Browsing by Subject "8-Tetrachlorodibenzo-p-dioxin"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Pohjanvirta, Raimo; Viluksela, Matti (2020)
    Dioxins and related compounds are common environmental contaminants. Although their levels have gone down, they are still of concern, in particular regarding developmental toxicity. The adverse effects of these compounds are mediated by the aryl hydrocarbon receptor (AHR), whose canonical signaling pathway has been unveiled in fair detail. The alternative (non-genomic) pathways are much more obscure. AHR has also proven to be a master regulator of numerous physiological phenomena, which has led to the search of selective AHR modulators with low toxicity. Papers of this Special Issue address the developmental toxicity of dioxins and related compounds as well as selective modulators of AHR and both its canonical and alternative signaling pathways. In addition, new optical and stereoscopic methods for the detection of dioxins are presented. As a whole, this Special Issue provides an up-to-date view on a wide variety of aspects related to dioxin toxicity mechanisms from both original research articles and reviews.
  • Esteban, Javier; Sánchez-Pérez, Ismael; Hamscher, Gerd; Miettinen, Hanna M.; Korkalainen, Merja; Viluksela, Matti; Pohjanvirta, Raimo; Håkansson, Helen (2021)
    Young adult wild-type and aryl hydrocarbon receptor knockout (AHRKO) mice of both sexes and the C57BL/6J background were exposed to 10 weekly oral doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; total dose of 200 ?g/kg bw) to further characterize the observed impacts of AHR as well as TCDD on the retinoid system. Unexposed AHRKO mice harboured heavier kidneys, lighter livers and lower serum all-trans retinoic acid (ATRA) and retinol (REOH) concentrations than wild-type mice. Results from the present study also point to a role for the murine AHR in the control of circulating REOH and ATRA concentrations. In wild-type mice, TCDD elevated liver weight and reduced thymus weight, and drastically reduced the hepatic concentrations of 9-cis-4-oxo-13,14dihydro-retinoic acid (CORA) and retinyl palmitate (REPA). In female wild-type mice, TCDD increased the hepatic concentration of ATRA as well as the renal and circulating REOH concentrations. Renal CORA concentrations were substantially diminished in wild-type male mice exclusively following TCDD-exposure, with a similar tendency in serum. In contrast, TCDD did not affect any of these toxicity or retinoid system parameters in AHRKO mice. Finally, a distinct sex difference occurred in kidney concentrations of all the analysed retinoid forms. Together, these results strengthen the evidence of a mandatory role of AHR in TCDD-induced retinoid disruption, and suggest that the previously reported accumulation of several retinoid forms in the liver of AHRKO mice is a line-specific phenomenon. Our data further support participation of AHR in the control of liver and kidney development in mice.