Browsing by Subject "AIR-QUALITY"

Sort by: Order: Results:

Now showing items 1-20 of 27
  • Bressi, M.; Cavalli, F.; Putaud, J.P.; Fröhlich, R.; Petit, J.-E.; Aas, W.; Äijälä, M.; Alastuey, A.; Allan, J.D.; Aurela, M.; Berico, M.; Bougiatioti, A.; Bukowiecki, N.; Canonaco, F.; Crenn, V.; Dusanter, S.; Ehn, Mikael; Elsasser, M.; Flentje, H.; Graf, P.; Green, D.C.; Heikkinen, Liine; Hermann, H.; Holzinger, R.; Hueglin, C.; Keernik, H.; Kiendler-Scharr, A.; Kubelová, L.; Lunder, C.; Maasikmets, M.; Makeš, O.; Malaguti, A.; Mihalopoulos, N.; Nicolas, J.B.; O'Dowd, C.; Ovadnevaite, J.; Petralia, E.; Poulain, L.; Priestman, M.; Riffault, V.; Ripoll, A.; Schlag, P.; Schwarz, J.; Sciare, J.; Slowik, J.; Sosedova, Y.; Stavroulas, I.; Teinemaa, E.; Via, M.; Vodička, P.; Williams, P.I.; Wiedensohler, A.; Young, D.E.; Zhang, S.; Favez, O.; Minguillón, M.C.; Prevot, A.S.H. (2021)
    Similarities and differences in the submicron atmospheric aerosol chemical composition are analyzed from a unique set of measurements performed at 21 sites across Europe for at least one year. These sites are located between 35 and 62 degrees N and 10 degrees W - 26 degrees E, and represent various types of settings (remote, coastal, rural, industrial, urban). Measurements were all carried out on-line with a 30-min time resolution using mass spectroscopy based instruments known as Aerosol Chemical Speciation Monitors (ACSM) and Aerosol Mass Spectrometers (AMS) and following common measurement guidelines. Data regarding organics, sulfate, nitrate and ammonium concentrations, as well as the sum of them called non-refractory submicron aerosol mass concentration ([NR-PM1]) are discussed. NR-PM1 concentrations generally increase from remote to urban sites. They are mostly larger in the mid-latitude band than in southern and northern Europe. On average, organics account for the major part (36-64%) of NR-PM1 followed by sulfate (12-44%) and nitrate (6-35%). The annual mean chemical composition of NR-PM1 at rural (or regional background) sites and urban background sites are very similar. Considering rural and regional background sites only, nitrate contribution is higher and sulfate contribution is lower in midlatitude Europe compared to northern and southern Europe. Large seasonal variations in concentrations (mu g/m(3)) of one or more components of NR-PM1 can be observed at all sites, as well as in the chemical composition of NR-PM1 (%) at most sites. Significant diel cycles in the contribution to [NR-PM1] of organics, sulfate, and nitrate can be observed at a majority of sites both in winter and summer. Early morning minima in organics in concomitance with maxima in nitrate are common features at regional and urban background sites. Daily variations are much smaller at a number of coastal and rural sites. Looking at NR-PM1 chemical composition as a function of NR-PM1 mass concentration reveals that although organics account for the major fraction of NR-PM1 at all concentration levels at most sites, nitrate contribution generally increases with NR-PM1 mass concentration and predominates when NR-PM1 mass concentrations exceed 40 mu g/m(3) at half of the sites.
  • Cavalli, F.; Alastuey, A.; Areskoug, H.; Ceburnis, D.; Cech, J.; Genberg, J.; Harrison, R. M.; Jaffrezo, J. L.; Kiss, G.; Laj, P.; Mihalopoulos, N.; Perez, N.; Quincey, P.; Schwarz, J.; Sellegri, K.; Spindler, G.; Swietlicki, E.; Theodosi, C.; Yttri, K. E.; Aas, W.; Putaud, J. P. (2016)
    Although particulate organic and elemental carbon (OC and EC) are important constituents of the suspended atmospheric particulate matter (PM), measurements of OC and EC are much less common and More uncertain than measurements of e.g. the ionic components of PM. In the framework of atmospheric research infrastructures supported by the European Union, actions have been undertaken to determine and mitigate sampling artefacts, and assess the comparability of OC and EC data obtained in a network of 10 atmospheric observatories across Europe. Positive sampling artefacts (from 0:4 to 2.8 mu g C/m(3)) and analytical discrepancies (between -50% and +40% for the EC/TC ratio) have been taken into account to generate a robust data set, from which we established the phenomenology of carbonaceous aerosols at regional background sites in Europe. Across the network, TC and EC annual average concentrations range from 0.4 to 9 mu g C/m(3), and from 0.1 to 2 mu g C/m(3), respectively. TC/PM10 annual mean ratios range from 0.11 at a Mediterranean site to 0.34 at the most polluted continental site, and TC/PM2.5 ratios are slightly greater at all sites (0.15-0.42). EC/TC annual mean ratios range from 0.10 to 0.22, and do not depend much on PM concentration levels, especially in winter. Seasonal variations in PM and TC concentrations, and in TC/PM and EC/TC ratios, differ across the network, which can be explained by seasonal changes in PM source contributions at some sites. (C) 2016 The Authors. Published by Elsevier Ltd.
  • Zanatta, M.; Gysel, M.; Bukowiecki, N.; Mueller, T.; Weingartner, E.; Areskoug, H.; Fiebig, M.; Yttri, K. E.; Mihalopoulos, N.; Kouvarakis, G.; Beddows, D.; Harrison, R. M.; Cavalli, F.; Putaud, J. P.; Spindler, G.; Wiedensohler, A.; Alastuey, A.; Pandolfi, M.; Sellegri, K.; Swietlicki, E.; Jaffrezo, J. L.; Baltensperger, U.; Laj, P. (2016)
    A reliable assessment of the optical properties of atmospheric black carbon is of crucial importance for an accurate estimation of radiative forcing. In this study we investigated the spatio-temporal variability of the mass absorption cross-section (MAC) of atmospheric black carbon, defined as light absorption coefficient (sigma(ap)) divided by elemental carbon mass concentration (m(EC)). sigma(ap) and m(EC) have been monitored at supersites of the ACTRIS network for a minimum period of one year. The 9 rural background sites considered in this study cover southern Scandinavia, central Europe and the Mediterranean. sigma(ap) was determined using filter based absorption photometers and m(EC) using a thermal-optical technique. Homogeneity of the data-set was ensured by harmonization of all involved methods and instruments during extensive intercomparison exercises at the European Center for Aerosol Calibration (ECAC). Annual mean values of sigma(ap) at a wavelength of 637 nm vary between 0.66 and 1.3 Mm(-1) in southern Scandinavia, 3.7-11 Mm(-1) in Central Europe and the British Isles, and 2.3-2.8 Mm(-1) in the Mediterranean. Annual mean values of mEC vary between 0.084 and 0.23 mu g m(-3) in southern Scandinavia, 0.28 -1.1 in Central Europe and the British Isles, and 0.22-0.26 in the Mediterranean. Both sigma(ap) and mEC in southern Scandinavia and Central Europe have a distinct seasonality with maxima during the cold season and minima during summer, whereas at the Mediterranean sites an opposite trend was observed. Annual mean MAC values were quite similar across all sites and the seasonal variability was small at most sites. Consequently, a MAC value of 10.0 m(2) g(-1) (geometric standard deviation = 133) at a wavelength of 637 nm can be considered to be representative of the mixed boundary layer at European background sites, where BC is expected to be internally mixed to a large extent. The observed spatial variability is rather small compared to the variability of values in previous literature, indicating that the harmonization efforts resulted in substantially increased precision of the reported MAC. However, absolute uncertainties of the reported MAC values remain as high as +/- 30-70% due to the lack of appropriate reference methods and calibration materials. The mass ratio between elemental carbon and non-light-absorbing matter was used as a proxy for the thickness of coatings around the BC cores, in order to assess the influence of the mixing state on the MAC of BC. Indeed, the MAC was found to increase with increasing values of the coating thickness proxy. This provides evidence that coatings do increase the MAC of atmospheric BC to some extent, which is commonly referred to as lensing effect. (C) 2016 The Authors. Published by Elsevier Ltd.
  • Grythe, Henrik; Kristiansen, Nina I.; Zwaaftink, Christine D. Groot; Eckhardt, Sabine; Strom, Johan; Tunved, Peter; Krejci, Radovan; Stohl, Andreas (2017)
    A new, more physically based wet removal scheme for aerosols has been implemented in the Lagrangian particle dispersion model FLEXPART. It uses three-dimensional cloud water fields from the European Centre for MediumRange Weather Forecasts (ECMWF) to determine cloud extent and distinguishes between in-cloud and below-cloud scavenging. The new in-cloud nucleation scavenging depends on cloud water phase (liquid, ice or mixed-phase), based on the aerosol's prescribed efficiency to serve as ice crystal nuclei and liquid water nuclei, respectively. The impaction scavenging scheme now parameterizes below-cloud removal as a function of aerosol particle size and precipitation type (snow or rain) and intensity. Sensitivity tests with the new scavenging scheme and comparisons with observational data were conducted for three distinct types of primary aerosols, which pose different challenges for modeling wet scavenging due to their differences in solubility, volatility and size distribution: (1) Cs-137 released during the Fukushima nuclear accident attached mainly to highly soluble sulphate aerosol particles, (2) black carbon (BC) aerosol particles, and (3) mineral dust. Calculated e-folding lifetimes of accumulation mode aerosols for these three aerosol types were 11.7, 16.0, and 31.6 days respectively, when well mixed in the atmosphere. These are longer lifetimes than those obtained by the previous removal schem, and, for mineral dust in particular, primarily result from very slow in-cloud removal, which globally is the primary removal mechanism for these accumulation mode particles. Calculated e-folding lifetimes in FLEXPART also have a strong size dependence, with the longest lifetimes found for the accumulation-mode aerosols. For example, for dust particles emitted at the surface the lifetimes were 13.8 days for particles with 1 aem diameter and a few hours for 10 aem particles. A strong size dependence in below-cloud scavenging, combined with increased dry removal, is the primary reason for the shorter lifetimes of the larger particles. The most frequent removal is in-cloud scavenging (85% of all scavenging events) but it occurs primarily in the free troposphere, while below-cloud removal is more frequent below 1000m (52% of all events) and can be important for the initial fate of species emitted at the surface, such as those examined here. For assumed realistic in-cloud removal efficiencies, both BC and sulphate have a slight overestimation of observed atmospheric concentrations (a factor of 1.6 and 1.2 respectively). However, this overestimation is largest close to the sources and thus appears more related to overestimated emissions rather than underestimated removal. The new aerosol wet removal scheme of FLEXPART incorporates more realistic information about clouds and aerosol properties and it compares better with both observed lifetimes and concentration than the old scheme.
  • Belis, C. A.; Karagulian, F.; Amato, F.; Almeida, M.; Artaxo, P.; Beddows, D. C. S.; Bernardoni, V.; Bove, M. C.; Carbone, S.; Cesari, D.; Contini, D.; Cuccia, E.; Diapouli, E.; Eleftheriadis, K.; Favez, O.; El Haddad, I.; Harrison, R. M.; Hellebust, S.; Hovorka, J.; Jang, E.; Jorquera, H.; Kammermeier, T.; Karl, M.; Lucarelli, F.; Mooibroek, D.; Nava, S.; Nojgaard, J. K.; Paatero, P.; Pandolfi, M.; Perrone, M. G.; Petit, J. E.; Pietrodangelo, A.; Pokorna, P.; Prati, P.; Prevot, A. S. H.; Quass, U.; Querol, X.; Saraga, D.; Sciare, J.; Sfetsos, A.; Valli, G.; Vecchi, R.; Vestenius, M.; Yubero, E.; Hopke, P. K. (2015)
    The performance and the uncertainty of receptor models (RMs) were assessed in intercomparison exercises employing real-world and synthetic input datasets. To that end, the results obtained by different practitioners using ten different RMs were compared with a reference. In order to explain the differences in the performances and uncertainties of the different approaches, the apportioned mass, the number of sources, the chemical profiles, the contribution-to-species and the time trends of the sources were all evaluated using the methodology described in Bells et al. (2015). In this study, 87% of the 344 source contribution estimates (SCEs) reported by participants in 47 different source apportionment model results met the 50% standard uncertainty quality objective established for the performance test. In addition, 68% of the SCE uncertainties reported in the results were coherent with the analytical uncertainties in the input data. The most used models, EPA-PMF v.3, PMF2 and EPA-CMB 8.2, presented quite satisfactory performances in the estimation of SCEs while unconstrained models, that do not account for the uncertainty in the input data (e.g. APCS and FA-MLRA), showed below average performance. Sources with well-defined chemical profiles and seasonal time trends, that make appreciable contributions (>10%), were those better quantified by the models while those with contributions to the PM mass close to 1% represented a challenge. The results of the assessment indicate that RMs are capable of estimating the contribution of the major pollution source categories over a given time window with a level of accuracy that is in line with the needs of air quality management. (C) 2015 The Authors. Published by Elsevier Ltd.
  • Xausa, Filippo; Paasonen, Pauli; Makkonen, Risto; Arshinov, Mikhail; Ding, Aijun; Van Der Gon, Hugo Denier; Kerminen, Veli-Matti; Kulmala, Markku (2018)
    Climate models are important tools that are used for generating climate change projections, in which aerosol-climate interactions are one of the main sources of uncertainties. In order to quantify aerosol-radiation and aerosolcloud interactions, detailed input of anthropogenic aerosol number emissions is necessary. However, the anthropogenic aerosol number emissions are usually converted from the corresponding mass emissions in pre-compiled emission inventories through a very simplistic method depending uniquely on chemical composition, particle size and density, which are defined for a few, very wide main source sectors. In this work, the anthropogenic particle number emissions converted from the AeroCom mass in the ECHAM-HAM climate model were replaced with the recently formulated number emissions from the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model. In the GAINS model the emission number size distributions vary, for example, with respect to the fuel and technology. Special attention was paid to accumulation mode particles (particle diameter d(p) > 100 nm) because of (i) their capability of acting as cloud condensation nuclei (CCN), thus forming cloud droplets and affecting Earth's radiation budget, and (ii) their dominant role in forming the coagulation sink and thus limiting the concentration of sub-100 nm particles. In addition, the estimates of anthropogenic CCN formation, and thus the forcing from aerosol-climate interactions, are expected to be affected. Analysis of global particle number concentrations and size distributions reveals that GAINS implementation increases CCN concentration compared with AeroCom, with regional enhancement factors reaching values as high as 10. A comparison between modeled and observed concentrations shows that the increase in number concentration for accumulation mode particles agrees well with measurements, but it leads to a consistent underestimation of both nucleation mode and Aitken mode (d(p) <100 nm) particle number concentrations. This suggests that revisions are needed in the new particle formation and growth schemes currently applied in global modeling frameworks.
  • Zaidan, Martha A.; Wraith, Darren; Boor, Brandon E.; Hussein, Tareq (2019)
    Black carbon (BC) is an important component of particulate matter (PM) in urban environments. BC is typically emitted from gas and diesel engines, coal-fired power plants, and other sources that burn fossil fuel. In contrast to PM, BC measurements are not always available on a large scale due to the operational cost and complexity of the instrumentation. Therefore, it is advantageous to develop a mathematical model for estimating the quantity of BC in the air, termed a BC proxy, to enable widening of spatial air pollution mapping. This article presents the development of BC proxies based on a Bayesian framework using measurements of PM concentrations and size distributions from 10 to 10,000 nm from a recent mobile air pollution study across several areas of Jordan. Bayesian methods using informative priors can naturally prevent over-fitting in the modelling process and the methods generate a confidence interval around the prediction, thus the estimated BC concentration can be directly quantified and assessed. In particular, two types of models are developed based on their transparency and interpretability, referred to as white-box and black-box models. The proposed methods are tested on extensive data sets obtained from the measurement campaign in Jordan. In this study, black-box models perform slightly better due to their model complexity. Nevertheless, the results demonstrate that the performance of both models does not differ significantly. In practice, white-box models are relatively more convenient to be deployed, the methods are well understood by scientists, and the models can be used to better understand key relationships.
  • Sofiev, Mikhail; Sofieva, Svetlana; Palamarchuk, Julia; Šaulienė, Ingrida; Kadantsev, Evgeny; Atanasova, Nina; Fatahi, Yalda; Kouznetsov, Rostislav; Kuula, Joel; Noreikaite, Auste; Peltonen, Martina; Pihlajamäki, Timo Tapani; Saarto, Annika; Salokas, Julija; Toiviainen, Linnea; Tyuryakov, Svyatoslav; Sukiene, Laura; Asmi, Eija; Bamford, Dennis H.; Hyvärinen, Antti-Pekka; Karppinen, Ari (2022)
    Abstract: A coordinated observational and modelling campaign targeting biogenic aerosols in the air was performed during spring 2021 at two locations in Northern Europe: Helsinki (Finland) and Siauliai (Lithuania), approximately 500 km from each other in north-south direction. The campaign started on March 1, 2021 in Siauliai (12 March in Helsinki) and continued till mid-May in Siauliai (end of May in Helsinki), thus recording the transition of the atmospheric biogenic aerosols profile from winter to summer. The observations included a variety of samplers working on different principles. The core of the program was based on 2- and 2.4--hourly sampling in Helsinki and Siauliai, respectively, with sticky slides (Hirst 24-h trap in Helsinki, Rapid-E slides in Siauliai). The slides were subsequently processed extracting the DNA from the collected aerosols, which was further sequenced using the 3-rd generation sequencing technology. The core sampling was accompanied with daily and daytime sampling using standard filter collectors. The hourly aerosol concentrations at the Helsinki monitoring site were obtained with a Poleno flow cytometer, which could recognize some of the aerosol types. The sampling campaign was supported by numerical modelling. For every sample, SILAM model was applied to calculate its footprint and to predict anthropogenic and natural aerosol concentrations, at both observation sites. The first results confirmed the feasibility of the DNA collection by the applied techniques: all but one delivered sufficient amount of DNA for the following analysis, in over 40% of the cases sufficient for direct DNA sequencing without the PCR step. A substantial variability of the DNA yield has been noticed, generally not following the diurnal variations of the total-aerosol concentrations, which themselves showed variability not related to daytime. An expected upward trend of the biological material amount towards summer was observed but the day-to-day variability was large. The campaign DNA analysis produced the first high-resolution dataset of bioaerosol composition in the North-European spring. It also highlighted the deficiency of generic DNA databases in applications to atmospheric biota: about 40% of samples were not identified with standard bioinformatic methods.
  • Jiang, Jianhui; Aksoyoglu, Sebnem; Ciarelli, Giancarlo; Baltensperger, Urs; Prévôt, André S.H. (2020)
    Air pollution is among the top threats to human health and ecosystems despite the substantial decrease in anthropogenic emissions. Meanwhile, the role of ship emissions on air quality is becoming increasingly important with the growing maritime transport and less strict regulations. In this study, we modeled the air quality in Europe between 1990 and 2030 with ten-year intervals, using the regional air quality model CAMx version 6.50, to investigate the changes in the past (1990-2010) as well as the effects of different land and ship emission scenarios in the future (2020,2030). The modeled mean ozone levels decreased slightly during the first decade but then started increasing again especially in polluted areas. Results from the future scenarios suggest that by 2030 the peak ozone would decrease, leading to a decrease in the days exceeding the maximum daily 8-h average ozone (MDA8) limit values (60 ppb) by 51% in southern Europe relative to 1990. The model results show a decrease of 56% (6.3 mu g m(-3)) in PM2.5 concentrations from 1990 to 2030 under current legislation, mostly due to a large drop in sulfate (representing up to 44% of the total PM2.5 decrease during 1990-2000) while nitrate concentrations were predicted to go down with an increasing rate (10% of total PM2.5 decrease during 1990-2000 while 36% during 2020-2030). The ship emissions if reduced according to the maximum technically feasible reduction (MTFR) scenario were predicted to contribute up to 19% of the decrease in the PM2.5 concentrations over land between 2010 and 2030. Ship emission reductions according to the MTFR scenario would lead to a decrease in the days with MDA8 exceeding EU limits by 24-28% (10-14 days) around the coastal regions. The results obtained in our study show the increasing importance of ship emission reductions, after a relatively large decrease in land emissions was achieved in Europe. (c) 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  • Hari, Pertti Kaarlo Juhani; Petäjä, Tuukka Taneli; Bäck, Jaana Kaarina; Kerminen, Veli-Matti; Lappalainen, Hanna K; Vihma, Timo; Laurila, Tuomas; Viisanen, Yrjö; Vesala, Timo Veikko; Kulmala, Markku Tapio (2016)
    The global environment is changing rapidly due to anthropogenic emissions and actions. Such activities modify aerosol and greenhouse gas concentrations in the atmosphere, leading to regional and global climate change and affecting, e.g., food and fresh-water security, sustainable use of natural resources and even demography. Here we present a conceptual design of a global, hierarchical observation network that can provide tools and increased understanding to tackle the inter-connected environmental and societal challenges that we will face in the coming decades. The philosophy behind the conceptual design relies on physical conservation laws of mass, energy and momentum, as well as on concentration gradients that act as driving forces for the atmosphere-biosphere exchange. The network is composed of standard, flux and/or advanced and flagship stations, each of which having specific and identified tasks. Each ecosystem type on the globe has its own characteristic features that have to be taken into consideration. The hierarchical network as a whole is able to tackle problems related to large spatial scales, heterogeneity of ecosystems and their complexity. The most comprehensive observations are envisioned to occur in flagship stations, with which the process-level understanding can be expanded to continental and global scales together with advanced data analysis, Earth system modelling and satellite remote sensing. The denser network of the flux and standard stations allows application and up-scaling of the results obtained from flagship stations to the global level.
  • Khan, Basit; Banzhaf, Sabine; Chan, Edward C.; Forkel, Renate; Kanani-Suehring, Farah; Ketelsen, Klaus; Kurppa, Mona; Maronga, Bjoern; Mauder, Matthias; Raasch, Siegfried; Russo, Emmanuele; Schaap, Martijn; Suehring, Matthias (2021)
    In this article we describe the implementation of an online-coupled gas-phase chemistry model in the turbulence-resolving PALM model system 6.0 (formerly an abbreviation for Parallelized Large-eddy Simulation Model and now an independent name). The new chemistry model is implemented in the PALM model as part of the PALM-4U (PALM for urban applications) components, which are designed for application of the PALM model in the urban environment (Maronga et al., 2020). The latest version of the Kinetic PreProcessor (KPP, 2.2.3) has been utilized for the numerical integration of gas-phase chemical reactions. A number of tropospheric gas-phase chemistry mechanisms of different complexity have been implemented ranging from the photostationary state (PHSTAT) to mechanisms with a strongly simplified volatile organic compound (VOC) chemistry (e.g. the SMOG mechanism from KPP) and the Carbon Bond Mechanism 4 (CBM4; Gery et al., 1989), which includes a more comprehensive, but still simplified VOC chemistry. Further mechanisms can also be easily added by the user. In this work, we provide a detailed description of the chemistry model, its structure and input requirements along with its various features and limitations. A case study is presented to demonstrate the application of the new chemistry model in the urban environment. The computation domain of the case study comprises part of Berlin, Germany. Emissions are considered using street-type-dependent emission factors from traffic sources. Three chemical mechanisms of varying complexity and one no-reaction (passive) case have been applied, and results are compared with observations from two permanent air quality stations in Berlin that fall within the computation domain. Even though the feedback of the model's aerosol concentrations on meteorology is not yet considered in the current version of the model, the results show the importance of online photochemistry and dispersion of air pollutants in the urban boundary layer for high spatial and temporal resolutions. The simulated NOx and O-3 species show reasonable agreement with observations. The agreement is better during midday and poorest during the evening transition hours and at night. The CBM4 and SMOG mechanisms show better agreement with observations than the steady-state PHSTAT mechanism.
  • Wu, Kai; Yang, Xianyu; Chen, Dean; Gu, Shan; Lu, Yaqiong; Jiang, Qi; Wang, Kun; Ou, Yihan; Qian, Yan; Shao, Ping; Lu, Shihua (2020)
    Biogenic volatile organic compounds (BVOC) play an important role in global environmental chemistry and climate. In the present work, biogenic emissions from China in 2017 were estimated based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN). The effects of BVOC emissions on ozone and secondary organic aerosol (SOA) formation were investigated using the WRF-CMAQ modeling system. Three parallel scenarios were developed to assess the impact of BVOC emissions on China's ozone and SOA formation in July 2017. Biogenic emissions were estimated at 23.54 Tg/yr, with a peak in the summer and decreasing from southern to northern China. The high BVOC emissions across eastern and southwestern China increased the surface ozone levels, particularly in the BTH (Beijing-Tianjin-Hebei), SCB (Sichuan Basin), YRD (Yangtze River Delta) and central PRD (Pearl River Delta) regions, with increases of up to 47 μg m−3 due to the sensitivity of VOC-limited urban areas. In summer, most SOA concentrations formed over China are from biogenic sources (national average of 70%). And SOA concentrations in YRD and SCB regions are generally higher than other regions. Excluding anthropogenic emissions while keeping biogenic emissions unchanged results that SOA concentrations reduce by 60% over China, which indicates that anthropogenic emissions can interact with biogenic emissions then facilitate biogenic SOA formation. It is suggested that controlling anthropogenic emissions would result in reduction of both anthropogenic and biogenic SOA.
  • Li, Mingge; Wang, Lili; Liu, Jingda; Gao, Wenkang; Song, Tao; Sun, Yang; Li, Liang; Li, Xingru; Wang, Yonghong; Liu, Lili; Dällenbach, Kaspar; Paasonen, Pauli J.; Kerminen, Veli-Matti; Kulmala, Markku; Wang, Yuesi (2020)
    In the last decade, North China (NC) has been one of the most populated and polluted regions in the world. The regional air pollution has had a serious impact on people's health; thus, all levels of government have implemented various pollution prevention measures since 2013. Based on multi-city in situ environmental and meteorological data, as well as the meteorological reanalysis dataset from 2013 to 2017, regional pollution characteristics and meteorological formation mechanisms were analyzed to provide a more comprehensive understanding of the evolution of PM2.5 in NC. The domain-averaged PM2.5 was 79 +/- 17 mu g m(-3) from 2013 to 2017, with a decreasing rate of 10 mu g m(-3) yr(-1). Two automatic computer algorithms were established to identify 6 daily regional pollution types (DRPTs) and 48 persistent regional pollution events (PRPEs) over NC during 2014-2017. The average PM2.5 concentration for the Large-Region-Pollution type (including the Large-Moderate-Region-Pollution and Large-Severe-Region-Pollution types) was 113 +/- 40 mu g m(-3), and more than half of Large-Region-Pollution days and PRPEs occurred in winter. The PRPEs in NC mainly developed from the area south of Hebei. The number of Large-Region-Pollution days decreased notably from 2014 to 2017, the annual number of days varying between 194 and 97 days, whereas a slight decline was observed in winter. In addition, the averaged PM2.5 concentrations and the numbers and durations of the PRPEs decreased. Lamb-Jenkinson weather typing was used to reveal the impact of synoptic circulations on PM2.5 across NC. Generally, the contributions of the variations in circulation to the reduction in PM2.5 levels over NC between 2013 and 2017 were 64% and 45% in summer and winter, respectively. The three most highly polluted weather types were types C, S and E, with an average PM2.5 concentration of 137 +/- 40 mu g m(-3) in winter. Furthermore, three typical circulation dynamics were categorized in the peak stage of the PRPEs, namely, the southerly airflow pattern, the northerly airflow pattern and anticyclone pattern; the averaged relative humidity, recirculation index, wind speed and boundary layer height were 63%, 0.33, 2.0 m s(-1) and 493 m, respectively. Our results imply that additional emission reduction measures should be implemented under unfavorable meteorological situations to attain ambient air quality standards in the future.
  • Baranizadeh, Elham; Murphy, Benjamin N.; Julin, Jan; Falahat, Saeed; Reddington, Carly L.; Arola, Antti; Ahlm, Lars; Mikkonen, Santtu; Fountoukis, Christos; Patoulias, David; Minikin, Andreas; Hamburger, Thomas; Laaksonen, Ari; Pandis, Spyros N.; Vehkamäki, Hanna; Lehtinen, Kari E. J.; Riipinen, Ilona (2016)
    The particle formation scheme within PMCAMx-UF, a three-dimensional chemical transport model, was updated with particle formation rates for the ternary H2SO4-NH3-H2O pathway simulated by the Atmospheric Cluster Dynamics Code (ACDC) using quantum chemical input data. The model was applied over Europe for May 2008, during which the EUCAARI-LONGREX (European Aerosol Cloud Climate and Air Quality Interactions-Long-Range Experiment) campaign was carried out, providing aircraft vertical profiles of aerosol number concentrations. The updated model reproduces the observed number concentrations of particles larger than 4 nm within 1 order of magnitude throughout the atmospheric column. This agreement is encouraging considering the fact that no semi-empirical fitting was needed to obtain realistic particle formation rates. The cloud adjustment scheme for modifying the photolysis rate profiles within PMCAMx-UF was also updated with the TUV (Tropospheric Ultraviolet and Visible) radiative-transfer model. Results show that, although the effect of the new cloud adjustment scheme on total number concentrations is small, enhanced new-particle formation is predicted near cloudy regions. This is due to the enhanced radiation above and in the vicinity of the clouds, which in turn leads to higher production of sulfuric acid. The sensitivity of the results to including emissions from natural sources is also discussed.
  • Clifton, O.E.; Paulot, F.; Fiore, A.M.; Horowitz, L.W.; Correa, G.; Baublitz, C.B.; Fares, S.; Goded, I.; Goldstein, A.H.; Gruening, C.; Hogg, A.J.; Loubet, B.; Mammarella, I.; Munger, J.W.; Neil, L.; Stella, P.; Uddling, J.; Vesala, T.; Weng, E. (2020)
    Identifying the contributions of chemistry and transport to observed ozone pollution using regional-to-global models relies on accurate representation of ozone dry deposition. We use a recently developed configuration of the NOAA GFDL chemistry-climate model - in which the atmosphere and land are coupled through dry deposition-to investigate the influence of ozone dry deposition on ozone pollution over northern midlatitudes. In our model, deposition pathways are tied to dynamic terrestrial processes, such as photosynthesis and water cycling through the canopy and soil. Small increases in winter deposition due to more process-based representation of snow and deposition to surfaces reduce hemispheric-scale ozone throughout the lower troposphere by 5-12 ppb, improving agreement with observations relative to a simulation with the standard configuration for ozone dry deposition. Declining snow cover by the end of the 21st-century tempers the previously identified influence of rising methane on winter ozone. Dynamic dry deposition changes summer surface ozone by -4 to +7 ppb. While previous studies emphasize the importance of uptake by plant stomata, new diagnostic tracking of depositional pathways reveals a widespread impact of nonstomatal deposition on ozone pollution. Daily variability in both stomatal and nonstomatal deposition contribute to daily variability in ozone pollution. Twenty-first century changes in summer deposition result from a balance among changes in individual pathways, reflecting differing responses to both high carbon dioxide (through plant physiology versus biomass accumulation) and water availability. Our findings highlight a need for constraints on the processes driving ozone dry deposition to test representation in regional-to-global models.
  • Mei, L.; Xue, Y.; de Leeuw, G.; Guang, J.; Wang, Y.; Li, Y.; Xu, H.; Yang, L.; Hou, T.; He, X.; Wu, C.; Dong, J.; Chen, Z. (2011)
  • Pirjola, Liisa; Virkkula, Aki; Petäjä, Tuukka; Levula, Janne; Kukkonen, Jaakko; Kulmala, Markku (2015)
  • Ciarelli, Giancarlo; Aksoyoglu, Sebnem; El Haddad, Imad; Bruns, Emily A.; Crippa, Monica; Poulain, Laurent; Äijälä, Mikko; Carbone, Samara; Freney, Evelyn; O'Dowd, Colin; Baltensperger, Urs; Prevot, Andre S. H. (2017)
    We evaluated a modified VBS (volatility basis set) scheme to treat biomass-burning-like organic aerosol (BBOA) implemented in CAMx (Comprehensive Air Quality Model with extensions). The updated scheme was parameterized with novel wood combustion smog chamber experiments using a hybrid VBS framework which accounts for a mixture of wood burning organic aerosol precursors and their further functionalization and fragmentation in the atmosphere. The new scheme was evaluated for one of the winter EMEP intensive campaigns (February March 2009) against aerosol mass spectrometer (AMS) measurements performed at 11 sites in Europe. We found a considerable improvement for the modelled organic aerosol (OA) mass compared to our previous model application with the mean fractional bias (MFB) reduced from 61 to 29 %. We performed model-based source apportionment studies and compared results against positive matrix factorization (PMF) analysis performed on OA AMS data. Both model and observations suggest that OA was mainly of secondary origin at almost all sites. Modelled secondary organic aerosol (SOA) contributions to total OA varied from 32 to 88 % (with an average contribution of 62 %) and absolute concentrations were generally under-predicted. Modelled primary hydrocarbon-like organic aerosol (HOA) and primary biomass-burning-like aerosol (BBPOA) fractions contributed to a lesser extent (HOA from 3 to 30 %, and BBPOA from 1 to 39 %) with average contributions of 13 and 25 %, respectively. Modelled BBPOA fractions were found to represent 12 to 64 % of the total residential-heating-related OA, with increasing contributions at stations located in the northern part of the domain. Source apportionment studies were performed to assess the contribution of residential and non-residential combustion precursors to the total SOA. Non-residential combustion and road transportation sector contributed about 30-40 % to SOA formation (with increasing contributions at urban and near industrialized sites), whereas residential combustion (mainly related to wood burning) contributed to a larger extent, around 60-70 %. Contributions to OA from residential combustion precursors in different volatility ranges were also assessed: our results indicate that residential combustion gas-phase precursors in the semivolatile range (SVOC) contributed from 6 to 30 %, with higher contributions predicted at stations located in the southern part of the domain On the other hand, the oxidation products of higher-volatility precursors (the sum of intermediate-volatility compounds (IVOCs) and volatile organic compounds (VOCs)) contribute from 15 to 38 % with no specific gradient among the stations. Although the new parameterization leads to a better agreement between model results and observations, it still under predicts the SOA fraction, suggesting that uncertainties in the new scheme and other sources and/or formation mechanisms remain to be elucidated. Moreover, a more detailed characterization of the semivolatile components of the emissions is needed.
  • Dall'Osto, M.; Beddows, D. C. S.; Asmi, A.; Poulain, L.; Hao, L.; Freney, E.; Allan, J. D.; Canagaratna, M.; Crippa, M.; Bianchi, F.; de Leeuw, G.; Eriksson, A.; Swietlicki, E.; Hansson, H. C.; Henzing, J. S.; Granier, C.; Zemankova, K.; Laj, P.; Onasch, T.; Prevot, A.; Putaud, J. P.; Sellegri, K.; Vidal, M.; Virtanen, A.; Simo, R.; Worsnop, D.; O'Dowd, C.; Kulmala, M.; Harrison, Roy M. (2018)
    The formation of new atmospheric particles involves an initial step forming stable clusters less than a nanometre in size (similar to 10 nm). Although at times, the same species can be responsible for both processes, it is thought that more generally each step comprises differing chemical contributors. Here, we present a novel analysis of measurements from a unique multi-station ground-based observing system which reveals new insights into continental-scale patterns associated with new particle formation. Statistical cluster analysis of this unique 2-year multi-station dataset comprising size distribution and chemical composition reveals that across Europe, there are different major seasonal trends depending on geographical location, concomitant with diversity in nucleating species while it seems that the growth phase is dominated by organic aerosol formation. The diversity and seasonality of these events requires an advanced observing system to elucidate the key processes and species driving particle formation, along with detecting continental scale changes in aerosol formation into the future.
  • Wierzbicka, A.; Bohgard, M.; Pagels, J. H.; Dahl, A.; Löndahl, J.; Hussein, T.; Swietlicki, E.; Gudmundsson, A. (2015)
    For the assessment of personal exposure, information about the concentration of pollutants when people are in given indoor environments (occupancy time) are of prime importance. However this kind of data frequently is not reported. The aim of this study was to assess differences in particle characteristics between occupancy time and the total monitoring period, with the latter being the most frequently used averaging time in the published data. Seven indoor environments were selected in Sweden and Finland: an apartment, two houses, two schools, a supermarket, and a restaurant. They were assessed for particle number and mass concentrations and number size distributions. The measurements using a Scanning Mobility Particle Sizer and two photometers were conducted for seven consecutive days during winter in each location. Particle concentrations in residences and schools were, as expected, the highest during occupancy time. In the apartment average and median PM2.5 mass concentrations during the occupancy time were 29% and 17% higher, respectively compared to total monitoring period. In both schools, the average and medium values of the PM2.5 mass concentrations were on average higher during teaching hours compared to the total monitoring period by 16% and 32%, respectively. When it comes to particle number concentrations (PNC), in the apartment during occupancy, the average and median values were 33% and 58% higher, respectively than during the total monitoring period. In both houses and schools the average and median PNC were similar for the occupancy and total monitoring periods. General conclusions on the basis of measurements in the limited number of indoor environments cannot be drawn. However the results confirm a strong dependence on type and frequency of indoor activities that generate particles and site specificity. The results also indicate that the exclusion of data series during non-occupancy periods can improve the estimates of particle concentrations and characteristics suitable for exposure assessment, which is crucial for estimating health effects in epidemiological and toxicological studies. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).