Browsing by Subject "ADENOVIRUS"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Wannasarit, Saowanee; Wang, Shiqi; Figueiredo, Patricia; Trujillo Olvera, Claudia Ximenia; Eburnea, Francesca; Simón-Gracia, Lorena; Correia, Alexandra; Ding, Yaping; Teesalu, Tambet; Liu, Dongfei; Wiwattanapatapee, Ruedeekorn; Santos, Hélder A.; Li, Wei (2019)
    Achieving cellular internalization and endosomal escape remains a major challenge for many antitumor therapeutics, especially macromolecular drugs. Viral drug carriers are reported for efficient intracellular delivery, but with limited choices of payloads. In this study, a novel polymeric nanoparticle (ADMAP) is developed, resembling the structure and functional features of a virus. ADMAP is synthesized by grafting endosomolytic poly(lauryl methacrylate‐co‐methacrylic acid) on acetalated dextran. The endosomolytic polymer mimics the capsid protein for endosomal escape, and acetalated dextran resembles the viral core for accommodating payloads. After polymer synthesis, the subsequent controlled nanoprecipitation on a microfluidic device yields uniform nanoparticles with high encapsulation efficiency. At late endosomal pH (5.0), the ADMAP particles successfully destabilize endosomal membranes and release the drug payloads synergistically, resulting in a greater therapeutic efficacy compared with that of free anticancer drugs. Further conjugation of a tumor‐penetrating peptide enhances the antitumor efficacy toward 3D spheroids and finally leads to spheroid disintegration. The unique structure along with the synergistic endosomal escape and drug release make ADMAP nanoparticles favorable for intracellular delivery of antitumor therapeutics.
  • Fusciello, Manlio; Fontana, Flavia; Tähtinen, Siri; Capasso, Cristian; Feola, Sara; da Silva Lopes Martins, Beatriz; Chiaro, Jacopo; Peltonen, Karita; Ylösmäki, Leena; Ylösmäki, Erkko; Hamdan Hissaoui, Firas; Kari, Otto K.; Ndika, Joseph; Alenius, Harri; Urtti, Arto; Hirvonen, Jouni T.; Santos, Hélder A.; Cerullo, Vincenzo (2019)
    Virus-based cancer vaccines are nowadays considered an interesting approach in the field of cancer immunotherapy, despite the observation that the majority of the immune responses they elicit are against the virus and not against the tumor. In contrast, targeting tumor associated antigens is effective, however the identification of these antigens remains challenging. Here, we describe ExtraCRAd, a multi-vaccination strategy focused on an oncolytic virus artificially wrapped with tumor cancer membranes carrying tumor antigens. We demonstrate that ExtraCRAd displays increased infectivity and oncolytic effect in vitro and in vivo. We show that this nanoparticle platform controls the growth of aggressive melanoma and lung tumors in vivo both in preventive and therapeutic setting, creating a highly specific anti-cancer immune response. In conclusion, ExtraCRAd might serve as the next generation of personalized cancer vaccines with enhanced features over standard vaccination regimens, representing an alternative way to target cancer.
  • Cervera-Carrascon, Victor; Quixabeira, Dafne C.A.; Havunen, Riikka; Santos, Joao M.; Kutvonen, Emma; Clubb, James H.A.; Siurala, Mikko; Heiniö, Camilla; Zafar, Sadia; Koivula, Teija; Lumen, Dave; Vaha, Marjo; Garcia-Horsman, Arturo; Airaksinen, Anu J.; Sorsa, Suvi; Anttila, Marjukka; Hukkanen, Veijo; Kanerva, Anna; Hemminki, Akseli (2020)
    Despite some promising results, the majority of patients do not benefit from T-cell therapies, as tumors prevent T-cells from entering the tumor, shut down their activity, or downregulate key antigens. Due to their nature and mechanism of action, oncolytic viruses have features that can help overcome many of the barriers currently facing T-cell therapies of solid tumors. This study aims to understand how four different oncolytic viruses (adenovirus, vaccinia virus, herpes simplex virus and reovirus) perform in that task. For that purpose, an immunocompetent in vivo tumor model featuring adoptive tumor-infiltrating lymphocyte (TIL) therapy was used. Tumor growth control (p
  • Kauppinen, A.; Al-Hello, H.; Zacheus, O.; Kilponen, J.; Maunula, L.; Huusko, S.; Lappalainen, M.; Miettinen, I.; Blomqvist, S.; Rimhanen-Finne, R. (2017)
  • The TEDDY Study Group; Lindfors, Katri; Lin, Jake; Hyöty, Heikki; Nykter, Matti; Kurppa, Kalle; Liu, Edwin; Koletzko, Sibylle; Rewers, Marian; Hagopian, William; Toppari, Jorma; Ziegler, Annette-Gabriele; Akolkar, Beena; Krischer, Jeffrey P.; Petrosino, Joseph F.; Lloyd, Richard E.; Agardh, Daniel (2020)
    Objective: Higher gluten intake, frequent gastrointestinal infections and adenovirus, enterovirus, rotavirus and reovirus have been proposed as environmental triggers for coeliac disease. however, it is not known whether an interaction exists between the ingested gluten amount and viral exposures in the development of coeliac disease. This study investigated whether distinct viral exposures alone or together with gluten increase the risk of coeliac disease autoimmunity (cDa) in genetically predisposed children. Design: The environmental Determinants of Diabetes in the Young study prospectively followed children carrying the hla risk haplotypes DQ2 and/or DQ8 and constructed a nested case–control design. From this design, 83 cDa case–control pairs were identified. Median age of cDa was 31 months. stool samples collected monthly up to the age of 2 years were analysed for virome composition by illumina next-generation sequencing followed by comprehensive computational virus profiling. Results: The cumulative number of stool enteroviral exposures between 1 and 2 years of age was associated with an increased risk for cDa. in addition, there was a significant interaction between cumulative stool enteroviral exposures and gluten consumption. The risk conferred by stool enteroviruses was increased in cases reporting higher gluten intake. Conclusions: Frequent exposure to enterovirus between 1 and 2 years of age was associated with increased risk of cDa. The increased risk conferred by the interaction between enteroviruses and higher gluten intake indicate a cumulative effect of these factors in the development of cDa.