Browsing by Subject "ADAPTATION"

Sort by: Order: Results:

Now showing items 1-20 of 70
  • Huttunen, Inese; Hyytiäinen, Kari; Huttunen, Markus; Sihvonen, Matti; Veijalainen, Noora; Korppoo, Marie; Heiskanen, Anna-Stiina (2021)
    This paper introduces a framework for extending global climate and socioeconomic scenarios in order to study agricultural nutrient pollution on an individual catchment scale. Our framework builds on and extends Representative Concentration Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs) at the spatial and temporal scales that are relevant for the drivers of animal husbandry, manure recycling and the application of inorganic fertilisers in crop production. Our case study area is the Aura river catchment in South-West Finland, which discharges into the heavily eutrophic Baltic Sea. The Aura river catchment has intensive agriculture - both livestock and crop production. Locally adjusted and interpreted climate and socioeconomic scenarios were used as inputs to a field-level economic optimisation in order to study how farmers might react to the changing markets and climate conditions under different SSPs. The results on economically optimal fertilisation levels were then used as inputs to the spatially and temporally explicit nutrient loading model (VEMALA). Alternative manure recycling strategies that matched with SSP narratives were studied as means to reduce the phosphorus (P) overfertilisation in areas with high livestock density. According to our simulations, on average the P loads increased by 18% during 2071-2100 from the current level and the variation in P loads between scenarios was large (from & minus;14% to +50%). By contrast, the nitrogen (N) loads had decreased on average by & minus;9% (with variation from & minus;20% to +3%) by the end of the current century. Phosphorus loading was most sensitive to manure recycling strategies and the speed of climate change. Nitrogen loading was less sensitive to changes in climate and socioeconomic drivers. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (
  • Truong Nguyen, Phuoc; Garcia-Valle, Santiago; Puigbo, Pere (2021)
    Early characterization of emerging viruses is essential to control their spread, such as the Zika Virus outbreak in 2014. Among other non-viral factors, host information is essential for the surveillance and control of virus spread. Flaviviruses (genus Flavivirus), akin to other viruses, are modulated by high mutation rates and selective forces to adapt their codon usage to that of their hosts. However, a major challenge is the identification of potential hosts for novel viruses. Usually, potential hosts of emerging zoonotic viruses are identified after several confirmed cases. This is inefficient for deterring future outbreaks. In this paper, we introduce an algorithm to identify the host range of a virus from its raw genome sequences. The proposed strategy relies on comparing codon usage frequencies across viruses and hosts, by means of a normalized Codon Adaptation Index (CAI). We have tested our algorithm on 94 flaviviruses and 16 potential hosts. This novel method is able to distinguish between arthropod and vertebrate hosts for several flaviviruses with high values of accuracy (virus group 91.9% and host type 86.1%) and specificity (virus group 94.9% and host type 79.6%), in comparison to empirical observations. Overall, this algorithm may be useful as a complementary tool to current phylogenetic methods in monitoring current and future viral outbreaks by understanding host-virus relationships.
  • Belachew, Kiflemariam Y.; Nagel, Kerstin A.; Poorter, Hendrik; Stoddard, Frederick L. (2019)
    Water deficit may occur at any stage of plant growth, with any intensity and duration. Phenotypic acclimation and the mechanism of adaptation vary with the evolutionary background of germplasm accessions and their stage of growth. Faba bean is considered sensitive to various kinds of drought. Hence, we conducted a greenhouse experiment in rhizotrons under contrasting watering regimes to explore shoot and root traits and drought avoidance mechanisms in young faba bean plants. Eight accessions were investigated for shoot and root morphological and physiological responses in two watering conditions with four replications. Pre-germinated seedlings were transplanted into rhizotron boxes filled with either air-dried or moist peat. The water-limited plants received 50-ml water at transplanting and another 50-ml water 4 days later, then no water was given until the end of the experimental period, 24 days after transplanting. The well-watered plants received 100 ml of water every 12 h throughout the experimental period. Root, stem, and leaf dry mass, their mass fractions, their dry matter contents, apparent specific root length and density, stomatal conductance, SPAD value, and Fv/Fm were recorded. Water deficit resulted in 3–4-fold reductions in shoot biomass, root biomass, and stomatal conductance along with 1.2–1.4-fold increases in leaf and stem dry matter content and SPAD values. Total dry mass and apparent root length density showed accession by treatment interactions. Accessions DS70622, DS11320, and ILB938/2 shared relatively high values of total dry mass and low values of stomatal conductance under water deficit but differed in root distribution parameters. In both treatments, DS70622 was characterized by finer roots that were distributed in both depth and width, whereas DS11320 and ILB938/2 produced less densely growing, thicker roots. French accession Mélodie/2 was susceptible to drought in the vegetative phase, in contrast to previous results from the flowering phase, showing the importance of timing of drought stress on the measured response. Syrian accession DS70622 explored the maximum root volume and maintained its dry matter production, with the difference from the other accessions being particularly large in the water-limited treatment, so it is a valuable source of traits for avoiding transient drought.
  • Asplund, Therese; Neset, Tina-Simone; Käyhkö, Janina; Wiréhn, Lotten; Juhola, Sirkku (2019)
    The use of digital tools and interactive technologies for farming systems has increased rapidly in recent years and is likely to continue to play a significant role in meeting future challenges. Particularly games and gaming are promising new and innovative communication strategies to inform and engage public and stakeholders with scientific research. This study offers an analysis of how a research based game on climate change maladaptation can support, but also hinder players’ sense-making processes. Through the analysis of eight gaming workshops, this study identifies challenges and support for the players’ sense-making. While it concludes that conceptual thinking of game content sometimes clashes with players’ everyday experiences and practice, possibly resulting in loss of credibility, this study also concludes that gaming may function as an eye-opener to new ways of thinking. Overall, this paper suggests that the communication of (social) science and agricultural practices through serious gaming has great potential but at the same time poses challenges due to different knowledge systems and interpretive frameworks among researchers and practitioners.
  • Rosa, Elena; Saastamoinen, Marjo (2020)
    Cold developmental conditions can greatly affect adult life history of ectotherms in seasonal habitats. Such effects are mostly negative, but sometimes adaptive. Here, we tested how cold conditions experienced during pupal development affect adult wing melanization of an insect ectotherm, the Glanville fritillary butterfly, Melitaea cinxia. We also assessed how in turn previous cold exposure and increased melanization can shape adult behaviour and fitness, by monitoring individuals in a seminatural set-up. We found that, despite pupal cold exposure inducing more melanization, wing melanization was not linked to adult thermoregulation preceding flight, under the conditions tested. Conversely, wing vibrating behaviour had a major role in producing heat preceding flight. Moreover, more melanized individuals were more mobile across the experimental set-up. This may be caused by a direct impact of melanization on flight ability or a more indirect impact of coloration on behaviours such as mate search strategies and/or eagerness to disperse to more suitable mating habitats. We also found that more melanized individuals of both sexes had reduced mating success and produced fewer offspring, which suggests a clear fitness cost of melanization. Whether the reduced mating success is dictated by impaired mate search behaviour, reduced physical condition leading to a lower dominance status or weakened visual signalling remains unknown. In conclusion, while there was no clear role of melanization in providing a thermal advantage under our seminatural conditions, we found a fitness cost of being more melanized, which potentially impacted adult space use behaviour. (c) 2020 The Authors. Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour. This is an open access article under the CC BY-NC-ND license ( licenses/by-nc-nd/4.0/).
  • Vizueta, Joel; Macias-Hernandez, Nuria; Arnedo, Miguel A.; Rozas, Julio; Sanchez-Gracia, Alejandro (2019)
    The coexistence of multiple eco-phenotypes in independently assembled communities makes island adaptive radiations the ideal framework to test convergence and parallelism in evolution. In the radiation of the spider genus Dysdera in the Canary Islands, species diversification occurs concomitant with repeated events of trophic specialization. These dietary shifts, to feed primarily on woodlice, are accompanied by modifications in morphology (mostly in the mouthparts), behaviour and nutritional physiology. To gain insight into the molecular basis of this adaptive radiation, we performed a comprehensive comparative transcriptome analysis of five Canary Island Dysdera endemics representing two evolutionary and geographically independent events of dietary specialization. After controlling for the potential confounding effects of hemiplasy, our differential gene expression and selective constraint analyses identified a number of genetic changes that could be associated with the repeated adaptations to specialized diet of woodlice, including some related to heavy metal detoxification and homeostasis, the metabolism of some important nutrients and venom toxins. Our results shed light on the genomic basis of an extraordinary case of dietary shift convergence associated with species diversification. We uncovered putative molecular substrates of convergent evolutionary changes at different hierarchical levels, including specific genes, genes with equivalent functions and even particular amino acid positions. This study improves our knowledge of rapid adaptive radiations and provides new insights into the predictability of evolution.
  • Renvik (Mähönen), Tuuli Anna; Manner, Joel; Vetik, Raivo; Sam, David; Jasinskaja-Lahti, Inga (2020)
    This survey study utilized a person-oriented approach to explore the patterns of socio-political integration among Russian-speaking minority group members in three neighboring countries in the Baltic area: Estonia (n = 482), Finland (n = 252), and Norway (n = 215). Three profiles were obtained in all countries: critical integration, separation, and assimilation. In the whole sample, critical integration was the most common acculturation profile. After the profiles were established, they were examined vis-a-vis citizenship and integration context to see, whether and to what extent, the objective (i.e., citizenship) and subjective (i.e., perceived social status and sense of belonging) socio-political integration of Russian-speakers corresponded with each other. Critical integration and separation were the most common profiles among participants holding national citizenship of the country of residence, while foreign citizenship was not related to any specific profile. Separation was rare among participants holding dual citizenship, but it was the most common profile among participants with undetermined citizenship. Also, intergroup context was associated with socio-political integration: critical integration and separation were the most common profiles of Russian-speakers in Estonia, critical integration and assimilation profiles in Finland, and assimilation profile in Norway. The results are discussed in relation to previous variable-oriented research and official integration policies of the countries studied.
  • Islam, Mohammad Mahmudul; Islam, Naimul; Habib, Ahasan; Mozumder, Mohammad Mojibul Hoque (2020)
    The present study aimed to map out the current threats and anticipated impacts of climate change on the most important hilsa shad (Tenualosa ilisha) fishery and the associated fishing communities based on fieldwork in six coastal fishing communities. To collect empirical data, individual interviews, focus group discussions, oral history, and key informant interviews were conducted. To supplement the empirical findings, time-series data of cyclones and sea-borne depressions in the Bay of Bengal were also analyzed. Analysis of secondary data regarding climate change-induced events and regional studies suggested that the biophysical conditions of the Bay of Bengal are likely to be aggravated in the future, potentially causing more frequent extreme events and affecting the livelihoods of coastal fishing communities in Bangladesh. The fisher respondents revealed that the main target hilsa shad fishery is particularly vulnerable to climate change in terms of alterations to migration patterns and breeding and growth performance. The fishers reported constant climate-related risks because they live in seafront locations, exposed to extreme events, and their occupation entails risky sea fishing. Fishers claimed that they often need return to the coast due to unsuitable weather conditions related to cyclones and frequent tropical depressions, which can cause financial losses or even causalities. Such events negatively affect fishers' livelihoods, and wellbeing. To cope with the impacts of climate change the fishers have adopted various strategies at both sea fishing and household levels. However, these strategies only support the fishers in terms of immediate survival; they are not enough for long-term resilience. To improve the resilience of the hilsa fishers, the study argues for the implementation the Small-Scale Fisheries Guidelines (SSF Guidelines), which call for longer-term development goals, including in the immediate relief phase, and rehabilitation, reconstruction, and recovery to reduce vulnerabilities to climate and anthropogenic risks.
  • Landreau, Armand; Juhola, Sirkku; Jurgilevich, Alexandra; Räsänen, Aleksi (2021)
    The assessments of future climate risks are common; however, usually, they focus on climate projections without considering social changes. We project heat risks for Finland to evaluate (1) what kind of differences there are in heat vulnerability projections with different scenarios and scales, and (2) how the use of socio-economic scenarios influences heat risk assessments. We project a vulnerability index with seven indicators downscaled to the postal code area scale for 2050. Three different scenario sets for vulnerability are tested: one with five global Shared Socioeconomic Pathways (SSPs) scenarios; the second with three European SSPs (EUSSPs) with data at the sub-national scale (NUTS2); and the last with the EUSSPs but aggregated data at the national scale. We construct projections of heat risk utilizing climatic heat hazard data for three different Representative Concentration Pathways (RCPs) and vulnerability and exposure data for five global SSPs up to 2100. In the vulnerability projections, each scenario in each dataset shows a decrease in vulnerability compared to current values, and the differences between the three scenario sets are small. There are evident differences both in the spatial patterns and in the temporal trends when comparing the risk projections with constant vulnerability to the projections with dynamic vulnerability. Heat hazard increases notably in RCP4.5 and RCP8.5, but a decrease of vulnerability especially in SSP1 and SSP5 alleviates risks. We show that projections of vulnerability have a considerable impact on future heat-related risk and emphasize that future risk assessments should include the combination of long-term climatic and socio-economic projections.
  • Méric, Guillaume; McNally, Alan; Pessia, Alberto; Mourkas, Evangelos; Pascoe, Ben; Mageiros, Leonardos; Vehkala, Minna Emilia; Corander, Jukka Ilmari; Shepard, Samuel K. (2018)
    Human infection with the gastrointestinal pathogen Campylobacter jejuni is dependent upon the opportunity for zoonotic transmission and the ability of strains to colonize the human host. Certain lineages of this diverse organism are more common in human infection but the factors underlying this overrepresentation are not fully understood. We analyzed 601 isolate genomes from agricultural animals and human clinical cases, including isolates from the multihost (ecological generalist) ST-21 and ST-45 clonal complexes (CCs). Combined nucleotide and amino acid sequence analysis identified 12 human-only amino acid KPAX clusters among polyphyletic lineages within the common disease causing CC21 group isolates, with no such clusters among CC45 isolates. Isolate sequence types within human-only CC21 group KPAX clusters have been sampled from other hosts, including poultry, so rather than representing unsampled reservoir hosts, the increase in relative frequency in human infection potentially reflects a genetic bottleneck at the point of human infection. Consistent with this, sequence enrichment analysis identified nucleotide variation in genes with putative functions related to human colonization and pathogenesis, in human-only clusters. Furthermore, the tight clustering and polyphyly of human-only lineage clusters within a single CC suggest the repeated evolution of human association through acquisition of genetic elements within this complex. Taken together, combined nucleotide and amino acid analysis of large isolate collections may provide clues about human niche tropism and the nature of the forces that promote the emergence of clinically important C. jejuni lineages.
  • Momigliano, Paolo; Jokinen, Henri; Calboli, Federico; Aro, Eero; Merilä, Juha (2019)
    Unobserved diversity, such as undetected genetic structure or the presence of cryptic species, is of concern for the conservation and management of global biodiversity in the face of threatening anthropogenic processes. For instance, unobserved diversity can lead to overestimation of maximum sustainable yields and therefore to overharvesting of the more vulnerable stock components within unrecognized mixed-stock fisheries. We used DNA from archival (otolith) samples to reconstruct the temporal (1976-2011) genetic makeup of two mixed-stock flounder fisheries in the angstrom land Sea (AS) and the Gulf of Finland (GoF). Both fisheries have hitherto been managed as a single stock of European flounders (Platichthys flesus), but were recently revealed to target two closely related species: the pelagic-spawning P. flesus and the newly described, demersal-spawning P. solemdali. While the AS and GoF fisheries were assumed to consist exclusively of P. solemdali, P. flesus dominated the GoF flounder assemblage (87% of total) in 1983, had disappeared (0%) by 1993, and remained in low proportions (10%-11%) thereafter. In the AS, P. solemdali dominated throughout the sampling period (>70%), and P. flesus remained in very low proportions after 1983. The disappearance of P. flesus from the GoF coincides in time with a dramatic (similar to 60%) decline in commercial landings and worsening environmental conditions in P. flesus' northernmost spawning ground, the Eastern Gotland Basin, in the preceding 4-6 years. These results are compatible with the hypothesis that P. flesus in the GoF is a sink population relying on larval subsidies from southern spawning grounds and the cause of their disappearance is a cessation of larval supply. Our results highlight the importance of uncovering unobserved genetic diversity and studying spatiotemporal changes in the relative contribution of different stock components, as well as the underlying environmental causes, to manage marine resources in the age of rapid anthropogenic change.
  • Savilammi, Tiina; Papakostas, Spiros; Leder, Erica H.; Vollestad, L. Asbjorn; Debes, Paul V.; Primmer, Craig R. (2021)
    Temperature is a key environmental parameter affecting both the phenotypes and distributions of organisms, particularly ectotherms. Rapid organismal responses to thermal environmental changes have been described for several ectotherms; however, the underlying molecular mechanisms often remain unclear. Here, we studied whole genome cytosine methylation patterns of European grayling (Thymallus thymallus) embryos from five populations with contemporary adaptations of early life history traits at either 'colder' or 'warmer' spawning grounds. We reared fish embryos in a common garden experiment using two temperatures that resembled the 'colder' and 'warmer' conditions of the natal natural environments. Genome-wide methylation patterns were similar in populations originating from colder thermal origin subpopulations, whereas single nucleotide polymorphisms uncovered from the same data identified strong population structure among isolated populations, but limited structure among interconnected populations. This was surprising because the previously studied gene expression response among populations was mostly plastic, and mainly influenced by the developmental temperature. These findings support the hypothesis of the magnified role of epigenetic mechanisms in modulating plasticity. The abundance of consistently changing methylation loci between two warmer-to-colder thermal origin population pairs suggests that local adaptation has shaped the observed methylation patterns. The dynamic nature of the methylomes was further highlighted by genome-wide and site-specific plastic responses. Our findings support both the presence of a plastic response in a subset of CpG loci, and the evolutionary role of methylation divergence between populations adapting to contrasting thermal environments.
  • McFarlane, S. Eryn; Ålund, Murielle; Sirkiä, Päivi M.; Qvarnström, Anna (2018)
    Variation in relative fitness of competing recently formed species across heterogeneous environments promotes coexistence. However, the physiological traits mediating such variation in relative fitness have rarely been identified. Resting metabolic rate (RMR) is tightly associated with life history strategies, thermoregulation, diet use, and inhabited latitude and could therefore moderate differences in fitness responses to fluctuations in local environments, particularly when species have adapted to different climates in allopatry. We work in a long-term study of collared (Ficedula albicollis) and pied flycatchers (Ficedula hypoleuca) in a recent hybrid zone located on the Swedish island of Oland in the Baltic Sea. Here, we explore whether differences in RMR match changes in relative performance of growing flycatcher nestlings across environmental conditions using an experimental approach. The fitness of pied flycatchers has previously been shown to be less sensitive to the mismatch between the peak in food abundance and nestling growth among late breeders. Here, we find that pied flycatcher nestlings have lower RMR in response to higher ambient temperatures (associated with low food availability). We also find that experimentally relaxed nestling competition is associated with an increased RMR in this species. In contrast, collared flycatcher nestlings did not vary their RMR in response to these environmental factors. Our results suggest that a more flexible nestling RMR in pied flycatchers is responsible for the better adaptation of pied flycatchers to the typical seasonal changes in food availability experienced in this hybrid zone. Generally, subtle physiological differences that have evolved when species were in allopatry may play an important role to patterns of competition, coexistence, or displacements between closely related species in secondary contact.
  • Salgado, Ana L.; Suchan, Tomasz; Pellissier, Loic; Rasmann, Sergio; Ducrest, Anne-Lyse; Alvarez, Nadir (2016)
    Elevation gradients impose large differences in abiotic and biotic conditions over short distances, in turn, likely driving differences in gene expression more than would genetic variation per se, as natural selection and drift are less likely to fix alleles at such a narrow spatial scale. As elevation increases, the pressure exerted on plants by herbivores and on arthropod herbivores by predators decreases, and organisms spanning the elevation gradient are thus expected to show lower levels of defence at high elevation. The alternative hypothesis, based on the optimal defence theory, is that defence allocation should be higher in low-resource habitats such as those at high elevation, due to higher costs associated with tissue replacement. In this study, we analyse variation with elevation in (i) defence compound content in the plant Lotus corniculatus and (ii) gene expression associated with defence against predators in the specific phytophagous moth, Zygaena filipendulae. Both species produce cyanogenic glycosides (CNglcs) such as lotaustralin and linamarin as defence mechanisms, with the moth, in addition, being able to sequester CNglcs from its host plant. Specifically, we tested the assumption that the defence-associated phenotype in plants and the gene expression in the insect herbivore should covary between low-and high-elevation environments. We found that L. corniculatus accumulated more CNglcs at high elevation, a result in agreement with the optimal defence theory. By contrast, we found that the levels of expression in the defence genes of Z. filipendulae larvae were not related to the CNglc content of their host plant. Overall, expression levels were not correlated with elevation either, with the exception of the UGT33A1 gene, which showed a marginally significant trend towards higher expression at high elevation when using a simple statistical framework. These results suggest that the defence phenotype of plants against herbivores, and subsequent herbivore sequestration machineries and de novo production, are based on a complex network of interactions.
  • Hiltunen, Teppo; Cairns, Johannes; Frickel, Jens; Jalasvuori, Matti; Laakso, Jouni; Kaitala, Veijo; Kuenzel, Sven; Karakoc, Emre; Becks, Lutz (2018)
    Recognizing when and how rapid evolution drives ecological change is fundamental for our understanding of almost all ecological and evolutionary processes such as community assembly, genetic diversification and the stability of communities and ecosystems. Generally, rapid evolutionary change is driven through selection on genetic variation and is affected by evolutionary constraints, such as tradeoffs and pleiotropic effects, all contributing to the overall rate of evolutionary change. Each of these processes can be influenced by the presence of multiple environmental stressors reducing a population's reproductive output. Potential consequences of multistressor selection for the occurrence and strength of the link from rapid evolution to ecological change are unclear. However, understanding these is necessary for predicting when rapid evolution might drive ecological change. Here we investigate how the presence of two stressors affects this link using experimental evolution with the bacterium Pseudomonas fluorescens and its predator Tetrahymena thermophila. We show that the combination of predation and sublethal antibiotic concentrations delays the evolution of anti-predator defence and antibiotic resistance compared with the presence of only one of the two stressors. Rapid defence evolution drives stabilization of the predator-prey dynamics but this link between evolution and ecology is weaker in the two-stressor environment, where defence evolution is slower, leading to less stable population dynamics. Tracking the molecular evolution of whole populations over time shows further that mutations in different genes are favoured under multistressor selection. Overall, we show that selection by multiple stressors can significantly alter eco-evolutionary dynamics and their predictability.
  • Huang, Weini; Traulsen, Arne; Werner, Benjamin; Hiltunen, Teppo; Becks, Lutz (2017)
    Trade-offs play an important role in evolution. Without trade-offs, evolution would maximize fitness of all traits leading to a "master of all traits". The shape of trade-offs has been shown to determine evolutionary trajectories and is often assumed to be static and independent of the actual evolutionary process. Here we propose that coevolution leads to a dynamical trade-off. We test this hypothesis in a microbial predator-prey system and show that the bacterial growth-defense trade-off changes from concave to convex, i.e., defense is effective and cheap initially, but gets costly when predators coevolve. We further explore the impact of such dynamical trade-offs by a novel mathematical model incorporating de novo mutations for both species. Predator and prey populations diversify rapidly leading to higher prey diversity when the trade-off is concave (cheap). Coevolution results in more convex (costly) trade-offs and lower prey diversity compared to the scenario where only the prey evolves.
  • Pour-Aboughadareh, Alireza; Mohammadi, Reza; Etminan, Alireza; Shooshtari, Lia; Maleki-Tabrizi, Neda; Poczai, Peter (2020)
    Durum wheat performance in the Mediterranean climate is limited when water scarcity occurs before and during anthesis. The present research was performed to determine the effect of drought stress on several physiological and agro-morphological traits in 17 durum wheat genotypes under two conditions (control and drought) over two years. The results of analysis of variance indicated that the various durum wheat genotypes responded differently to drought stress. Drought stress significantly reduced the grain filling period, plant height, peduncle length, number of spikes per plot, number of grains per spike, thousand grains weight, grain yield, biomass, and harvest index in all genotypes compared to the control condition. The heatmap-based correlation analysis indicated that grain yield was positively and significantly associated with phenological characters (days to heading, days to physiological maturity, and grain filling period), as well as number of spikes per plant, biomass, and harvest index under drought conditions. The yield-based drought and susceptible indices revealed that stress tolerance index (STI), geometric mean productivity (GMP), mean productivity (MP), and harmonic mean (HM) were positively and significantly correlated with grain yields in both conditions. Based on the average of the sum of ranks across all indices and a three-dimensional plot, two genotypes (G9 and G12) along with the control variety (G1) were identified as the most tolerant genotypes. Among the investigated genotypes, the new breeding genotype G12 showed a high drought tolerance and yield performance under both conditions. Hence, this genotype can be a candidate for further multi-years and locations test as recommended for cultivation under rainfed conditions in arid and semi-arid regions.
  • Xue, Yali; Mezzavilla, Massimo; Haber, Marc; McCarthy, Shane; Chen, Yuan; Narasimhan, Vagheesh; Gilly, Arthur; Ayub, Qasim; Colonna, Vincenza; Southam, Lorraine; Finan, Christopher; Massaia, Andrea; Chheda, Himanshu; Palta, Priit; Ritchie, Graham; Asimit, Jennifer; Dedoussis, George; Gasparini, Paolo; Palotie, Aarno; Ripatti, Samuli; Soranzo, Nicole; Toniolo, Daniela; Wilson, James F.; Durbin, Richard; Tyler-Smith, Chris; Zeggini, Eleftheria (2017)
    The genetic features of isolated populations can boost power in complex-trait association studies, and an in-depth understanding of how their genetic variation has been shaped by their demographic history can help leverage these advantageous characteristics. Here, we perform a comprehensive investigation using 3,059 newly generated low-depth whole-genome sequences from eight European isolates and two matched general populations, together with published data from the 1000 Genomes Project and UK10K. Sequencing data give deeper and richer insights into population demography and genetic characteristics than genotype-chip data, distinguishing related populations more effectively and allowing their functional variants to be studied more fully. We demonstrate relaxation of purifying selection in the isolates, leading to enrichment of rare and low-frequency functional variants, using novel statistics, DVxy and SVxy. We also develop an isolation-index (Isx) that predicts the overall level of such key genetic characteristics and can thus help guide population choice in future complex-trait association studies.
  • Koivu-Jolma, Mikko; Annila, Arto (2018)
    Mathematical epidemiology is a well-recognized discipline to model infectious diseases. It also provides guidance for public health officials to limit outbreaks. Nevertheless, epidemics take societies by surprise every now and then, for example, when the Ebola virus epidemic raged seemingly unrestrained in Western Africa. We provide insight to this capricious character of nature by describing the epidemic as a natural process, i.e., a phenomenon governed by thermodynamics. Our account, based on statistical mechanics of open systems, clarifies that it is impossible to predict accurately epidemic courses because everything depends on everything else. Nonetheless, the thermodynamic theory yields a comprehensive and analytical view of the epidemic. The tenet subsumes various processes in a scale-free manner from the molecular to the societal levels. The holistic view accentuates overarching procedures in arresting and eradicating epidemics.
  • Arstila, Valtteri; Georgescu, Alexandra L.; Lunn, Daniel; Noreika, Valdas; Falter-Wagner, Christine M.; Pesonen, Henri (2020)
    Essential for successful interaction with the environment is the human capacity to resolve events in time. Typical event timing paradigms are judgements of simultaneity (SJ) and of temporal order (TOJ). It remains unclear whether SJ and TOJ are based on the same underlying mechanism and whether there are fixed thresholds for resolution. The current study employed four visual event timing task versions: horizontal and vertical SJ and TOJ. Binary responses were analysed using multilevel binary regression modelling. Modulatory effects of potential explanatory variables on event timing perception were investigated: (1) Individual factors (sex and age), (2) temporal factors (SOA, trial number, order of experiment, order of stimuli orientation, time of day) and (3) spatial factors (left or right stimulus first, top or bottom stimulus first, horizontal vs. vertical orientation). The current study directly compares for the first time, performance on SJ and TOJ tasks using the same paradigm and presents evidence that a variety of factors and their interactions selectively modulate event timing functions in humans, explaining the variance found in previous studies. We conclude that SJ and TOJ are partially independent functions, because they are modulated differently by individual and contextual variables.