Browsing by Subject "ADSORPTION"

Sort by: Order: Results:

Now showing items 1-20 of 30
  • Baltrenaite, Edita; Baltrenas, Pranas; Bhatnagar, Amit; Vilppo, Teemu; Selenius, Mikko; Koistinen, Arto; Dahl, Mari; Penttinen, Olli-Pekka (2017)
    The environmental legislation and strict enforcement of environmental regulations are the tools effectively used for developing the market of materials for environmental protection technologies. Sustain ability criteria shift environmental engineering systems to more sustainable-material-based technologies. For carbon-based medium materials in biofiltration, this trend results in attempts to use biochar for biofiltration purposes. The paper presents the analysis of biochar properties based on the main criteria for biofiltration medium integrating the environmental quality properties of biochar, following the European Biochar Certificate guidelines. Three types of biochar produced from feedstock of highly popular and abundant types of waste are analysed. A multi component approach was applied to summarize the results. The lignocellulosic type of biochar was found to be more competitive for use as a biofiltration medium than the types of biochar with high ash or lignin content. (C) 2016 Elsevier Ltd. All rights reserved.
  • Dusa, Filip; Chen, Wen; Witos, Joanna; Wiedmer, Susanne Kristina (2019)
    The importance of using biomimicking membranes for various biological applications is rising, as such models are relevant for imitating real organisms. In addition, biomimicking membranes are usually much more repeatable in preparation and easier to handle during analysis than real organisms or biological membranes. In this work, we developed a method for the adsorption of intact small unilamellar Escherichia coli (E. cols) vesicles (Z-average size of 73 nm) on SiO2 substrate material. We describe the adsorption process based on the use of two surface sensitive techniques, i.e., nanoplasmonic sensing (NPS) and quartz crystal microbalance (QCM). The acquired data show that the adsorption follows a two-step process. The first step is a slow adsorption of E coil vesicle aggregates held together by 5 mM of calcium (Z-average size of 531 nm). The Z-average of the aggregates decreased almost three times when the calcium concentration was decreased to 0.1 mM. This suggests that the aggregates were disassembling to some extent when calcium was removed from the system. With both techniques, i.e., NPS and QCM, we observed a second rapid adsorption step after the solution was changed to deionized water. In this second step, the aggregates started to fall apart as the calcium concentration dropped, and the released vesicles started to adsorb onto unoccupied spots at the SiO2 surface of the sensors. Extensive release of mass from the surface was confirmed by QCM, where it was reflected by a sharp increase of frequency, while NPS, due to its lower sensing depth of a few tens of nanometers, did not record such a change. Taken together, we have developed a protocol to form a supported vesicle layer (SVL) of E coli vesicles on SiO2 surface using sodium 4-(2-hydroxyethyppiperazine-1-ethanesulfonate buffer, thus enabling the preparation of E coli biomimicking SVLs for interaction studies of compounds of interest. The immobilization happens via a two-step adsorption process.
  • Mera-Adasme, Raul; Xu, Wen-hua; Sundholm, Dage; Mendizabal, Fernando (2016)
    Solar power is a strong alternative to the currently used fossil fuels in order to satisfy the world's energy needs. Among them, dye-sensitized solar cells (DSSC) represent a low-cost option. Efficient and cheap dyes are currently needed to make DSSCs competitive. Computational chemistry can be used to guide the design of new light-absorbing chromophores. Here, we have computationally studied the lowest excited states of ZnPBAT, which is a recently synthesized porphyrinoid chromophore with high light-absorption efficiency. The calculations have been performed at ab initio correlated levels of theory employing second-order coupled clusters (CC2) and algebraic diagrammatic construction using second order (ADC(2)) methods and by performing density functional theory (DFT) calculations using the time-dependent DFT (TDDFT) approach for excitation energies. The ultraviolet-visible (UV-vis) spectrum calculated at the ADC(2) and CC2 levels agrees well with the experimental one. The calculations show that ZnPBAT has six electronic transitions in the visible range of the absorption spectrum. The ab initio correlated calculations and previously reported experimental data have been used to assess the performance of several well-known density functionals that have been employed in the present TDDFT study. Solvent effects have been estimated by using the conductor-like screening model (COSMO). The influence of the addition of a TiO2 cluster to the chromophore systems has also been investigated. The results indicate that both CAM-B3LYP and Becke's "half-and-half'' (BHLYP) density functionals are appropriate for the studies of excitation energies in the blue range of the visible spectrum for these kinds of porphyrinoid chromophores, whereas the excitation energies of the Q band calculated at the ab initio correlated level are more accurate than those obtained in the present TDDFT calculations. The inclusion of solvent effects has a modest influence on the spectrum of the protonated form of the studied chromophores, whereas solvent models are crucial when studying the absorption spectrum of the anionic chromophore. The calculated UV-vis spectrum for the chromophore anion is not significantly affected by attaching a TiO2 cluster to it.
  • Pakarinen, Annukka; Haven, Mai Ostergaard; Djajadi, Demi Tristan; Varnai, Aniko; Puranen, Terhi; Viikari, Liisa (2014)
  • Lang, Adam R.; Engelberg, Dirk L.; Walther, Clemens; Weiss, Martin; Bosco, Hauke; Jenkins, Alex; Livens, Francis R.; Law, Gareth T. W. (2019)
    Stainless steels can become contaminated with radionuclides at nuclear sites. Their disposal as radioactive waste would be costly. If the nature of steel contamination could be understood, effective decontamination strategies could be designed and implemented during nuclear site decommissioning in an effort to release the steels from regulatory control. Here, batch uptake experiments have been used to understand Sr and Cs (fission product radionuclides) uptake onto AISI Type 304 stainless steel under conditions representative of spent nuclear fuel storage (alkaline ponds) and PUREX nuclear fuel reprocessing (HNO3). Solution (ICP-MS) and surface measurements (GD-OES depth profiling, TOF-SIMS, and XPS) and kinetic modeling of Sr and Cs removal from solution were used to characterize their uptake onto the steel and define the chemical composition and structure of the passive layer formed on the steel surfaces. Under passivating conditions (when the steel was exposed to solutions representative of alkaline ponds and 3 and 6 M HNO3), Sr and Cs were maintained at the steel surface by sorption/selective incorporation into the Cr-rich passive film. In 12 M HNO3, corrosion and severe intergranular attack led to Sr diffusion into the passive layer and steel bulk. In HNO3, Sr and Cs accumulation was also commensurate with corrosion product (Fe and Cr) readsorption, and in the 12 M HNO3 system, XPS documented the presence of Sr and Cs chromates.
  • Ray, Daisy; Leary, Peter; Livens, Francis; Gray, Neil; Morris, Katherine; Law, Kathleen A.; Fuller, Adam J.; Abrahamsen-Mills, Liam; Howe, John; Tierney, Kieran; Muir, Graham; Law, Gareth T.W. (2020)
    Understanding anthropogenic radionuclide biogeochemistry and mobility in natural systems is key to improving the management of radioactively contaminated environments and radioactive wastes. Here, we describe the contemporary depth distribution and phase partitioning of 137Cs, Pu, and 241Am in two sediment cores taken from the Irish Sea (Site 1: the Irish Sea Mudpatch; Site 2: the Esk Estuary). Both sites are located ~10 km from the Sellafield nuclear site. Low-level aqueous radioactive waste has been discharged from the Sellafield site into the Irish Sea for >50 y. We compare the depth distribution of the radionuclides at each site to trends in sediment and porewater redox chemistry, using trace element abundance, microbial ecology, and sequential extractions, to better understand the relative importance of sediment biogeochemistry vs. physical controls on radionuclide distribution/post-depositional mobility in the sediments. We highlight that the distribution of 137Cs, Pu, and 241Am at both sites is largely controlled by physical mixing of the sediments, physical transport processes, and sediment accumulation. Interestingly, at the Esk Estuary, microbially-mediated redox processes (considered for Pu) do not appear to offer significant controls on Pu distribution, even over decadal timescales. We also highlight that the Irish Sea Mudpatch likely still acts as a source of historical pollution to other areas in the Irish Sea, despite ever decreasing levels of waste output from the Sellafield site.
  • Zhang, Xue; Viitala, Tapani; Harjumäki, Riina; Kartal-Hodzic, Alma; Valle-Delgado, Juan Jose; Österberg, Monika (2021)
    The development of in vitro cell models that mimic cell behavior in organs and tissues is an approach that may have remarkable impact on drug testing and tissue engineering applications in the future. Plant based, chemically unmodified cellulose nanofibrils (CNF) hydrogel is a natural, abundant, and biocompatible material that has attracted great attention for biomedical applications, in particular for threedimensional cell cultures. However, the mechanisms of cell-CNF interactions and factors that affect these interactions are not yet fully understood. In this work, multi-parametric surface plasmon resonance (SPR) was used to study how the adsorption of human hepatocellular carcinoma (HepG2) cells on CNF films is affected by the different proteins and components of the cell medium. Both human recombinant laminin 521 (LN-521, a natural protein of the extracellular matrix) and poly -L-lysine (PLL) adsorbed on CNF films and enhanced the attachment of HepG2 cells. Cell medium components (glucose and amino acids) and serum proteins (fetal bovine serum, FBS) also adsorbed on both bare CNF and on protein-coated CNF substrates. However, the adsorption of FBS hindered the attachment of HepG2 cells to LN-521and PLLcoated CNF substrates, suggesting that serum proteins blocked the formation of laminin-integrin bonds and decreased favorable PLL-cell electrostatic interactions. This work sheds light on the effect of different factors on cell attachment to CNF, paving the way for the utilization and optimization of CNF-based materials for different tissue engineering applications. (C) 2020 The Authors. Published by Elsevier Inc.
  • Seppälä, Anniina; Puhakka, Eini; Olin, Markus (2016)
    The swelling and cation exchange properties of montmorillonite are fundamental in a wide range of applications ranging from nanocomposites to catalytic cracking of hydrocarbons. The swelling results from several factors and, though widely studied, information on the effects of a single factor at a time is lacking. In this study, density functional theory (DFT) calculations were used to obtain atomic-level information on the swelling of montmorillonite. Molecular dynamics (MD) was used to investigate the swelling properties of montmorillonites with different layer charges and interlayer cationic compositions. Molecular dynamics calculations, with CLAYFF force field, consider three layer charges (-1.0, -0.66 and -0.5 e per unit cell) arising from octahedral substitutions and interlayer counterions of Na, K and Ca. The swelling curves obtained showed that smaller layer charge results in greater swelling but the type of the interlayer cation also has an effect. The DFT calculations were also seen to predict larger d values than MD. The formation of 1, 2 and 3 water molecular layers in the interlayer spaces was observed. Finally, the data from MD calculations were used to predict the self-diffusion coefficients of interlayer water and cations in different montmorillonites and in general the coefficient increased with increasing water content and with decreasing layer charge.
  • Kari, Otto K.; Ndika, Joseph; Parkkila, Petteri; Louna, Antti; Lajunen, Tatu; Puustinen, Anne; Viitala, Tapani; Alenius, Harri; Urtti, Arto (2020)
    Methodological constraints have limited our ability to study protein corona formation, slowing nanomedicine development and their successful translation into the clinic. We determined hard and soft corona structural properties along with the corresponding proteomic compositions on liposomes in a label-free workflow: surface plasmon resonance and a custom biosensor for in situ structure determination on liposomes and corona separation, and proteomics using sensitive nanoliquid chromatography tandem mass spectrometry with open-source bioinformatics platforms. Undiluted human plasma under dynamic flow conditions was used for in vivo relevance. Proof-of-concept is presented with a regular liposome formulation and two light-triggered indocyanine green (ICG) liposome formulations in preclinical development. We observed formulation-dependent differences in corona structure (thickness, protein-to-lipid ratio, and surface mass density) and protein enrichment. Liposomal lipids induced the enrichment of stealth-mediating apolipoproteins in the hard coronas regardless of pegylation, and their preferential enrichment in the soft corona of the pegylated liposome formulation with ICG was observed. This suggests that the soft corona of loosely interacting proteins contributes to the stealth properties as a component of the biological identity modulated by nanomaterial surface properties. The workflow addresses significant methodological gaps in biocorona research by providing truly complementary hard and soft corona compositions with corresponding in situ structural parameters for the first time. It has been designed into a convenient and easily reproducible single-experiment format suited for preclinical development of lipid nanomedicines.
  • Lan, Hangzhen; Salmi, Leo D.; Rönkkö, Tuukka; Parshintsev, Jevgeni; Jussila, Matti; Hartonen, Kari; Kemell, Marianna; Riekkola, Marja-Liisa (2018)
    New chemical vapor reaction (CVR) and atomic layer deposition (ALD)-conversion methods were utilized for preparation of metal organic frameworks (MOFs) coatings of solid phase microextraction (SPME) Arrow for the first time. With simple, easy and convenient one-step reaction or conversion, four MOF coatings were made by suspend ALD iron oxide (Fe2O3) film or aluminum oxide (Al2O3) film above terephthalic acid (H2BDC) or trimesic acid (H3BTC) vapor. UIO-66 coating was made by zirconium (Zr)-BDC film in acetic acid vapor. As the first documented instance of all-gas phase synthesis of SPME Arrow coatings, preparation parameters including CVR/conversion time and temperature, acetic acid volume, and metal oxide film/metal-ligand films thickness were investigated. The optimal coatings exhibited crystalline structures, excellent uniformity, satisfactory thickness (2-7.5 μm), and high robustness (>80 times usage). To study the practical usefulness of the coatings for the extraction, several analytes with different chemical properties were tested. The Fe-BDC coating was found to be the most selective and sensitive for the determination of benzene ring contained compounds due to its highly hydrophobic surface and unsaturated metal site. UIO-66 coating was best for small polar, aromatic, and long chain polar compounds owing to its high porosity. The usefulness of new coatings were evaluated for gas chromatography-mass spectrometer (GC-MS) determination of several analytes, present in wastewater samples at three levels of concentration, and satisfactory results were achieved.
  • Saastamoinen, Päivi; Mattinen, Maija-Liisa; Hippi, Ulla; Nousiainen, Paula; Sipilä, Jussi; Lille, Martina; Suurnäkki, Anna; Pere, Jaakko (2012)
  • Siipola, Virpi; Pflugmacher, Stephan; Romar, Henrik; Wendling, Laura; Koukkari, Pertti (2020)
    The applicability of steam activated pine and spruce bark biochar for storm water and wastewater purification has been investigated. Biochar samples produced from the bark of scots pine (Pinus sylvestrus) and spruce (Picea spp.) by conventional slow pyrolysis at 475 degrees C were steam activated at 800 degrees C. Steam activation was selected as a relatively inexpensive method for creating porous biochar adsorbents from the bark-containing sidestreams of the wood refining industry. A suite of standard analytical procedures were carried out to quantify the performance of the activated biochar in removing both cations and residual organics from aqueous media. Phenol and microplastics retention and cation exchange capacity were employed as key test parameters. Despite relatively low surface areas (200-600 m(2)/g), the steam-activated biochars were highly suitable adsorbents for the chemical species tested as well as for microplastics removal. The results indicate that ultra-high porosities are not necessary for satisfactory water purification, supporting the economic feasibility of bio-based adsorbent production.
  • Li, Xiaodong; Puhakka, Eini; Liu, Longcheng; Zhang, Wenzhong; Ikonen, Jussi; Lindberg, Antero; Siitari-Kauppi, Marja (2020)
    A surface complexation model of Se(IV) sorption on biotite with one type of strong sorption sites and two types of weak sorption sites were developed based on experimental data obtained from titration, sorption edge and sorption isotherm experiments. Titration data was collected using a batch-wise manner together with back-titration to calibrate the effect of mineral dissolution in 0.01 M KClO4 background electrolytes from pH 3 to 11 in an inert atmosphere glovebox. Further calibrations of the titration curve include proton exchange and cation exchange in which the calculations of cation occupancies on biotite surfaces were taken into account. The sorption edge measurements were determined by measuring the sorption of 10(-9) M total Se with a radioactive Se-75 tracer on converted biotite in 0.01 M KClO4 solution from pH 3 to 11. Se sorption was observed to be strongly dependent on pH. Surface complexation modelling was performed by deriving a set of optimized parameters that can fit titration, sorption edge and sorption isotherm (at pH similar to 7.7) experimental data. A CASTEP code implemented into Materials Studio was used to calculate the site densities and site types on the biotite surfaces. Weak sorption sites with site densities of 3.2 sites/nm(2) and 1.4 sites/nm(2) were derived from the codes and used in the sorption model. A computer code that coupled PHREEQC with Python was developed for the fitting and optimizing processes. The model was validated by sorption data at pH similar to 9.5. The results show that the model can provide quantitative predicts of Se(IV) sorption in groundwater conditions of a deep geological repository and help improve the performance assessments by giving more convincing estimates of the release of radionuclides towards aquifers and biosphere.
  • Paajanen, Johanna; Weintraub, Saara; Lönnrot, Satu; Heikkilä, Mikko; Vehkamäki, Marko; Kemell, Marianna; Hatanpää, Timo; Ritala, Mikko; Koivula, Risto (2021)
    Nanoscale SnO2 has many important properties ranging from sorption of metal ions to gas sensing. Using a novel electroblowing method followed by calcination, we synthesized SnO2 and composite SnO2/SiO2 submicron fibers with a Sn : Si molar ratio of 3 : 1. Different calcination temperatures and heating rates produced fibers with varying structures and morphologies. In all the fibers SnO2 was detected by XRD indicating the SnO2/SiO2 fibers to be composite instead of complete mixtures. We studied the Co2+ separation ability of the fibers, since Co-60 is a problematic contaminant in nuclear power plant wastewaters. Both SnO2 and SnO2/SiO2 fibers had an excellent Co2+ uptake with their highest uptake/K-d values being 99.82%/281 000 mL g(-1) and 99.79%/234 000 mL g(-1), respectively. Compared to the bare SnO2 fibers, the SiO2 component improved the elasticity and mechanical strength of the composite fibers which is advantageous in dynamic column operation.
  • Vaalama, Anu; Hartikainen, Helina; Vallius, Henry; Lukkari, Kaarina (2019)
    Phosphorus (P) exchange in clayey mud sediments was investigated with desorption-sorption isotherms at 22 coastal sites in the eutrophied brackish Gulf of Finland, the Baltic Sea. The aim was to gain information on P sorption potential and pattern of oxygenated surface sediments and to elucidate factors explaining them. Modified Freundlich equation was fitted to the isotherm data and used for calculation of the P exchange parameters EPC0 (equilibrium P concentration at zero net sorption), k(E)(PC0), k(15) and k(100) (P buffering capacities at early, middle and high sorption stages, respectively). They were further used to assess the P sorption potential and pattern of the sediments. Sediment properties explaining the P sorption potential at different sorption stages were identified.The greatest sorption potentials were recorded in originally poorly oxic sediments in the inner archipelago with accumulated fine particulate material, high in adsorbents for P, transported from the watersheds. After oxygenation, they were high in amorphous Fe-oxyhydroxides, which explained their efficient P sorption (k(EPC0) > 1.32 I g(-1)). Poorer P sorption (k(EPC0) 0.45-0.84 I g(-1)) was recorded in fine sediments abundant in Al-oxyhydroxides, presumably due to their higher original P occupation degree. The lowest sorption potentials were found in the outer archipelago sediments. Their lowest specific surface areas and highest original P contents referred to scarcity of adsorbents and high occupation degree of the existing ones. These results suggest that the coastal clayey mud sediments investigated possess high P sorption potential, which can be markedly diminished by eutrophication-induced hypoxia but recovered if oxygen conditions improve.
  • Smith, Kurt F.; Morris, Katherine; Law, Gareth T. W.; Winstanley, Ellen H.; Livens, Francis R.; Weatherill, Joshua S.; Abrahamsen-Mills, Liam G.; Bryan, Nicholas D.; Mosselmans, J. Frederick W.; Cibin, Giannantonio; Parry, Stephen; Blackham, Richard; Law, Kathleen A.; Shaw, Samuel (2019)
    Understanding interactions between iron (oxyhydr)oxide nanoparticles and plutonium is essential to underpin technology to treat radioactive effluents, in cleanup of land contaminated with radionuclides, and to ensure the safe disposal of radioactive wastes. These interactions include a range of adsorption, precipitation, and incorporation processes. Here, we explore the mechanisms of plutonium sequestration during ferrihydrite precipitation from an acidic solution. The initial 1 M HNO3 solution with Fe(III)((aq)) and Pu-242(IV)((aq)) underwent controlled hydrolysis via the addition of NaOH to pH 9. The majority of Fe(III)((aq)) and Pu(IV)((aq)) was removed from solution between pH 2 and 3 during ferrihydrite formation. Analysis of Pu-ferrihydrite by extended X-ray absorption fine structure (EXAFS) spectroscopy showed that Pu(IV) formed an inner-sphere tetradentate complex on the ferrihydrite surface, with minor amounts of PuO2 present. Best fits to the EXAFS data collected from Pu-ferrihydrite samples aged for 2 and 6 months showed no statistically significant change in the Pu(IV)-Fe oxyhydroxide surface complex despite the ferrihydrite undergoing extensive recrystallization to hematite. This suggests the Pu remains strongly sorbed to the iron (oxyhydr)oxide surface and could be retained over extended time periods.
  • Sánchez, Julio; Espinosa, Carolina; Pooch, Fabian; Tenhu, Heikki; Pizarro, Guadalupe del C.; Oyarzún, Diego P. (2018)
    This work is focused on the removal of Cr(VI) ions from aqueous solution using polymer-enhanced ultrafiltration (PEUF) techniques with water-soluble poly(N,N-dimethylaminoethyl methacrylate), PDMAEMA, used as sorbent. The polymer was prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization at different reaction times, characterized by size exclusion chromatography (SEC) and proton nuclear magnetic resonance (1H NMR). The sorption of Cr(VI) was studied by PEUF as a function of pH, the polymer:Cr(VI) molar ratio, and the presence of interfering ions. The PEUF-enrichment mode was used to saturate the polymer and further determine the release of Cr(VI) and regeneration of the polymer using sorption-desorption process. The RAFT polymerization showed a yield in the range 46% to 79% (determined by 1H NMR) for polymers with molecular weight (Mn) between 28 and 195 kg mol−1. The polydispersity estimated by SEC was between 1.1 and 1.8. The capacity of PDMAEMA as sorbent of Cr(VI), by the PEUF technique showed an efficient removal of Cr(VI) (100%, 25 mg L−1 in the feed) at pH 4 using polymer:Cr molar ratio of 40:1. The presence of interfering ions does not significantly decrease the retention capacity of PDMAEMA. Finally the results indicated that PDMAEMA can release Cr(VI) and be regenerated.
  • Kakaei Lafdani, Elham; Saarela, Taija; Laurén, Ari; Pumpanen, Jukka; Palviainen, Marjo (2020)
    Biochar can be an effective sorbent material for removal of nutrients from water due to its high specific surface area, porous structure, and high cation and anion exchange capacity. The aim of this study was to test a biochar reactor and to evaluate its efficiency in runoff water purification and consecutive nutrient recycling in clear-cut peatland forests. The goodness of the method was tested in a meso-scale (water volume thousands of liters) reactor experiment by circulating runoff water through wood biochar-filled columns and by determining water nutrient concentrations in the column inlet and outlet. The pseudo-first and second order kinetic models were fitted to the experimental data and the adsorption rate (K-dd) and maximum adsorption capacity (Q(max)) of the biochar reactor were quantified. The concentration of total nitrogen (TN) decreased by 58% during the 8-week experiment; the majority of TN adsorption occurred within the first 3 days. In addition, NO3-N and NH4-N concentrations decreased below the detection limit in 5 days after the beginning of the experiment. The maximum adsorption capacity of the biochar reactor varied between 0.03-0.04 mg g(-1) biochar for NH4-N, and was equal to 0.02 mg g(-1) biochar for TN. The results demonstrated that the biochar reactor was not able to adsorb TN when the water TN concentration was below 0.4 mg L-1. These results suggest that a biochar reactor can be a useful and effective method for runoff water purification in clear-cut forests and further development and testing is warranted. Unlike traditional water protection methods in peatland forestry, the biochar reactor can effectively remove NO3-N from water. This makes the biochar reactor a promising water protection tool to be tested in sites where there is the risk of a high rate of nutrient export after forest harvesting or drainage.
  • Venäläinen, Salla H.; Hartikainen, Helinä (2018)
    Treatment of acidic mining water (MW) with industrial minerals and alkaline chemicals requires utilisation of unrenewable raw materials and produces disposable inorganic sludges of no further use. We investigated the efficiency of bio-based anionic nanofibrillated cellulose (NFC) to purify authentic MW high in metals and sulphate. In a short-term (10 min) adsorption experiment, highly acidic (pH 3.2) multi-metal process water was treated with anionic NFC gels differing in their consistency (1.1%, 1.4% and 1.8% wow) at three sorbent-to-solution ratios. To unravel the purification efficiency of the NFC gels, MW was treated stepwise with a set of fresh NFC gels in three sequential batches. Each treated solution was filtrated before pH measurement and analysis for the NFC-induced changes in the metal and sulphate concentrations. All NFC gels efficiently co-adsorbed metals and sulphate and decreased the acidity of MW. Depending on the dosage, a triplicated treatment with the NFC gels removed as much as 32-75% of metal cations and 34-75% of sulphate anions. The retention of metals highly exceeded the amount of carboxyl groups in the sorbent Thus, we concluded that, instead of electrostatic adsorption, the retention took place through formation of covalent metal-NFC complexes. The subsequent surplus in positive total charge formed on the NFC-surface, in turn, enabled electrostatic co-adsorption of sulphate anions. The mutual interactions between cellulose nanofibrils in the NFC gel weakened with decreasing consistency, which promoted the accessibility of the sorption sites. This improved the purification efficiency while decreasing the demand for cellulosic raw material. We concluded that anionic NFC could potentially serve as a multifunctional and resource-efficient purification agent in the treatment of acidic process waters of high ionic strength. Ideally, the elements retained could be liberated and recycled elsewhere. (C) 2018 Elsevier Ltd. All rights reserved.
  • Lönnrot, Satu; Paajanen, Johanna; Suorsa, Valtteri; Zhang, Wenzhong; Ritala, Mikko; Koivula, Risto (2020)
    Submicron ZrO(2)fibers with three different Sb-doping levels (5, 10 and 15 cation%) were produced with an electroblowing synthesis for removal of(99)TcO(4)(-). The Sb-doped ZrO(2)fibers showed high selectivity toward(99)TcO(4)(-), which was not interfered by ClO4-, NO(3)(-)or Cl(-)ions and showed no selectivity toward ReO4-. The optimal pH range for the(99)Tc separation was 2-6 but the Sb-doped fibers maintained very high uptake level throughout the studied pH range of 1-10. According to the uptake experiments, Sb(III) is assumed to reduce Tc(VII) to Tc(IV) that is then adsorbed by the zirconia surface.