficacy are presented herein. Targeting for distinct applications, the composition of drug carriers vary from natural/synthetic polymers/blends, inorganic materials, and even hybrids. Various drug incorporation approaches through electrospinning are thoroughly discussed with respect to the principles, benefits, and limitations. To meet the various requirements in actual sophisticated in vivo environments and to overcome the limitations of a single carrier system, feasible combinations of multiple drug-inclusion processes via electrospinning could be employed to achieve programmed, multi-staged, or stimuli-triggered release of multiple drugs. The therapeutic efficacy of the designed electrospun drug-eluting systems is further verified in multiple biomedical applications and is comprehensively overviewed, demonstrating promising potential to address a variety of clinical challenges.
  • Ding, Yaping; Li, Wei; Correia, Alexandra; Yang, Yuyun; Zheng, Kai; Liu, Dongfei; Schubert, Dirk W.; Boccaccini, Aldo R.; Santos, Helder A.; Roether, Judith A. (2018)
    Electrospun hybrid scaffolds are an effective platform to deliver drugs site specifically for the prevention and treatment of diseases in addition to promote tissue regeneration because of the flexibility to load drugs therein. In the present study, electrospun hybrid scaffolds containing antibiotics were developed to support cellular activities and eliminate potential postoperative inflammation and infection. As a model drug, levofloxacin (LFX) was successfully incorporated into pure polyhydroxybutyrate/poly(epsilon-caprolactone) (PHB/PCL) scaffolds and PHB/PCL/sol-gel-derived silica (SGS) scaffolds. The influence of LFX on the morphology, mechanical performance, chemical structure, drug release profile, and antibacterial effect of the scaffolds was thoroughly and comparatively investigated. MG-63 osteoblast-like cell cultivation on both scaffolds certified that LFX inclusion did not impair the biocompatibility. In addition to the favorable cellular proliferation and differentiation, scaffolds containing both LFX and SGS displayed highly increased mineralization content. Therefore, the present multifunctional hybrid scaffolds are promising in tissue engineering applications.
  • Zhu, Yueqi; Zhang, Hongbo; Zhang, Yiran; Wu, Huayin; Wei, Liming; Zhou, Gen; Zhang, Yuezhou; Deng, Lianfu; Cheng, Yingsheng; Li, Minghua; Almeida Santos, Helder; Cui, Wenguo (2019)
    Cerebrovascular disease involves various medical disorders that obstruct brain blood vessels or deteriorate cerebral circulation, resulting in ischemic or hemorrhagic stroke. Nowadays, platinum coils with or without biological modification have become routine embolization devices to reduce the risk of cerebral aneurysm bleeding. Additionally, many intracranial stents, flow diverters, and stent retrievers have been invented with uniquely designed structures. To accelerate the translation of these devices into clinical usage, an in‐depth understanding of the mechanical and material performance of these metal‐based devices is critical. However, considering the more distal location and tortuous anatomic characteristics of cerebral arteries, present devices still risk failing to arrive at target lesions. Consequently, more flexible endovascular devices and novel designs are under urgent demand to overcome the deficiencies of existing devices. Herein, the pros and cons of the current structural designs are discussed when these devices are applied to the treatment of diseases ranging broadly from hemorrhages to ischemic strokes, in order to encourage further development of such kind of devices and investigation of their use in the clinic. Moreover, novel biodegradable materials and drug elution techniques, and the design, safety, and efficacy of personalized devices for further clinical applications in cerebral vasculature are discussed.
  • Yan, Yufei; Sun, Tao; Zhang, Hongbo; Ji, Xiuling; Sun, Yulong; Zhao, Xin; Deng, Lianfu; Qi, Jin; Cui, Wenguo; Almeida Santos, Helder; Zhang, Hongyu (2019)
    Osteoarthritis has been regarded as a typical lubrication deficiency related joint disease, which is characterized by the breakdown of articular cartilage at the joint surface and the inflammation of the joint capsule. Here, inspired by the structure of the fresh euryale ferox seed that possesses a slippery aril and a hard coat containing starchy kernel, a novel superlubricated nanoparticle, namely poly (3‐sulfopropyl methacrylate potassium salt)‐grafted mesoporous silica nanoparticles (MSNs‐NH2@PSPMK), is biomimicked and synthesized via a one‐step photopolymerization method. The nanoparticles are endowed with enhanced lubrication by the grafted PSPMK polyelectrolyte polymer due to the formation of tenacious hydration layers surrounding the negative charges, and simultaneously are featured with effective drug loading and release behavior as a result of the sufficient mesoporous channels in the MSNs. When encapsulated with an anti‐inflammatory drug diclofenac sodium (DS), the lubrication capability of the superlubricated nanoparticles is improved, while the drug release rate is sustained by increasing the thickness of PSPMK layer, which is simply achieved via adjustment of the precursor monomer concentration in the photopolymerization process. Additionally, the in vitro and in vivo experimental results show that the DS‐loaded MSNs‐NH2@PSPMK nanoparticles effectively protect the chondrocytes from degeneration, and thus, inhibit the development of osteoarthritis.
  • Sodupe-Ortega, E.; Fraile-Garcia, E.; Ferreiro-Cabello, J.; Sanz-Garcia, A. (2016)
    Waste tire rubber is a promising lightweight aggregate for building products that enhances their thermal and acoustic properties. Even the environmental benefits of its use are evident, higher cost and significant changes in compressive strength and workability hinder its widespread adoption. This article examines the use of crumb rubber (CR) as aggregate in dry-mix mortars to produce rubberized long hollow blocks and bricks using automated brick machines. CR was incorporated over a range of 10-40% with water/ cement ratio varying from 0.7 to 0.9. The production of rubberized bricks exhibited better performance than long hollow blocks in factory trials. Tests showed important deformations and drastic reduction in compressive strength, especially for crumb rubber percentages greater than 20%. Due to this and the high cost of CR, caution must be taken with the design of new rubberized building products to make sure they are profitable. (C) 2015 Elsevier Ltd. All rights reserved.
  • Siren, Heli; El Fellah, Sandra (2019)
    Microemulsion gels were synthetized from macadamia, linseed, olive, walnut, rapeseed, sesame, and coconut oils and frying oil made from sunflower, palm, and rapeseed oils. The gels were similar as polyacrylamide-based gels with exception of replacing dodecyl sulfate with vegetable oils. The gels were modified with celluloses, cotton, or lignin to make the emulsions sustainable for water purification. They were used to compare sorption properties when they were used as solid-phase adsorbents in isolation of steroids from water. Hydrophobicity features of the gels were compared by detecting adsorption and extraction efficiency of nonpolar androstenedione, testosterone, and progesterone, which exist in wastewater and drinking water. Quantification was done with partial filling-micellar electrokinetic chromatography with 29.5 mM sodium dodecyl sulfate-3.4 mM sodium taurocholate as the micelle and 20 mM ammonium acetate (pH 9.68) as the electrolyte. UV-detection was used. Methanol was the best eluent for extraction of steroids from gels. The highest recoveries were from frying oil and rapeseed oil gels modified with celluloses. They also possessed the best floating properties on water surface. Lignin modified gels were too hydrophilic, when in touch with water they filled up with water. They also had the lowest capacity.