Browsing by Subject "415 Other agricultural sciences"

Sort by: Order: Results:

Now showing items 1-20 of 80
  • Koppelmäki, Kari; Eerola, Markus; Albov, Sophia; Kivelä, Jukka; Helenius, Juha; Winquist, Erika; Virkkunen, Elina (2016)
    COMREC Studies in Environment and Development
    What could be a functioning food system model for a food secure and sustainable world. This project studies a pilot case - 'Palopuro Agroecological Symbiosis' (Palopuro AS) - for restructuring the food system in Palopuro village in the Finnish countryside. The project challenges the present linear, globalizing food chain and suggests a global network of localized cyclical systems. A local food cycle highlights reconnection of farmers and consumers, minimizes nutrient loss, and relies on local (bio)energy. This project investigates the cultural, social, political, ecological, and spatial changes in Finnish agricultural landscapes as a result of implementation of an ecological symbiosis . We use the term ‘agro-ecological symbiosis’ to describe the cooperation between producers, processors, other businesses, and consumers in an effort to build an integrated food system.
  • Kallio, Galina (2020)
    Questions of value are central to understanding alternative practices of food exchange. This study introduces a practice-based approach to value that challenges the dominant views, which capture value as either an input for or an outcome of practices of exchange (value as values, standards, or prices). Building on a longitudinal ethnographic study on food collectives, I show how value, rather than residing in something that people share, or in something that objects have, is an ideal target that continuously unfolds and evolves in action. I found that people organized their food collectives around pursuing three kinds of value-ideals, namely good food, good price and good community. These value-ideals became reproduced in food collectives through what I identified as valuing modes, by which people evaluated the goodness of food, prices and community. My analysis revealed that, while participating in food collectives in order to pursue their value-ideals, people were likely to have differing reasons for pursuing them and tended to attach different meanings to the same value-ideal. I argue that understanding how value as an ideal target is reproduced through assessing and assigning value (valuing modes) is essential in further explorations of the formation of value and in better understanding the dynamics of organizing alternative practices of food exchange.
  • Whitaker, Vance M.; Knapp, Steven J.; Hardigan, Michael A.; Edger, Patrick P.; Slovin, Janet P.; Bassil, Nahla V.; Hytönen, Timo; Mackenzie, Kathryn K.; Lee, Seonghee; Jung, Sook; Main, Dorrie; Barbey, Christopher R.; Verma, Sujeet (2020)
    The cultivated strawberry (Fragaria × ananassa) is an allo-octoploid species, originating nearly 300 years ago from wild progenitors from the Americas. Since that time the strawberry has become the most widely cultivated fruit crop in the world, universally appealing due to its sensory qualities and health benefits. The recent publication of the first high-quality chromosome-scale octoploid strawberry genome (cv. Camarosa) is enabling rapid advances in genetics, stimulating scientific debate and provoking new research questions. In this forward-looking review we propose avenues of research toward new biological insights and applications to agriculture. Among these are the origins of the genome, characterization of genetic variants, and big data approaches to breeding. Key areas of research in molecular biology will include the control of flowering, fruit development, fruit quality, and plant–pathogen interactions. In order to realize this potential as a global community, investments in genome resources must be continually augmented.
  • Samad, Samia; Kurokura, Takeshi; Koskela, Elli; Toivainen, Tuomas; Patel, Vipul; Mouhu, Katriina; Sargent, Daniel James; Hytonen, Timo (2017)
    Flowering time is an important trait that affects survival, reproduction and yield in both wild and cultivated plants. Therefore, many studies have focused on the identification of flowering time quantitative trait locus (QTLs) in different crops, and molecular control of this trait has been extensively investigated in model species. Here we report the mapping of QTLs for flowering time and vegetative traits in a large woodland strawberry mapping population that was phenotyped both under field conditions and in a greenhouse after flower induction in the field. The greenhouse experiment revealed additive QTLs in three linkage groups (LG), two on both LG4 and LG7, and one on LG6 that explain about half of the flowering time variance in the population. Three of the QTLs were newly identified in this study, and one co-localized with the previously characterized FvTFL1 gene. An additional strong QTL corresponding to previously mapped PFRU was detected in both field and greenhouse experiments indicating that gene(s) in this locus can control the timing of flowering in different environments in addition to the duration of flowering and axillary bud differentiation to runners and branch crowns. Several putative flowering time genes were identified in these QTL regions that await functional validation. Our results indicate that a few major QTLs may control flowering time and axillary bud differentiation in strawberries. We suggest that the identification of causal genes in the diploid strawberry may enable fine tuning of flowering time and vegetative growth in the closely related octoploid cultivated strawberry.
  • Järviö, Natasha; Maljanen, Netta-Leena; Kobayashi, Yumi; Ryynänen, Toni; Tuomisto, Hanna (2021)
    Novel food production technologies are being developed to address the challenges of securing sustainable and healthy nutrition for the growing global population. This study assessed the environmental impacts of microbial protein (MP) produced by autotrophic hydrogen-oxidizing bacteria (HOB). Data was collected from a company currently producing MP using HOB (hereafter simply referred to as MP) on a small-scale. Earlier studies have performed an environmental assessment of MP on a theoretical basis but no study yet has used empirical data. An attributional life cycle assessment (LCA) with a cradle-to-gate approach was used to quantify global warming potential (GWP), land use, freshwater and marine eutrophication potential, water scarcity, human (non-)carcinogenic toxicity, and the cumulative energy demand (CED) of MP production in Finland. A Monte Carlo analysis was performed to assess uncertainties. The impacts of alternative production options and locations were explored. The impacts were compared with animal- and plant-based protein sources for human consumption as well as protein sources for feed. The results showed that electricity consumption had the highest contribution to environmental impacts. Therefore, the source of energy had a substantial impact on the results. MP production using hydropower as an energy source yielded 87.5% lower GWP compared to using the average Finnish electricity mix. In comparison with animal-based protein sources for food production, MP had 53-100% lower environmental impacts depending on the reference product and the source of energy assumed for MP production. When compared with plant-based protein sources for food production, MP had lower land and water use requirements, and eutrophication potential but GWP was reduced only if low-emission energy sources were used. Compared to protein sources for feed production, MP production often resulted in lower environmental impact for GWP (FHE), land use, and eutrophication and acidification potential, but generally caused high water scarcity and required more energy.
  • Kemp, James; López-Baucells, Adrià; Rocha, Ricardo; Wangensteen, Owen S.; Andriatafika, Zo Emmanuel; Nair, Abhilash; Cabeza, Mar (2019)
    The conversion of natural habitats to agriculture is one of the main drivers of biotic change. Madagascar is no exception and land-use change, mostly driven by slash-and-burn agriculture, is impacting the island's exceptional biodiversity. Although most species are negatively affected by agricultural expansion, some, such as synanthropic bats, are capable of exploring newly available resources and benefit from man-made agricultural ecosystems. As bats are known predators of agricultural pests it seems possible that Malagasy bats may be preferentially foraging within agricultural areas and therefore provide important pest suppression services. To investigate the potential role of bats as pest suppressors, we conducted acoustic surveys of insectivorous bats in and around Ranomafana National Park, Madagascar, during November and December 2015. We surveyed five landcover types: irrigated rice, hillside rice, secondary vegetation, forest fragment and continuous forest. 9569 bat passes from a regional assemblage of 19 species were recorded. In parallel, we collected faeces from the six most common bat species to detect insect pest species in their diet using DNA metabarcoding. Total bat activity was higher over rice fields when compared to forest and bats belonging to the open space and edge space sonotypes were the most benefited by the conversion of forest to hillside and irrigated rice. Two economically important rice pests were detected in the faecal samples collected - the paddy swarming armyworm Spodoptera mauritia was detected in Mops leucogaster samples while the grass webworm Herpetogramma licarsisalis was detected from Mormopterus jugularis and Miniopterus majori samples. Other crops pests detected included the sugarcane cicada Yanga guttulata, the macadamia nut-borer Thaumatotibia batrachopa and the sober tabby Ericeia inangulata (a pest of citrus fruits). Samples from all bat species also contained reads from important insect disease vectors. In light of our results we argue that Malagasy insectivorous bats have the potential to suppress agricultural pests. It is important to retain and maximise Malagasy bat populations as they may contribute to higher agricultural yields and promote sustainable livelihoods.
  • COST action TD1107 (2017)
    Key priorities in biochar research for future guidance of sustainable policy development have been identified by expert assessment within the COST Action TD1107. The current level of scientific understanding (LOSU) regarding the consequences of biochar application to soil were explored. Five broad thematic areas of biochar research were addressed: soil biodiversity and ecotoxicology, soil organic matter and greenhouse gas (GHG) emissions, soil physical properties, nutrient cycles and crop production, and soil remediation. The highest future research priorities regarding biochar's effects in soils were: functional redundancy within soil microbial communities, bioavailability of biochar's contaminants to soil biota, soil organic matter stability, GHG emissions, soil formation, soil hydrology, nutrient cycling due to microbial priming as well as altered rhizosphere ecology, and soil pH buffering capacity. Methodological and other constraints to achieve the required LOSU are discussed and options for efficient progress of biochar research and sustainable application to soil are presented.
  • Ehrström-Fuentes, Maria; Kröger, Antti Markus (2018)
    This study examines the role of states in developing contemporary extractivism based on recent investments and project plans in industrial forestry in Uruguay. This sheds light on several unanswered questions related to the role of the state and civil society in the governance, politics, and political economy of extractivism. The role played by states in contemporary extractive investments is a topic that requires studies that do more than simply analyse whether that role is strong or weak. Instead the focus should be on how states promote such investments, and on the political and socio-economic consequences thereof. Our analysis shows that the multiple roles of states need to be better understood when explaining the role of states in endorsing and expanding extractivism and its effect on the broader societal governance of business conduct. Our analysis indicates severe and negative developmental and socio-economic outcomes of pulp investments in Uruguay, which are hard if not impossible to transform as corporations can now use the investment protection laws – created by the government to regulate the state conduct – to restrict the possibilities of civil society and state actions.
  • Autio, Minna Maarit; Autio, Aulis Jaakko; Kuismin, Ari Juhani; Ramsingh, Brigit; Kylkilahti, Eliisa Aune Maria; Valros, Anna Elisabet (Routledge, Taylor & Francis, 2018)
  • Xia, Zhichao; Yu, Lei; He, Yue; Korpelainen, Helena; Li, Chunyang (2019)
    Tree performance in mixed-species forest plantations is ultimately the net result of positive and negative interactions among species. Despite increasing knowledge of interspecific interactions, relatively little is known about the chemical mechanisms mediating such interactions. We constructed mixed planting systems with two species including Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) and broadleaf species Cinnamomum camphora L. Presl, Elaeocarpus decipiens Hemsl, Liquidambar formosana Hance, or Michelia macclurei Dandy. Based on a series of manipulative experiments, we investigated the performance of Chinese fir and analyzed root placement patterns and the composition of main soil microbial groups. The broadleaf trees influenced the growth of Chinese fir roots more than the growth of shoots. Furthermore, C. camphora roots released allelochemicals into the soil environment, resulting in growth inhibition of Chinese fir and changes in main soil microbial groups. However, when grown with E. decipiens and M. macclurei, the growth of Chinese fir was consistently promoted. It responded by enhancing its root growth and altering root behavior, resulting in a shift from growth inhibition to chemical facilitation. These positive inter-specific interactions also stimulated changes in the composition of soil microbes. Complementary experiments indicated that non-toxic signaling molecules in the root exudates of E. decipiens and M. macclurei may be responsible for mediating positive root-root interactions and regulating the composition of main soil microbial groups. Thus, our study demonstrated that broadleaf species chemically mediate the growth of Chinese fir through root exudates. Such a novel mechanism offers many implications and applications for reforestation programs undertaken to rehabilitate forest plantations that suffer from declining productivity related to densely planted monocultures.
  • Lehikoinen, Elina; Parviainen, Tuure Ossian; Helenius, Juha Pekka; Jalava, Mika; Salonen, Arto O.; Kummu, Matti (2019)
    Water scarcity is a severe global threat, and it will only become more critical with a growing and wealthier population. Annually, considerable volumes of water are transferred virtually through the global food system to secure nations’ food supply and to diversify diets. Our objective is to assess, whether specializing water-intensive production for exports in areas with an abundance of natural resources, would contribute to globally resource-efficient food production. We calculated Finland’s virtual water net export potential (four scenarios) by reallocating the present underutilized agricultural land and combining that with a domestic diet change (three scenarios) to maximize the exports of cattle products. Assessed scenarios indicate that the greatest potential to net export Assessed scenarios indicate that the greatest potential to net export virtual water (3.7 billion m3 year−1, 25-time increase to current) was achieved when local production was maximized with domestic and exported feed, and bovine meat consumption in Finland wasreplaced with a vegetarian substitute. This corresponds to annual virtual water consumption for food of about 3.6 million global citizens (assuming 1032 m3 cap−1 year−1). Therefore our results suggest, that optimizing water-intensive production to water-rich areas, has a significant impact on global water savings. In addition, increasing exports from such areas by decreasing the domestic demand for water-intensive products to meet the nutrition recommendation levels, saves water resources.
  • Ingutia, Rose Anyiko; Rezitis, Anthony; Sumelius, John (2020)
    Africa’s disadvantaged children are often rural, malnourished, out of school, child brides or child labourers. Moreover, they tend to have illiterate mothers who have been denied access to productive resources. Our objective is to analyse the factors affecting child poverty. To this end, we studied the endogenous variables of under-five mortality rate, primary-school enrolment and child underweight. Endogeneity led to the use of Three Stages Least Squares simultaneous equations and fixed effects methods. The estimated elasticities indicate that female employment in agriculture has the greatest effect on under-five mortality rates, while the crop production index exerts the greatest effect on primary school enrolment and child underweight. The elasticity ranking demonstrates that what is at issue is not the effect of education on reducing child poverty or the effect of child poverty on reducing education, but the improvement of the status of women, particularly in the agricultural sector. Furthermore, policies for long-lasting solutions should highlight institutional quality as a prerequisite in child poverty reduction and present children and women with equal opportunities to satisfy basic needs and access productive resources.
  • Laaksoharju, Taina; Rappe, Erja (2010)
    There is considerable evidence that children in modern society are losing<br/>their contact with nature and, more precisely, with green plants. Is this also the case in Finland, a northern country famous for its forests and wild nature? This study examines the relationship of 9- to 10-year-old Finnish schoolchildren with the green environment and plants. The data were gathered by a questionnaire<br/>comprising structured and open-ended questions. The focus of the research was on two comparisons: first, on the nature and child relationship in rural and urban neighborhoods and, second, among boys and girls. Participants in the study amounted to a total of 76 children, 42 in the Helsinki suburb area and 34 in Paltamo. The results suggested that the children in rural surroundings had closer contact with nature than their urban associates. For example, the children of Paltamo reported to know the trees better, and considered human beings to be part of nature more often (100% vs. 76% of the pupils in Helsinki, P = 0,003). Similarly, the results showed that girls in the study (N = 48) were more interested in plants than boys (N = 28). For the girls, the beauty and joy of plants was important, whereas the boys appreciated plants as the source of life. After the pre-questioning, the children of Helsinki participated in an in-class horticultural intervention and 10 days later, answered a similar questionnaire again. The results of the open-ended questions revealed that equally to children in other Western countries, Finnish children may also be in danger of losing their direct contact with the natural environment. It was common to pass free time in organized sports such as hockey or football (boys), or by just walking and talking with friends (girls). Rural children told that they still built huts, pick berries, and climb trees, whereas urban children played in parks and city groves. The results suggest that it is essential to research<br/>further the children’s own experiences if we are to understand, and subsequently, to enhance, the crucial role of the green environment in their lives. Horticultural interventions can be effective starting points to add to children’s knowledge, affection, and interest toward greenery, but it is highly recommended that they take place outdoors rather than indoors.
  • Laaksoharju, Taina; Rappe, Erja (2010)
    There is considerable evidence that children in modern society are losing<br/>their contact with nature and, more precisely, with green plants. Is this also the case in Finland, a northern country famous for its forests and wild nature? This study examines the relationship of 9- to 10-year-old Finnish schoolchildren with the green environment and plants. The data were gathered by a questionnaire<br/>comprising structured and open-ended questions. The focus of the research was on two comparisons: first, on the nature and child relationship in rural and urban neighborhoods and, second, among boys and girls. Participants in the study amounted to a total of 76 children, 42 in the Helsinki suburb area and 34 in Paltamo. The results suggested that the children in rural surroundings had closer contact with nature than their urban associates. For example, the children of Paltamo reported to know the trees better, and considered human beings to be part of nature more often (100% vs. 76% of the pupils in Helsinki, P = 0,003). Similarly, the results showed that girls in the study (N = 48) were more interested in plants than boys (N = 28). For the girls, the beauty and joy of plants was important, whereas the boys appreciated plants as the source of life. After the pre-questioning, the children of Helsinki participated in an in-class horticultural intervention and 10 days later, answered a similar questionnaire again. The results of the open-ended questions revealed that equally to children in other Western countries, Finnish children may also be in danger of losing their direct contact with the natural environment. It was common to pass free time in organized sports such as hockey or football (boys), or by just walking and talking with friends (girls). Rural children told that they still built huts, pick berries, and climb trees, whereas urban children played in parks and city groves. The results suggest that it is essential to research<br/>further the children’s own experiences if we are to understand, and subsequently, to enhance, the crucial role of the green environment in their lives. Horticultural interventions can be effective starting points to add to children’s knowledge, affection, and interest toward greenery, but it is highly recommended that they take place outdoors rather than indoors.
  • Laaksoharju, Taina; Rappe, Erja (2010)
    There is considerable evidence that children in modern society are losing<br/>their contact with nature and, more precisely, with green plants. Is this also the case in Finland, a northern country famous for its forests and wild nature? This study examines the relationship of 9- to 10-year-old Finnish schoolchildren with the green environment and plants. The data were gathered by a questionnaire<br/>comprising structured and open-ended questions. The focus of the research was on two comparisons: first, on the nature and child relationship in rural and urban neighborhoods and, second, among boys and girls. Participants in the study amounted to a total of 76 children, 42 in the Helsinki suburb area and 34 in Paltamo. The results suggested that the children in rural surroundings had closer contact with nature than their urban associates. For example, the children of Paltamo reported to know the trees better, and considered human beings to be part of nature more often (100% vs. 76% of the pupils in Helsinki, P = 0,003). Similarly, the results showed that girls in the study (N = 48) were more interested in plants than boys (N = 28). For the girls, the beauty and joy of plants was important, whereas the boys appreciated plants as the source of life. After the pre-questioning, the children of Helsinki participated in an in-class horticultural intervention and 10 days later, answered a similar questionnaire again. The results of the open-ended questions revealed that equally to children in other Western countries, Finnish children may also be in danger of losing their direct contact with the natural environment. It was common to pass free time in organized sports such as hockey or football (boys), or by just walking and talking with friends (girls). Rural children told that they still built huts, pick berries, and climb trees, whereas urban children played in parks and city groves. The results suggest that it is essential to research<br/>further the children’s own experiences if we are to understand, and subsequently, to enhance, the crucial role of the green environment in their lives. Horticultural interventions can be effective starting points to add to children’s knowledge, affection, and interest toward greenery, but it is highly recommended that they take place outdoors rather than indoors.
  • Helenius, Juha; Hagolani-Albov, Sophia; Koppelmäki, Kari (2020)
    Critics of modern food systems argue for the need to shift from a consolidated and concentrated, often monoculture based agro-industrial model toward diversified, post-fossil, and nutrient recycling food systems. The abundance of acute and obvious environmental problems in the agricultural sub-systems of the broader food system(s) have resulted in a focus on technological and natural scientific research into "solving" these point of production problems. Yet, there are many facets of food systems that are vital to sustainability which are not addressed even if the environmental problems were solved. In this article, we argue for agroecological symbiosis (AES) as a generic arrangement for re-configuring the primary production of food in agriculture, the processing of food, and development of a food community to work toward system-level sustainability. The guiding principle of this concept was the desire to base farming and food processing on renewable bioenergy, to close nutrient cycles, to break away from the consolidated food chain, to be more transparent and connected with consumers, and to revitalize the rural spaces where farms generally operate. Through a consistent and robust collaboration and co-creative process with transdisciplinary actors, ranging from food producers, and processers to policy actors, we designed a food system model based on networks of AES (NAES). The NAES would form place-based food networks, replacing the consolidated commodity chains. The NAES supports sustainable interactions from a biophysical and socio-cultural perspective. In this paper, we explain the AES concept, give an overview of the process of co-creating the pilot AES, and a proposal for the extension of the AES, as NAES, to create sustainable food systems. Overall, we conclude that the AES model holds potential for creating place-based food systems that further the sustainability agenda.
  • Ramos-Diaz, Jose Martin; Sulyok, Michael; Jacobsen, Sven-Erik; Jouppila, Kirsi; Nathanail, Alexis V (2021)
    The consumption of high-quality Andean grains (a.k.a. pseudocereals) is increasing worldwide, and yet very little is known about the susceptibility of these crops to mycotoxin contamination. In this survey study, a multi-analyte liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was utilised to determine mycotoxin and fungal metabolite levels in Andean grains (quinoa and kañiwa) in comparison to cereal grains (barley, oats and wheat), cultivated in both South American (Bolivia and Peru) and North European (Denmark, Finland and Latvia) countries. A total of 101 analytes were detected at varying levels, primarily produced by Penicillium spp., Fusarium spp. and Aspergillus spp., depending on the type of crop, geographical location and agricultural practices used. Generally, Andean grains from South America showed lower mycotoxin contamination (concentration and assortment) than those from North Europe, while the opposite occurred with cereal grains. Mycotoxin contamination profiles exhibited marked differences between Andean and cereal grains, even when harvested from the same regions, highlighting the need for crop-specific approaches for mycotoxin risk mitigation. Lastly, the efficacy of grain cleaning in respect to total mycotoxin content was assessed, which resulted in significantly lower levels (overall reduction approx. 50%) in cleaned samples for the majority of contaminants.
  • Sihvonen, Matti; Hyytiäinen, Kari; Pihlainen, Sampo; Salo, Tapio; Lai, Tin-Yu (2021)
    We introduce a multistep modeling approach for studying optimal management of fertilizer inputs in a situation where soil nitrogen and carbon dynamics and water and atmosphere externalities are considered. The three steps in the modeling process are: (1) generation of the data sets with a detailed simulation model; (2) estimation of the system models from the data; (3) application of the obtained dynamic economic optimization model considering inorganic and organic fertilizer inputs. We demonstrate the approach with a case study: barley production in southern Finland on coarse and clay soils. Our results show that there is a synergy between climate change mitigation and water protection goals, and a trade-off between pollution mitigation and crop production goals. If a field is a significant source of greenhouse gas (GHG) emissions and an insignificant source of water pollution, atmospheric externalities dominate the water externalities, even for a relatively low social cost of carbon (SCC). If a field is a significant source of water pollution, the SCC would have to be very high before atmospheric externalities dominate water externalities. In addition, an integrated nutrient management system appears better than a system in which only inorganic or organic fertilizer is used, although manure is not a solution to agriculture's GHG emissions problem. Moreover, GHG emissions and nitrogen and carbon leaching mitigation efforts should first be targeted at coarse soils rather than clay soils, because the marginal abatement costs are considerably lower for coarse soils.
  • Lötjönen, Sanna Annika; Ollikainen, Markku Martti Olavi (2017)
    We investigate crop rotation with legumes from economic and environmental perspectives by asking how effective they are at providing profits and reducing nutrient runoff and greenhouse gas emissions compared with monoculture cultivation. We study this effectiveness in three alternative policy regimes: the free market optimum, the Finnish agri-environmental scheme, and socially optimal cultivation, and also design policy instruments to achieve the socially optimal outcomes in land use and fertilization. We first develop an analytical model to describe crop rotation and the role of legumes, and examine its implications for water and climate policies. Drawing on Finnish agricultural data, we then use numerical simulations and show that shifting from monoculture cultivation to crop rotation with legumes provides economically and environmentally better outcomes. Crop rotation with legumes also reduces the variability in profits caused by stochastic weather. The optimal instruments implementing the social optimum depend on nutrient and climate damage (nitrogen tax), as well as carbon sequestration and nutrient reduction benefits (buffer strip subsidy).