Browsing by Subject "217 Medical engineering"

Sort by: Order: Results:

Now showing items 1-20 of 53
  • Kortesniemi, Mika; Siiskonen, Teemu; Kelaranta, Anna; Lappalainen, Kimmo (2017)
    Radiation worker categorization and exposure monitoring are principal functions of occupational radiation safety. The aim of this study was to use the actual occupational exposure data in a large university hospital to estimate the frequency and magnitude of potential exposures in radiology. The additional aim was to propose a revised categorization and exposure monitoring practice based on the potential exposures. The cumulative probability distribution was calculated from the normalized integral of the probability density function fitted to the exposure data. Conformity of the probabilistic model was checked against 16 years of national monitoring data. The estimated probabilities to exceed annual effective dose limits of 1 mSv, 6 mSv and 20 mSv were 1:1000, 1:20 000 and 1:200 000, respectively. Thus, it is very unlikely that the class A categorization limit of 6 mSv could be exceeded, even in interventional procedures, with modern equipment and appropriate working methods. Therefore, all workers in diagnostic and interventional radiology could be systematically categorized into class B. Furthermore, current personal monitoring practice could be replaced by use of active personal dosemeters that offer more effective and flexible means to optimize working methods.
  • Paalasmaa, Joonas; Toivonen, Hannu; Partinen, Markku (2015)
  • Jönsson, Emma H.; Kotilahti, Kalle; Heiskala, Juha; Backlund Wasling, Helena; Olausson, Håkan; Croy, Ilona; Mustaniemi, Hanna; Hiltunen, Petri; Tuulari, Jetro J.; Scheinin, Noora M.; Karlsson, Linnea; Karlsson, Hasse; Nissilä, Ilkka (2018)
    Caressing touch is an effective way to communicate emotions and to create social bonds. It is also one of the key mediators of early parental bonding. The caresses are generally thought to represent a social form of touching and indeed, slow, gentle brushing is encoded in specialized peripheral nerve fibers, the C-tactile (CT) afferents. In adults, areas such as the posterior insula and superior temporal sulcus are activated by affective, slow stroking touch but not by fast stroking stimulation. However, whether these areas are activated in infants, after social tactile stimulation, is unknown. In this study, we compared the total hemoglobin responses measured with diffuse optical tomography (DOT) in the left hemisphere following slow and fast stroking touch stimulation in 16 2-month-old infants. We compared slow stroking (optimal CT afferent stimulation) to fast stroking (non-optimal CT stimulation). Activated regions were delineated using two methods: one based on contrast between the two conditions, and the other based on voxel-based statistical significance of the difference between the two conditions. The first method showed a single activation cluster in the temporal cortex with center of gravity in the middle temporal gyrus where the total hemoglobin increased after the slow stroking relative to the fast stroking (p = 0.04 uncorrected). The second method revealed a cluster in the insula with an increase in total hemoglobin in the insular cortex in response to slow stroking relative to fast stroking (p = 0.0005 uncorrected; p = 0.04 corrected for multiple comparisons). These activation clusters encompass areas that are involved in processing of affective, slow stroking touch in the adult brain. We conclude that the infant brain shows a pronounced and adult-like response to slow stroking touch compared to fast stroking touch in the insular cortex but the expected response in the primary somatosensory cortex was not found at this age. The results imply that emotionally valent touch is encoded in the brain in adult-like manner already soon after birth and this suggests a potential for involvement of touch in bonding with the caretaker.
  • Paukkunen, Mikko; Parkkila, Petteri; Hurnanen, Tero; Pankaala, Mikko; Koivisto, Tero; Nieminen, Tuomo; Kettunen, Raimo; Sepponen, Raimo (2016)
    The vibrations produced by the cardiovascular system that are coupled to the precordium can be noninvasively detected using accelerometers. This technique is called seismocardiography. Although clinical applications have been proposed for seismocardiography, the physiology underlying the signal is still not clear. The relationship of seismocardiograms of on the back-to-front axis and cardiac events is fairly well known. However, the 3-D seismocardiograms detectable with modern accelerometers have not been quantified in terms of cardiac cycle events. A major reason for this might be the degree of intersubject variability observed in 3-D seismocardiograms. We present a method to quantify 3-D seismocardiography in terms of cardiac cycle events. First, cardiac cycle events are identified from the seismocardiograms, and then, assigned a number based on the location in which the corresponding event was found. 396 cardiac cycle events from 9 healthy subjects and 120 cardiac cycle events from patients suffering from atrial flutter were analyzed. Despite the weak intersubject correlation of the waveforms (0.05, 0.27, and 0.15 for the x-, y-, and z-axes, respectively), the present method managed to find latent similarities in the seismocardiograms of healthy subjects. We observed that in healthy subjects the distribution of cardiac cycle event coordinates was centered on specific locations. These locations were different in patients with atrial flutter. The results suggest that spatial distribution of seismocardiographic cardiac cycle events might be used to discriminate healthy individuals and those with a failing heart.
  • Ahonen, Lauri; Cowley, Benjamin Ultan; Hellas, Arto; Puolamäki, Kai (2018)
    Collaboration is a complex phenomenon, where intersubjective dynamics can greatly affect the productive outcome. Evaluation of collaboration is thus of great interest, and can potentially help achieve better outcomes and performance. However, quantitative measurement of collaboration is difficult, because much of the interaction occurs in the intersubjective space between collaborators. Manual observation and/or self-reports are subjective, laborious, and have a poor temporal resolution. The problem is compounded in natural settings where task-activity and response-compliance cannot be controlled. Physiological signals provide an objective mean to quantify intersubjective rapport (as synchrony), but require novel methods to support broad deployment outside the lab. We studied 28 student dyads during a self-directed classroom pair-programming exercise. Sympathetic and parasympathetic nervous system activation was measured during task performance using electrodermal activity and electrocardiography. Results suggest that (a) we can isolate cognitive processes (mental workload) from confounding environmental effects, and (b) electrodermal signals show role-specific but correlated affective response profiles. We demonstrate the potential for social physiological compliance to quantify pair-work in natural settings, with no experimental manipulation of participants required. Our objective approach has a high temporal resolution, is scalable, non-intrusive, and robust.
  • Montazeri Moghadam, Saeed; Pinchefsky, Elana; Tse, Ilse; Marchi, Viviana; Kohonen, Jukka; Kauppila, Minna; Airaksinen, Manu; Tapani, Karoliina; Nevalainen, Päivi; Hahn, Cecil; W. Y. Tam, Emily; Stevenson, Nathan J.; Vanhatalo, Sampsa (2021)
    Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In this paper, we present development of the key components of a neonatal EEG background classifier, starting from the visual background scoring to classifier design, and finally to possible bedside visualization of the classifier results. A dataset with 13,200 5-minute EEG epochs (8–16 channels) from 27 infants with birth asphyxia was used for classifier training after scoring by two independent experts. We tested three classifier designs based on 98 computational features, and their performance was assessed with respect to scoring system, pre- and post-processing of labels and outputs, choice of channels, and visualization in monitor displays. The optimal solution achieved an overall classification accuracy of 97% with a range across subjects of 81–100%. We identified a set of 23 features that make the classifier highly robust to the choice of channels and missing data due to artefact rejection. Our results showed that an automated bedside classifier of EEG background is achievable, and we publish the full classifier algorithm to allow further clinical replication and validation studies.
  • Rasinkangas, Pia; Tytgat, Hanne L. P.; Ritari, Jarmo; Reunanen, Justus; Salminen, Seppo; Palva, Airi; Douillard, Francois P.; de Vos, Willem M. (2020)
    Lacticaseibacillus rhamnosusGG is one of the best studied lactic acid bacteria in the context of probiotic effects.L. rhamnosusGG has been shown to prevent diarrhea in children and adults and has been implicated to have mitigating or preventive effects in several disorders connected to microbiota dysbiosis. The probiotic effects are largely attributed to its adhesive heterotrimeric sortase-dependent pili, encoded by thespaCBA-srtC1gene cluster. Indeed, the strain-specific SpaCBA pili have been shown to contribute to adherence, biofilm formation and host signaling. In this work we set out to generate non-GMO derivatives ofL. rhamnosusGG that adhere stronger to mucus compared to the wild-type strain using chemical mutagenesis. We selected 13 derivatives that showed an increased mucus-adherent phenotype. Deep shotgun resequencing of the strains enabled division of the strains into three classes, two of which revealed SNPs (single nucleotide polymorphisms) in thespaAandspaCgenes encoding the shaft and tip adhesive pilins, respectively. Strikingly, the other class derivatives demonstrated less clear genotype - phenotype relationships, illustrating that pili biogenesis and structure is also affected by other processes. Further characterization of the different classes of derivatives was performed by PacBio SMRT sequencing and RNAseq analysis, which resulted in the identification of molecular candidates driving pilin biosynthesis and functionality. In conclusion, we report on the generation and characterization of three classes of strongly adherentL. rhamnosusGG derivatives that show an increase in adhesion to mucus. These are of special interest as they provide a window on processes and genes driving piliation and its control inL. rhamnosusGG and offer a variety of non-GMO derivatives of this key probiotic strain that are applicable in food products.
  • Autio, Reija; Kilpinen, Sami; Saarela, Matti; Kallioniemi, Olli; Hautaniemi, Sampsa; Astola, Jaakko (2009)
  • Akmal, Jan Sher; Salmi, Mika; Hemming, Björn; Teir, Linus; Suomalainen, Anni; Kortesniemi, Mika; Partanen, Jouni; Lassila, Antti (2020)
    Featured Application Accuracy of additively manufactured implants for clinical surgery. Abstract In craniomaxillofacial surgical procedures, an emerging practice adopts the preoperative virtual planning that uses medical imaging (computed tomography), 3D thresholding (segmentation), 3D modeling (digital design), and additive manufacturing (3D printing) for the procurement of an end-use implant. The objective of this case study was to evaluate the cumulative spatial inaccuracies arising from each step of the process chain when various computed tomography protocols and thresholding values were independently changed. A custom-made quality assurance instrument (Phantom) was used to evaluate the medical imaging error. A sus domesticus (domestic pig) head was analyzed to determine the 3D thresholding error. The 3D modeling error was estimated from the computer-aided design software. Finally, the end-use implant was used to evaluate the additive manufacturing error. The results were verified using accurate measurement instruments and techniques. A worst-case cumulative error of 1.7 mm (3.0%) was estimated for one boundary condition and 2.3 mm (4.1%) for two boundary conditions considering the maximum length (56.9 mm) of the end-use implant. Uncertainty from the clinical imaging to the end-use implant was 0.8 mm (1.4%). This study helps practitioners establish and corroborate surgical practices that are within the bounds of an appropriate accuracy for clinical treatment and restoration.
  • Worm, A.-M.; Sinisalo, H.; Eilertsen, G.; Ahren, E.; Meyer, I. (2018)
    Background: The art of producing and acquiring dermatological wax models, moulages, flourished all over Europe in the beginning of the twentieth century, whereas very little is known about the existence of moulage collections in the Nordic countries. Objective: The aim of this study was to elucidate the presence, the origin, the production place, the use and the condition of dermatological moulage collections in the Nordic countries. Methods: In each Nordic country, an extensive survey was undertaken during spring 2016. Dermatological departments, museums with medical collections, persons assumed to have specific information about wax moulages as well as secondary sources were contacted and interviewed. ResultsSeveral hitherto undescribed collections have survived in each country, most, however, damaged and in disrepair. One Danish and part of a Finnish collection have been restored. Only few moulages are exhibited and some have been photographed and digitalized. Denmark and Sweden have had a local moulage production. Responses to the survey indicate that the result covers all collections of dermatological moulages in the Nordic countries, though some moulages may remain in private collections unknown to the authors, or uncatalogued in museums. Conclusion: Moulages are medical gems from bygone days before modern technology facilitated new means of communication. Restoration and appropriate storing should be considered for at least selected items from the Nordic collections.
  • Kalevo, Laura; Miettinen, Tomi; Leino, Akseli; Kainulainen, Samu; Korkalainen, Henri; Myllymaa, Katja; Töyräs, Juha; Leppänen, Timo; Laitinen, Tiina; Myllymaa, Sami (2020)
    In response to the growing clinico-economic need for comprehensive home-based sleep testing, we recently developed a self-applicable facial electrode set with screen-printed Ag/AgCl electrodes. Our previous studies revealed that nocturnal sweating is a common problem, causing low-frequency artifacts in the measured electroencephalography (EEG) signals. As the electrode set is designed to be used without skin abrasion, not surprisingly this leads to relatively high electrode-skin impedances, significant impedance changes due to sweating and an increased risk of sweat artifacts. However, our recent electrochemical in vitro investigations revealed that the sweat artifact tolerance of an EEG electrode can be improved by utilizing an appropriate Ag/AgCl ink. Here we have investigated in vivo electrode-skin impedances and the quality of EEG signals and interference due to sweating in the population of 11 healthy volunteers. Commercial Ag and Ag/AgCl inks (Engineered Conductive Materials ECM LLC and PPG Industries Inc.) were used to test electrode sets with differently constructed ink layers. Electrode-skin impedances and EEG signals were recorded before and after exercise-induced sweating. There was extensive variation in the electrode-skin impedances between the volunteers and the electrode positions: 14.6 & x2013;200 (PPG electrodes) and 7.7 & x2013;200 (ECM electrodes). Sweating significantly decreased the impedances in most cases. The EEG signal quality was assessed by comparing average band powers from 0.5 to 2 Hz before and after sweating. Only slight differences existed between the ECM and PPG electrodes; however, the lowest band power ratio (i.e. the smallest increase in the band power due to sweating) was achieved with ECM electrodes.
  • Kosonen, Jukka; Kulmala, Juha-Pekka; Mueller, Erich; Avela, Janne (2017)
    Anti-pronation orthoses, like medially posted insoles (MPI), have traditionally been used to treat various of lower limb problems. Yet, we know surprisingly little about their effects on overall foot motion and lower limb mechanics across walking and running, which represent highly different loading conditions. To address this issue, multi-segment foot and lower limb mechanics was examined among 11 over-pronating men with normal (NORM) and MPI insoles during walking (self-selected speed 1.70 +/- 0.19 m/s vs 1.72 +/- 0.20 m/s, respectively) and running (4.04 +/- 0.17 m/s vs 4.10 +/- 0.13 m/s, respectively). The kinematic results showed that MPI reduced the peak forefoot eversion movement in respect to both hindfoot and tibia across walking and running when compared to NORM (p <0.05-0.01). No differences were found in hindfoot eversion between conditions. The kinetic results showed no insole effects in walking, but during running MPI shifted center of pressure medially under the foot (p <0.01) leading to an increase in frontal plane moments at the hip (p <0.05) and knee (p <0.05) joints and a reduction at the ankle joint (p <0.05). These findings indicate that MPI primarily controlled the forefoot motion across walking and running. While kinetic response to MPI was more pronounced in running than walking, kinematic effects were essentially similar across both modes. This suggests that despite higher loads placed upon lower limb during running, there is no need to have a stiffer insoles to achieve similar reduction in the forefoot motion than in walking. (C) 2017 Elsevier Ltd. All rights reserved.
  • He, Bin; Astolfi, Laura; Valdes-Sosa, Pedro Antonio; Marinazzo, Daniele; Palva, Satu O.; Benar, Christian-George; Michel, Christoph M.; Koenig, Thomas (2019)
    We review the theory and algorithms of electrophysiological brain connectivity analysis. This tutorial is aimed at providing an introduction to brain functional connectivity from electrophysiological signals, including electroencephalography, magnetoencephalography, electrocorticography, and stereoelectroencephalography. Various connectivity estimators are discussed, and algorithms introduced. Important issues for estimating and mapping brain functional connectivity with electrophysiology are discussed.
  • Bayat, Sam; Porra, Liisa; Suortti, Pekka; Thomlinson, William (2020)
    Many lung disease processes are characterized by structural and functional heterogeneity that is not directly appreciable with traditional physiological measurements. Experimental methods and lung function modeling to study regional lung function are crucial for better understanding of disease mechanisms and for targeting treatment. Synchrotron radiation offers useful properties to this end: coherence, utilized in phase-contrast imaging, and high flux and a wide energy spectrum which allow the selection of very narrow energy bands of radiation, thus allowing imaging at very specific energies. K-edge subtraction imaging (KES) has thus been developed at synchrotrons for both human and small animal imaging. The unique properties of synchrotron radiation extend X-ray computed tomography (CT) capabilities to quantitatively assess lung morphology, and also to map regional lung ventilation, perfusion, inflammation and biomechanical properties, with microscopic spatial resolution. Four-dimensional imaging, allows the investigation of the dynamics of regional lung functional parameters simultaneously with structural deformation of the lung as a function of time. This review summarizes synchrotron radiation imaging methods and overviews examples of its application in the study of disease mechanisms in preclinical animal models, as well as the potential for clinical translation both through the knowledge gained using these techniques and transfer of imaging technology to laboratory X-ray sources.
  • Silander, Kaisa; Alanne, Mervi; Kristiansson, Kati; Saarela, Olli; Ripatti, Samuli; Auro, Kirsi; Karvanen, Juha; Kulathinal, Sangita; Niemela, Matti; Ellonen, Pekka; Vartiainen, Erkki; Jousilahti, Pekka; Saarela, Janna; Kuulasmaa, Kari; Evans, Alun; Perola, Markus; Salomaa, Veikko; Peltonen, Leena (2008)
  • Tuomi, Jukka T.; Bjorkstrand, Roy V.; Pernu, Mikael L.; Salmi, Mika V. J.; Huotilainen, Eero I.; Wolff, Jan E. H.; Vallittu, Pekka K.; Makitie, Antti A. (2017)
    Custom-designed patient-specific implants and reconstruction plates are to date commonly manufactured using two different additive manufacturing (AM) technologies: direct metal laser sintering (DMLS) and electron beam melting (EBM). The purpose of this investigation was to characterize the surface structure and to assess the cytotoxicity of titanium alloys processed using DMLS and EBM technologies as the existing information on these issues is scarce. "Processed" and "polished" DMLS and EBM disks were assessed. Microscopic examination revealed titanium alloy particles and surface flaws on the processed materials. These surface flaws were subsequently removed by polishing. Surface roughness of EBM processed titanium was higher than that of DMLS processed. The cytotoxicity results of the DMLS and EBM discs were compared with a "gold standard" commercially available titanium mandible reconstruction plate. The mean cell viability for all discs was 82.6% (range, 77.4 to 89.7) and 83.3% for the control reconstruction plate. The DMLS and EBM manufactured titanium plates were non-cytotoxic both in "processed" and in "polished" forms.
  • Kestilä, I.; Thevenot, J.; Finnilä, M. A.; Karhula, S. S.; Hadjab, I.; Kauppinen, S.; Garon, M.; Quenneville, E.; Haapea, M.; Rieppo, L.; Pritzker, K. P.; Buschmann, M. D.; Nieminen, H. J.; Saarakkala, S. (2018)
    Objective: The aims of this study were: to 1) develop a novel sample processing protocol to visualize human articular cartilage (AC) chondrons using micro-computed tomography (mu CT), 2) develop and validate an algorithm to quantify the chondron morphology in 3D, and 3) compare the differences in chondron morphology between intact and osteoarthritic AC. Method: The developed protocol is based on the dehydration of samples with hexamethyldisilazane (HMDS), followed by imaging with a desktop mCT. Chondron density and depth, as well as volume and sphericity, were calculated in 3D with a custom-made and validated algorithm employing semiautomatic chondron selection and segmentation. The quantitative parameters were analyzed at three AC depth zones (zone 1: 0-10%; zone 2: 10-40%; zone 3: 40-100%) and grouped by the OARSI histological grades (OARSI grades 0-1.0, n = 6; OARSI grades 3.0-3.5, n = 6). Results: After semi-automatic chondron selection and segmentation, 1510 chondrons were approved for 3D morphometric analyses. The chondrons especially in the deeper tissue (zones 2 and 3) were significantly larger (P Conclusion: We have developed a novel sample processing protocol for chondron imaging in 3D, as well as a high-throughput algorithm to semi-automatically quantify chondron/ chondrocyte 3D morphology in AC. Our results also suggest that 3D chondron morphology is affected by the progression of osteoarthritis (OA). (c) 2018 The Authors. Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  • Al-Ani, Anas Aaqel Salim Salim; Stape, Thiago Henrique Scarabello; Mutluay, Murat; Tjäderhane, Leo; Tezvergil-Mutluay, Arzu (2019)
    Objective: To understand dimethyl sulfoxide (DMSO) interaction with distinct methacrylate monomer blends and the impact on polymer formation by investigating the combined relationship among degree of resin hydrophilicity, presence of DMSO and specific physico/mechanical properties. Methods: One hydrophobic (R2) and one hydrophilic (R5) methacrylate-based resins with different monomer compositions were solvated in ascending DMSO concentrations (0, 0.01, 0.1, 1, 5, and 10 w/w %). Neat resins (0 w/w % DMSO) were used as controls. The degree of conversion was determined by Fourier-transform infrared spectroscopy. Polymer crosslinking density was indirectly measured by a modified ethanol-water two-stage solvation technique and the biaxial flexural strength was measured after 24 h and 30 days of water storage at 37 degrees C. Water sorption and solubility were gravimetrically assisted during 28 days of water storage to determine the kinetics of water-polymer interactions. Data were analyzed by ANOVA and Tukey test (alpha = 0.05). Results: Incorporation of high DMSO-concentrations significantly increased the degree of conversion of all tested formulations, specifically for the hydrophobic resin (p <0.05). Despite the increase in degree of monomer conversion, higher water sorption/solubility values and lower biaxial flexure strengths were detected as a result of reductions in polymer crosslink density (p <0.05). In general, low DMSO-concentrations had no impact on the biaxial flexural strength, crosslinking density and water sorption/solubility (p <0.05). Conclusion: DMSO-monomer ratio and monomer composition are critical for new dental methacrylate-based adhesive formulations. High DMSO incorporation hampers physico/mechanical properties of methacrylate bonding resins, albeit to a lesser extend when hydrophilic resins are employed. Nonetheless, DMSO-solvated hydrophobic adhesives extensively outperform their hydrophilic correspondents. DMSO incorporation of 1 w/w % may constitute a secure threshold regardless of monomer composition.
  • Pellinen, Teijo; Tuomi, Saara; Arjonen, Antti; Wolf, Maija; Edgren, Henrik; Meyer, Hannelore; Grosse, Robert; Kitzing, Thomas; Rantala, Juha K; Kallioniemi, Olli; Fässler, Reinhard; Kallio, Marko; Ivaska, Johanna (2008)
    Adherent cells undergo remarkable changes in shape during cell division. However, the functional interplay between cell adhesion turnover and the mitotic machinery is poorly understood. The endo/exocytic trafficking of integrins is regulated by the small GTPase Rab21, which associates with several integrin alpha subunits. Here, we show that targeted trafficking of integrins to and from the cleavage furrow is required for successful cytokinesis, and that this is regulated by Rab21. Rab21 activity, integrin-Rab21 association, and integrin endocytosis are all necessary for normal cytokinesis, which becomes impaired when integrin-mediated adhesion at the cleavage furrow fails. We also describe a chromosomal deletion and loss of Rab21 gene expression in human cancer, which leads to the accumulation of multinucleate cells. Importantly, reintroduction of Rab21 rescued this phenotype. In conclusion, Rab21-regulated integrin trafficking is essential for normal cell division, and its defects may contribute to multinucleation and genomic instability, which are hallmarks of cancer.
  • Ketola, J.H.; Karhula, S.S.; Finnilä, M.A.J.; Korhonen, R.K.; Herzog, W.; Siltanen, S.; Nieminen, M.T.; Saarakkala, S. (2018)
    Micro-computed tomography (µCT) is a standard method for bone morphometric evaluation. However, the scan time can be long and the radiation dose during the scan may have adverse effects on test subjects, therefore both of them should be minimized. This could be achieved by applying iterative reconstruction (IR) on sparse projection data, as IR is capable of producing reconstructions of sufficient image quality with less projection data than the traditional algorithm requires. In this work, the performance of three IR algorithms was assessed for quantitative bone imaging from low-resolution data in the evaluation of the rabbit model of osteoarthritis. Subchondral bone images were reconstructed with a conjugate gradient least squares algorithm, a total variation regularization scheme, and a discrete algebraic reconstruction technique to obtain quantitative bone morphometry, and the results obtained in this manner were compared with those obtained from the reference reconstruction. Our approaches were sufficient to identify changes in bone structure in early osteoarthritis, and these changes were preserved even when minimal data were provided for the reconstruction. Thus, our results suggest that IR algorithms give reliable performance with sparse projection data, thereby recommending them for use in µCT studies where time and radiation exposure are preferably minimized. © 2018, The Author(s).