Browsing by Subject "ACCUMULATION"

Sort by: Order: Results:

Now showing items 1-20 of 40
  • Guzman, Erika Avendano; Bouter, Yvonne; Richard, Bernhard C.; Lannfelt, Lars; Ingelsson, Martin; Paetau, Anders; Verkkoniemi-Ahola, Auli; Wirths, Oliver; Bayer, Thomas A. (2014)
  • Aminoff, Anna; Ledmyr, Helena; Thulin, Petra; Lundell, Kerstin; Nunez, Leyla; Strandhagen, Elisabeth; Murphy, Charlotte; Lidberg, Ulf; Westerbacka, Jukka; Franco-Cereceda, Anders; Liska, Jan; Nielsen, Lars Bo; Gafvels, Mats; Mannila, Maria Nastase; Hamsten, Anders; Yki-Järvinen, Hannele; Thelle, Dag; Eriksson, Per; Boren, Jan; Ehrenborg, Ewa (2010)
  • Castillejo, Cristina; Waurich, Veronika; Wagner, Henning; Ramos, Ruben; Oiza, Nicolas; Munoz, Pilar; Trivino, Juan C.; Caruana, Julie; Liu, Zhongchi; Cobo, Nicolas; Hardigan, Michael A.; Knapp, Steven J.; Vallarino, Jose G.; Osorio, Sonia; Martin-Pizarro, Carmen; Pose, David; Toivainen, Tuomas; Hytonen, Timo; Oh, Youngjae; Barbey, Christopher R.; Whitaker, Vance M.; Lee, Seonghee; Olbricht, Klaus; Sanchez-Sevilla, Jose F.; Amaya, Iraida (2020)
    Independent mutations in the transcription factor MYB10 cause most of the anthocyanin variation observed in diploid woodland strawberry (Fragaria vesca) and octoploid cultivated strawberry (Fragaria x ananassa). The fruits of diploid and octoploid strawberry (Fragaria spp) show substantial natural variation in color due to distinct anthocyanin accumulation and distribution patterns. Anthocyanin biosynthesis is controlled by a clade of R2R3 MYB transcription factors, among which MYB10 is the main activator in strawberry fruit. Here, we show that mutations in MYB10 cause most of the variation in anthocyanin accumulation and distribution observed in diploid woodland strawberry (F. vesca) and octoploid cultivated strawberry (F. xananassa). Using a mapping-by-sequencing approach, we identified a gypsy-transposon in MYB10 that truncates the protein and knocks out anthocyanin biosynthesis in a white-fruited F. vesca ecotype. Two additional loss-of-function mutations in MYB10 were identified among geographically diverse white-fruited F. vesca ecotypes. Genetic and transcriptomic analyses of octoploid Fragaria spp revealed that FaMYB10-2, one of three MYB10 homoeologs identified, regulates anthocyanin biosynthesis in developing fruit. Furthermore, independent mutations in MYB10-2 are the underlying cause of natural variation in fruit skin and flesh color in octoploid strawberry. We identified a CACTA-like transposon (FaEnSpm-2) insertion in the MYB10-2 promoter of red-fleshed accessions that was associated with enhanced expression. Our findings suggest that cis-regulatory elements in FaEnSpm-2 are responsible for enhanced MYB10-2 expression and anthocyanin biosynthesis in strawberry fruit flesh.
  • Landolt, Lea; Furriol, Jessica; Babickova, Janka; Ahmed, Lavina; Eikrem, Oystein; Skogstrand, Trude; Scherer, Andreas; Suliman, Salwa; Leh, Sabine; Lorens, J. B.; Gausdal, Gro; Marti, H.P.; Osman, Tarig (2019)
    The AXL receptor tyrosine kinase (RTK) is involved in partial epithelial-to-mesenchymal transition (EMT) and inflammation - both main promoters of renal fibrosis development. The study aim was to investigate the role of AXL inhibition in kidney fibrosis due to unilateral ureteral obstruction (UUO). Eight weeks old male C57BL/6 mice underwent UUO and were treated with oral AXL inhibitor bemcentinib (n = 22), Angiotensin-converting enzyme inhibitor (ACEI, n = 10), ACEI and bemcentinib (n = 10) or vehicle alone (n = 22). Mice were sacrificed after 7 or 15 days and kidney tissues were analyzed by immunohistochemistry (IHC), western blot, ELISA, Sirius Red (SR) staining, and hydroxyproline (Hyp) quantification. RNA was extracted from frozen kidney tissues and sequenced on an Illumina HiSeq4000 platform. After 15 days the ligated bemcentinib-treated kidneys showed less fibrosis compared to the ligated vehicle-treated kidneys in SR analyses and Hyp quantification. Reduced IHC staining for Vimentin (VIM) and alpha smooth muscle actin (alpha SMA), as well as reduced mRNA abundance of key regulators of fibrosis such as transforming growth factor (Tgf beta), matrix metalloproteinase 2 (Mmp2), Smad2, Smad4, myofibroblast activation (Aldh1a2, Crlf1), and EMT (Snai1,2, Twist), in ligated bemcentinib-treated kidneys was compatible with reduced (partial) EMT induction. Furthermore, less F4/80 positive cells, less activity of pathways related to the immune system and lower abundance of MCP1, MCP3, MCP5, and TARC in ligated bemcentinib-treated kidneys was compatible with reduction in inflammatory infiltrates by bemcentinib treatment. The AXL RTK pathway represents a promising target for pharmacologic therapy of kidney fibrosis.
  • Blomqvist, Kim H.; Lundbom, Jesper; Lundbom, Nina; Sepponen, Raimo E. (2011)
  • Lang, Adam R.; Engelberg, Dirk L.; Walther, Clemens; Weiss, Martin; Bosco, Hauke; Jenkins, Alex; Livens, Francis R.; Law, Gareth T. W. (2019)
    Stainless steels can become contaminated with radionuclides at nuclear sites. Their disposal as radioactive waste would be costly. If the nature of steel contamination could be understood, effective decontamination strategies could be designed and implemented during nuclear site decommissioning in an effort to release the steels from regulatory control. Here, batch uptake experiments have been used to understand Sr and Cs (fission product radionuclides) uptake onto AISI Type 304 stainless steel under conditions representative of spent nuclear fuel storage (alkaline ponds) and PUREX nuclear fuel reprocessing (HNO3). Solution (ICP-MS) and surface measurements (GD-OES depth profiling, TOF-SIMS, and XPS) and kinetic modeling of Sr and Cs removal from solution were used to characterize their uptake onto the steel and define the chemical composition and structure of the passive layer formed on the steel surfaces. Under passivating conditions (when the steel was exposed to solutions representative of alkaline ponds and 3 and 6 M HNO3), Sr and Cs were maintained at the steel surface by sorption/selective incorporation into the Cr-rich passive film. In 12 M HNO3, corrosion and severe intergranular attack led to Sr diffusion into the passive layer and steel bulk. In HNO3, Sr and Cs accumulation was also commensurate with corrosion product (Fe and Cr) readsorption, and in the 12 M HNO3 system, XPS documented the presence of Sr and Cs chromates.
  • Ahonen, Salla; Hayden, Brian; Leppänen, Jaakko Johannes; Kahilainen, Kimmo Kalevi (2018)
    Climate change is resulting in increased temperatures and precipitation in subarctic regions of Europe. These changes are extending tree lines to higher altitudes and latitudes, and enhancing tree growth enabling intensification of forestry into previously inhospitable subarctic regions. The combined effects of climate change and land-use intensification extend the warm, open-water season in subarctic lakes and increase lake productivity and may also increase leaching andmethylation activity of mercury within the lakes. To assess the joint effects of climate and productivity on total mercury (THg) bioaccumulation in fish, we conducted a space-for-time substitution study in 18 tributary lakes of a subarcticwatercourse forming a gradient fromcold pristine oligotrophic lakes in the northern headwaters to warmer and increasingly human-altered mesotrophic and eutrophic systems in the southern lower reaches. Increasing temperature, precipitation, and lake productivity were predicted to elevate length-and age-adjusted THg concentrations, as well as THg bioaccumulation rate (the rate of THg bioaccumulation relative to length or age) in muscle tissue of European whitefish (Coregonus lavaretus), vendace (Coregonus albula), perch (Perca fluviatilis), pike (Esox lucius), roach (Rutilus rutilus) and ruffe (Gymnocephalus cernua). A significant positive relationship was observed between age-adjusted THg concentration and lake climateproductivity in vendace (r(2) = 0.50), perch (r(2) = 0.51), pike (r(2) = 0.55) and roach (r(2) = 0.61). Higher climate-productivity values of the lakes also had a positive linear (pike; r(2) = 0.40 and whitefish; r(2)= 0.72) or u-shaped (perch; r(2) = 0.64 and ruffe; r(2) = 0.50) relationship with THg bioaccumulation rate. Our findings of increased adjusted THg concentrations in planktivores and piscivores reveal adverse effects of warming climate and increasing productivity on these subarctic fishes, whereas less distinct trends in THg bioaccumulation rate suggest more complex underlying processes. Joint environmental stressors such as climate and productivity should be considered in ongoing and future monitoring of mercury concentrations. (C) 2018 Elsevier B.V. All rights reserved.
  • Tossavainen, Marika; Nykänen, Anne; Valkonen, Kalle Santeri; Ojala, Anne; Silja, Kostia; Romantschuk, Martin (2017)
    Growth and fatty acid production of microalga Selenastrum sp. with associated bacteria was studied in lab-scale experiments in three composting leachate liquids. Nutrient reduction in cultures was measured at different initial substrate strengths. A small, pilot-scale photobioreactor (PBR) was used to verify labscale results. Similar growth conditions supported growth of both Selenastrum and bacteria. CO2 feed enhanced the production of biomass and lipids in PBR (2.4 g L-1 and 17% DW) compared to lab-scale (0.1-1.6 g L-1 and 4.0-6.5% DW) experiments. Also prolonged cultivation time increased lipid content in PBR. At both scales, NH4-N with an initial concentration of ca. 40 mg L-1 was completely removed from the biowaste leachate. In lab-scale, maximal COD reduction was over 2000 mg L-1, indicating mixotrophic growth of Selenastrum. Co-cultures are efficient in composting leachate liquid treatment, and conversion of waste to biomass is a promising approach to improve the bioeconomy of composting plants. (C) 2017 The Authors. Published by Elsevier Ltd.
  • Ayvaz, Muavviz; Guven, Avni; Fagerstedt, Kurt Valter (2015)
    Potato crop production in Turkey ranks on the thirteenth place in the world. Toxicity is a problematic issue for some parts of the Turkish soils. Hence, it is very important to clarify the physiological responses of plants to toxic mineral stress. In this study, two different potato cultivars - Solanum tuberosum cv. Resy and Solanum tuberosum cv. Agria - were used as a study material. Excess boron was applied in two different concentrations (5 mmol/L and 12.5 mmol/L) 32 days after planting the tubers. Plants were harvested at the end of 15 days of excess boron application. Chlorophyll fluorescence (Fv/Fm) was measured. Shoot height and shoot-root fresh weight contents were determined. Analyses were carried out for the contents of the endogenous hormones indole-3-acetic acid (IAA) and abscisic acid (ABA) by using gas chromatography-mass spectrophotometry (GS-MS). According to the obtained data, plants' shoot height did not change, whereas the shoot's fresh weight decreased significantly with increasing of the boron concentrations in cv Resy, by applying 12.5 mmol/L boron. With 12.5 mmol/L boron, the photosynthesis was negatively affected in both cultivars. Boron application led to increased endogenous IAA and ABA content in both cultivars. As a result, cv. Resy showed more resistance to excess boron. Findings on the hormone metabolism and chlorophyll fluorescence in different cultivars will shed a light on understanding the physiological response to excess mineral stress.
  • Kahilainen, Kimmo K.; Thomas, Stephen M.; Nystedt, Elina K. M.; Keva, Ossi; Malinen, Tommi; Hayden, Brian (2017)
    Resource polymorphism, whereby ancestral trophic generalists undergo divergence into multiple specialist morphs, is common in salmonid fish populations inhabiting subarctic lakes. However, the extent to which such resource specialization into the three principal lake habitats (littoral, profundal, and pelagic) affects patterns of contaminant bioaccumulation remains largely unexplored. We assessed total mercury concentrations (THg) of European whitefish (Coregonus lavaretus (L)) and their invertebrate prey in relation to potential explanatory variables across 6 subarctic lakes, of which three are inhabited by polymorphic (comprised of four morphs) and three by monomorphic populations. Among invertebrate prey, the highest THg concentrations were observed in profundal benthic macroinvertebrates, followed by pelagic zooplankton, with concentrations lowest in littoral benthic macroinvertebrates in both lake types. Broadly similar patterns were apparent in whitefish in polymorphic systems, where average age-corrected THg concentrations and bioaccumulation rates were the highest in pelagic morphs, intermediate in the profundal morph, and the lowest in the littoral morph. In monomorphic systems, age-corrected THg concentrations were generally lower, and showed pronounced lake-specific variation. In the polymorphic systems, we found significant relationships between whitefish muscle tissue THg concentration and gill raker count, resource use, lipid content and maximum length, whilst no such relationships were apparent in the monomorphic systems. Across all polymorphic lakes, the major variables explaining THg in whitefish were gill raker count and age, whereas in monomorphic systems, the factors were lake-specific. Whitefish resource polymorphism across the three main lake habitats therefore appears to have profound impacts on THg concentration and bioaccumulation rate. This highlights the importance of recognizing such intraspecific diversity in both future scientific studies and mercury monitoring programs. (C) 2017 Elsevier B.V. All rights reserved.
  • Kuittinen, Matti; Hautamaki, Ranja; Tuhkanen, Eeva-Maria; Riikonen, Anu; Ariluoma, Mari (2021)
    Purpose Currently, no clear guidance exists for ISO and EN standards of calculating, verifying, and reporting the climate impacts of plants, mulches, and soils used in landscape design and construction. In order to optimise the potential of ecosystem services in the mitigation of greenhouse gas emissions in the built environment, we unequivocally propose their inclusion when assessing sustainability. Methods We analysed the life cycle phases of plants, soils, and mulches from the viewpoint of compiling standard-based Environmental Product Declarations. In comparison to other construction products, the differences of both mass and carbon flows were identified in these products. Results Living and organic products of green infrastructure require an LCA approach of their own. Most importantly, if conventional life cycle guidance for Environmental Product Declarations were to be followed, over time, the asymmetric mass and carbon flows would lead to skewed conclusions. Moreover, the ability of plants to reproduce raises additional questions for allocating environmental impacts. Conclusions We present a set of recommendations that are required for compiling Environmental Product Declarations for the studied products of green infrastructure. In order to enable the quantification of the climate change mitigation potential of these products, it is essential that work for further development of LCA guidance be mandated.
  • Shang, Yi; Yang, Fei; Schulman, Alan H.; Zhu, Jinghuan; Jia, Yong; Wang, Junmei; Zhang, Xiao-Qi; Jia, Qiaojun; Hua, Wei; Yang, Jianming; Li, Chengdao (2017)
    A poly-row branched spike (prbs) barley mutant was obtained from soaking a two-rowed barley inflorescence in a solution of maize genomic DNA. Positional cloning and sequencing demonstrated that the prbs mutant resulted from a 28 kb deletion including the inflorescence architecture gene HvRA2. Sequence annotation revealed that the HvRA2 gene is flanked by two LTR (long terminal repeat) retrotransposons (BARE) sharing 89% sequence identity. A recombination between the integrase (IN) gene regions of the two BARE copies resulted in the formation of an intact BARE and loss of HvRA2. No maize DNA was detected in the recombination region although the flanking sequences of HvRA2 gene showed over 73% of sequence identity with repetitive sequences on 10 maize chromosomes. It is still unknown whether the interaction of retrotransposons between barley and maize has resulted in the recombination observed in the present study.
  • Geraldes, Vanessa; de Medeiros, Livia Soman; Lima, Stella T.; Alvarenga, Danillo Oliveira; Gacesa, Ranko; Long, Paul F.; Fiore, Marli Fatima; Pinto, Ernani (2020)
    Cyanobacteria have been widely reported to produce a variety of UV-absorbing mycosporine-like amino acids (MAAs). Herein, we reported production of the unusual MAA, mycosporine-glycine-alanine (MGA) in the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024 using a newly developed UHPLC-DAD-MS/HRMS (ultra-high performance liquid chromatography-diode array detection-high resolution tandem mass spectrometry) method. MGA had previously been first identified in a red-algae, but S. torques-reginae strain ITEP-024 is the first cyanobacteria to be reported as an MGA producer. Herein, the chemical structure of MGA is fully elucidated from one-dimensional / two-dimensional nuclear magnetic resonance and HRMS data analyses. MAAs are unusually produced constitutively in S. torques-reginae ITEP-024, and this production was further enhanced following UV-irradiance. It has been proposed that MAA biosynthesis proceeds in cyanobacteria from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate. Annotation of a gene cluster encoded in the genome sequence of S. torques-reginae ITEP-024 supports these gene products could catalyse the biosynthesis of MAAs. However, addition of glyphosate to cultures of S. torques-reginae ITEP-024 abolished constitutive and ultra-violet radiation induced production of MGA, shinorine and porphyra-334. This finding supports involvement of the shikimic acid pathway in the biosynthesis of MAAs by this species.
  • Ali-Sisto, Toni; Tolmunen, Tommi; Viinamäki, Heimo; Mäntyselkä, Pekka; Valkonen-Korhonen, Minna; Koivumaa-Honkanen, Heli; Honkalampi, Kirsi; Ruusunen, Anu; Nandania, Jatin; Velagapudi, Vidya; Lehto, Soili M. (2018)
    Background: Major depressive disorder (MDD) is characterized by increased oxidative and nitrosative stress. We compared nitric oxide metabolism, i.e., the global arginine bioavailability ratio (GABR) and related serum amino acids, between MDD patients and non-depressed controls, and between remitted and non-remitted MDD patients. Methods: Ninety-nine MDD patients and 253 non-depressed controls, aged 20-71 years, provided background data via questionnaires. Fasting serum samples were analyzed using ultra-performance liquid chromatography coupled to mass spectrometry to determine the serum levels of ornithine, arginine, citrulline, and symmetric and asymmetric dimethylarginine. GABR was calculated as arginine divided by the sum of ornithine plus citrulline. We compared the above measures between: 1) MDD patients and controls, 2) remitted (n= 33) and non-remitted (n = 45) MDD patients, and 3) baseline and follow-up within the remitted and non-remitted groups. Results: Lower arginine levels (OR 0.98, 95% CI 0.97-0.99) and lower GABR (OR 0.13, 95% CI 0.03-0.50) were associated with the MDD vs. the non-depressed group after adjustments for potential confounders. The remitted group showed a decrease in GABR, arginine, and symmetric dimethylarginine, and an increase in ornithine after the follow-up compared with within-group baseline values. The non-remitted group displayed an increase in arginine and ornithine levels and a decrease in GABR. No significant differences were recorded between the remitted and non-remitted groups. Limitations: The MDD group was not medication-free. Conclusions: Arginine bioavailability may be decreased in MDD. This could impair the production of nitric oxide, and thus add to oxidative stress in the central nervous system.
  • Keatinge, Marcus; Bui, Hai; Menke, Aswin; Chen, Yu-Chia; Sokol, Anna M.; Bai, Qing; Ellett, Felix; Da Costa, Marc; Burke, Derek; Gegg, Matthew; Trollope, Lisa; Payne, Thomas; McTighe, Aimee; Mortiboys, Heather; de Jager, Sarah; Nuthall, Hugh; Kuo, Ming-Shang; Fleming, Angeleen; Schapira, Anthony H. V.; Renshaw, Stephen A.; Highley, J. Robin; Chacinska, Agnieszka; Panula, Pertti; Burton, Edward A.; O'Neill, Michael J.; Bandmann, Oliver (2015)
    Autosomal recessively inherited glucocerebrosidase 1 (GBA1) mutations cause the lysosomal storage disorder Gaucher's disease (GD). Heterozygous GBA1 mutations (GBA1(+/-)) are the most common risk factor for Parkinson's disease (PD). Previous studies typically focused on the interaction between the reduction of glucocerebrosidase (enzymatic) activity in GBA1(+/-) carriers and alpha-synuclein-mediated neurotoxicity. However, it is unclear whether other mechanisms also contribute to the increased risk of PD in GBA1(+/-) carriers. The zebrafish genome does not contain alpha-synuclein (SNCA), thus providing a unique opportunity to study pathogenic mechanisms unrelated to alpha-synuclein toxicity. Here we describe a mutant zebrafish line created by TALEN genome editing carrying a 23 bp deletion in gba1 (gba1(c.1276_1298del)), the zebrafish orthologue of human GBA1. Marked sphingolipid accumulation was already detected at 5 days post-fertilization with accompanying microglial activation and early, sustained up-regulation of miR-155, a master regulator of inflammation. gba1c.1276_1298del mutant zebrafish developed a rapidly worsening phenotype from 8 weeks onwards with striking reduction in motor activity by 12 weeks. Histopathologically, we observed marked Gaucher cell invasion of the brain and other organs. Dopaminergic neuronal cell count was normal through development but reduced by >30% at 12 weeks in the presence of ubiquitin-positive, intra-neuronal inclusions. This gba1c.1276_1298del zebrafish line is the first viable vertebrate model sharing key pathological features of GD in both neuronal and non-neuronal tissue. Our study also provides evidence for early microglial activation prior to alpha-synuclein independent neuronal cell death in GBA1 deficiency and suggests upregulation of miR-155 as a common denominator across different neurodegenerative disorders.
  • Ghonaim, Marwa; Kalendar, Ruslan; Barakat, Hoda; Elsherif, Nahla; Ashry, Naglaa; Schulman, Alan (2020)
    Maize is one of the world’s most important crops and a model for grass genome research. Long terminal repeat (LTR) retrotransposons comprise most of the maize genome; their ability to produce new copies makes them efficient high-throughput genetic markers. Inter-Retrotransposon-Amplified Polymorphisms (IRAPs) were used to study the genetic diversity of maize germplasm. Five LTR retrotransposons (Huck, Tekay, Opie, Ji, and Grande) were chosen, based on their large number of copies in the maize genome, whereas polymerase chain reaction primers were designed based on consensus LTR sequences. The LTR primers showed high quality and reproducible DNA fingerprints, with a total of 677 bands including 392 polymorphic bands showing 58% polymorphism between maize hybrid lines. These markers were used to identify genetic similarities among all lines of maize. Analysis of genetic similarity was carried out based on polymorphic amplicon profiles and genetic similarity phylogeny analysis. This diversity was expected to display ecogeographical patterns of variation and local adaptation. The clustering method showed that the varieties were grouped into three clusters differing in ecogeographical origin. Each of these clusters comprised divergent hybrids with convergent characters. The clusters reflected the differences among maize hybrids and were in accordance with their pedigree. The IRAP technique is an efficient high-throughput genetic marker-generating method.
  • Mariotti, Lorenzo; Huarancca Reyes, Thais; Ramos-Diaz, Jose Martin; Jouppila, Kirsi; Guglielminetti, Lorenzo (2021)
    Increased ultraviolet-B (UV-B) due to global change can affect plant development and metabolism. Quinoa tolerates extreme conditions including high UV levels. However, the physiological mechanisms behind its abiotic stress tolerance are unclear, especially those related to UV-B. We previously demonstrated that 9.12 kJ m−2 d−1 may induce UV-B-specific signaling while 18.24 kJ m−2 d−1 promotes a UV-B-independent response. Here, we explored the effects of these UV-B doses on hormonal regulation linked to plant morphology and defense among diverse varieties. Changes in fluorescence parameters of photosystem II, flavonoids and hormones (indoleacetic acid (IAA), jasmonic acid (JA), abscisic acid (ABA) and salicylic acid (SA)) were surveyed under controlled conditions. Here, we showed that the sensitivity to short acute UV-B doses in varieties from different habitats is influenced by their parental lines and breeding time. UV-B sensitivity does not necessarily correlate with quinoa’s geographical distribution. The role of flavonoids in the UV-B response seems to be different depending on varieties. Moreover, we found that the extent of changes in JA and SA correlate with UV-B tolerance, while the increase of ABA was mainly related to UV-B stress.
  • Rai, Neha; Neugart, Susanne; Yan, Yan; Wang, Fang; Siipola, Sari M.; Lindfors, Anders V.; Winkler, Jana Barbro; Albert, Andreas; Brosche, Mikael; Lehto, Tarja; Morales, Luis O.; Aphalo, Pedro J. (2019)
    Cryptochromes (CRYs) and UV RESISTANCE LOCUS 8 (UVR8) photoreceptors perceive UV-A/blue (315-500 nm) and UV-B (280-315 nm) radiation in plants, respectively. While the roles of CRYs and UVR8 have been studied in separate controlled-environment experiments, little is known about the interaction between these photoreceptors. Here, Arabidopsis wild-type Ler, CRYs and UVR8 photoreceptor mutants (uvr8-2, cry1cry2 and cry1cry2uvr8-2), and a flavonoid biosynthesis-defective mutant (tt4) were grown in a sun simulator. Plants were exposed to filtered radiation for 17 d or for 6 h, to study the effects of blue, UV-A, and UV-B radiation. Both CRYs and UVR8 independently enabled growth and survival of plants under solar levels of UV, while their joint absence was lethal under UV-B. CRYs mediated gene expression under blue light. UVR8 mediated gene expression under UV-B radiation, and in the absence of CRYs, also under UV-A. This negative regulation of UVR8-mediated gene expression by CRYs was also observed for UV-B. The accumulation of flavonoids was also consistent with this interaction between CRYs and UVR8. In conclusion, we provide evidence for an antagonistic interaction between CRYs and UVR8 and a role of UVR8 in UV-A perception.
  • Chen, W.; Metsala, M.; Vaittinen, Olavi; Halonen, L. (2014)
  • Hartikainen, E. Samuel; Lankinen, Pauliina; Rajasärkkä, Johanna; Koponen, Hilkka; Virta, Marko; Hatakka, Annele; Kähkönen, Mika A. (2012)