Browsing by Subject "ALBEDO"

Sort by: Order: Results:

Now showing items 1-12 of 12
  • Sogacheva, L.; Kolmonen, P.; Virtanen, T. H.; Rodriguez, E.; Sundstrom, A. -M.; de Leeuw, G. (2015)
  • Lu, P.; Cao, X.; Wang, Q.; Leppäranta, M.; Cheng, B.; Li, Z. (2018)
    To investigate the influence of a surface ice lid on the optical properties of a melt pond, a radiative transfer model was employed that includes four plane-parallel layers: an ice lid, a melt pond, the underlying ice, and the ocean beneath the ice. The thickness H-s and the scattering coefficient sigma(s) of the ice lid are altered. Variations in the spectral albedo and transmittance T due to H-s for a transparent ice lid are limited, and scattering in the ice lid has a pronounced impact on the albedo of melt ponds as well as the vertical distribution of spectral irradiance in ponded sea ice. The thickness of the ice lid determines the amount of solar energy absorbed. A 2-cm-thick ice lid can absorb 13% of the incident solar energy, half of the energy absorbed by a 30-cm-deep meltwater layer below the lid. This has an influence on the thermodynamics of melting sea ice. The color and spectral albedo of refreezing melt ponds depend on the value of the dimensionless number sigma(s) H- s. Good agreement between field measurements and our model simulations is found. The number sigma(s) H- s is confirmed to be a good index showing that the influence of an ice lid with sigma(s) H- s Plain Language Summary Melt ponds are pools of open water that form on sea ice in the warm months of the Arctic Ocean, and they will frequently be refrozen due to loss of heat and then covered by an ice lid or snow even in summer. This lid is very important to the optical properties of melt ponds. If the ice lid is very thin, the change in the reflective characteristics of the melt pond is minimal; that is, the influence of the ice lid is negligible. If snow accumulates on the ice lid, the reflective characteristics of the melt pond change completely. How about the situation between the above two extreme cases? In this study, we find that a dimensionless number is a good index to quantify the impact of the ice lid. Visual inspections on the color of refreezing melt ponds also help to judge the significance of the influence of the ice lid. This will allow for an accurate estimation on the role of surface ice lid during field investigations on the optical properties of melt ponds.
  • Abera, Temesgen; Heiskanen, Janne; Pellikka, Petri; Maeda, Eduardo (2020)
    Precipitation extremes have a strong influence on the exchange of energy and water between the land surface and the atmosphere. Although the Horn of Africa has faced recurrent drought and flood events in recent decades, it is still unclear how these events impact energy exchange and surface temperature across different ecosystems. Here, we analyzed the impact of precipitation extremes on spectral albedo (total shortwave, visible, and near-infrared (NIR) broadband albedos), energy balance, and surface temperature in four natural vegetation types: forest, savanna, grassland, and shrubland. We used remotely sensed observations of surface biophysical properties and climate from 2001 to 2016. Our results showed that, in forests and savannas, precipitation extremes led to divergent spectral changes in visible and NIR albedos, which cancelled each other limiting shortwave albedo changes. An exception to this pattern was observed in shrublands and grasslands, where both visible and NIR albedo increased during drought events. Given that shrublands and grasslands occupy a large fraction of the Horn of Africa (52%), our results unveil the importance of these ecosystems in driving the magnitude of shortwave radiative forcing in the region. The average regional shortwave radiative forcing during drought events (-0.64 W m(-2), SD 0.11) was around twice that of the extreme wet events (0.33 W m(-2), SD 0.09). Such shortwave forcing, however, was too small to influence the surface-atmosphere coupling. In contrast, the surface feedback through turbulent flux changes was strong across vegetation types and had a significant (P <0.05) impact on the surface temperature and net radiation anomalies, except in forests. The strongest energy exchange and surface temperature anomalies were observed over grassland and the smallest over forest, which was shown to be resilient to precipitation extremes. These results suggest that land management activities that support forest preservation, afforestation, and reforestation can help to mitigate the impact of drought through their role in modulating energy fluxes and surface temperature anomalies in the region.
  • Kauppi, Pekka E.; Posch, Maximilian; Pirinen, Pentti (2014)
  • Yang, Yu; Cheng, Bin; Kourzeneva, Ekaterina; Semmler, Tido; Rontu, Laura; Lepparanta, Matti; Shirasawa, Kunio; Li, Zhijun (2013)
  • Svensson, J.; Strom, J.; Hansson, M.; Lihavainen, H.; Kerminen, V-M (2013)
  • Luoma, Krista; Virkkula, Aki; Aalto, Pasi; Petaja, Tuukka; Kulmala, Markku (2019)
    Aerosol optical properties (AOPs) describe the ability of aerosols to scatter and absorb radiation at different wavelengths. Since aerosol particles interact with the sun's radiation, they impact the climate. Our study focuses on the long-term trends and seasonal variations of different AOPs measured at a rural boreal forest site in northern Europe. To explain the observed variations in the AOPs, we also analyzed changes in the aerosol size distribution. AOPs of particles smaller than 10 mu m (PM10) and 1 mu m (PM1) have been measured at SMEAR II, in southern Finland, since 2006 and 2010, respectively. For PM10 particles, the median values of the scattering and absorption coefficients, single-scattering albedo, and backscatter fraction at lambda = 550 nm were 9.8 Mm(-1), 1.3 Mm(-1), 0.88, and 0.14. The median values of scattering and absorption angstrom ngstrom exponents at the wavelength ranges 450-700 and 370-950 nm were 1.88 and 0.99, respectively. We found statistically significant trends for the PM10 scattering and absorption coefficients, single-scattering albedo, and backscatter fraction, and the slopes of these trends were -0.32 Mm(-1), -0.086 Mm(-1), 2.2 x 10(-3), and 1.3 x 10(-3) per year. The tendency for the extensive AOPs to decrease correlated well with the decrease in aerosol number and volume concentrations. The tendency for the backscattering fraction and single-scattering albedo to increase indicates that the aerosol size distribution consists of fewer larger particles and that aerosols absorb less light than at the beginning of the measurements. The trends of the single-scattering albedo and backscattering fraction influenced the aerosol radiative forcing efficiency, indicating that the aerosol particles are scattering the radiation more effectively back into space.
  • Lu, Peng; Cheng, Bin; Leppäranta, Matti; Li, Zhijun (2018)
    Summary The partitioning of solar radiation in the Arctic sea ice during the melt season is investigated using a radiative transfer model containing three layers of melt pond, underlying sea ice, and ocean beneath ice. The wavelength distribution of the spectral solar irradiance clearly narrowed with increasing depth into ice, from 350–900 nm at the pond surface to 400–600 nm in the ocean beneath. In contrast, the net spectral irradiance is quite uniform. The absorbed solar energy is sensitive to both pond depth (Hp) and the underlying ice thickness (Hi). The solar energy absorbed by the melt pond (Ψp) is proportional only to Hp. However, the solar energy absorbed by the underlying ice (Ψi) is more complicated due to the counteracting effects arising from the pond and ice to the energy absorption. In September, Ψp decreased by 10% from its August value, which is attributed to more components in the shortwave band (<530 nm) of the incident solar radiation in September relative to August. The absorption coefficient of the sea ice only enhances the absorbed energy in ice, while an increase in the ice scattering coefficient only enhances the absorbed energy in the melt pond, although the resulted changes in Ψp and Ψi are smaller than that in the albedo and transmittance. The energy absorption rate with depth depends strongly on the incident irradiance and ice scattering, but only weakly on pond depth. Our results are comparable to previous field measurements and numerical simulations. We conclude that the incident solar energy was largely absorbed by the melt pond rather than by the underlying sea ice.
  • Shevchenko, Vasilij G.; Belskaya, Irina N.; Mikhalchenko, Olga I.; Muinonen, Karri; Penttilä, Antti; Gritsevich, Maria; Shkuratov, Yuriy G.; Slyusarev, Ivan G.; Videen, Gorden (2019)
    The values of the phase integral q were determined for asteroids using a numerical integration of the brightness phase functions over a wide phase-angle range and the relations between q and the G parameter of the HG function and q and the G(1), G(2) parameters of the HG(1)G(2) function. The phase-integral values for asteroids of different geometric albedo range from 0.34 to 0.54 with an average value of 0.44. These values can be used for the determination of the Bond albedo of asteroids. Estimates for the phase-integral values using the G(1) and G(2) parameters are in very good agreement with the available observational data. We recommend using the HG(1)G(2) function for the determination of the phase integral. Comparison of the phase integrals of asteroids and planetary satellites shows that asteroids have systematically lower values of q.
  • Knyazikhin, Yuri; Lewis, Philip; Disney, Mathias I.; Stenberg, Pauline; Mõttus, Matti; Rautiainen, Miina; Kaufmann, Robert K.; Marshak, Alexander; Schull, Mitchell A.; Latorre Carmona, Pedro; Vanderbilt, Vern; Davis, Anthony B.; Baret, Frederic; Jacquemoud, Stephane; Lyapustin, Alexei; Yang, Yan; Myneni, Ranga B. (2013)
  • Lu, Peng; Leppäranta, Matti; Cheng, Bin; Li, Zhijun; Istomina, Larysa; Heygster, Georg (2018)
    Pond color, which creates the visual appearance of melt ponds on Arctic sea ice in summer, is quantitatively investigated using a two-stream radiative transfer model for ponded sea ice. The upwelling irradiance from the pond surface is determined and then its spectrum is transformed into RGB (red, green, blue) color space using a colorimetric method. The dependence of pond color on various factors such as water and ice properties and incident solar radiation is investigated. The results reveal that increasing underlying ice thickness H-i enhances both the green and blue intensities of pond color, whereas the red intensity is mostly sensitive to H-i for thin ice (H-i <1.5 m) and to pond depth H-p for thick ice (H-i > 1.5 m), similar to the behavior of meltpond albedo. The distribution of the incident solar spectrum F-0 with wavelength affects the pond color rather than its intensity. The pond color changes from dark blue to brighter blue with increasing scattering in ice, and the influence of absorption in ice on pond color is limited. The pond color reproduced by the model agrees with field observations for Arctic sea ice in summer, which supports the validity of this study. More importantly, the pond color has been confirmed to contain information about meltwater and underlying ice, and therefore it can be used as an index to retrieve H-i and H-p. Retrievals of H-i for thin ice (H-i <1 m) agree better with field measurements than retrievals for thick ice, but those of H-p are not good. The analysis of pond color is a new potential method to obtain thin ice thickness in summer, although more validation data and improvements to the radiative transfer model will be needed in future.
  • Karppinen, Toni; Ala-Houhala, Meri; Ylianttila, Lasse; Kautiainen, Hannu; Lakkala, Kaisa; Hannula, Henna-Reetta; Turunen, Esa; Viljakainen, Heli; Reunala, Timo; Snellman, Erna (2017)
    Humans obtain vitamin D from conversion of 7-dehydrocholesterol in the skin by ultraviolet B (UVB) radiation or from dietary sources. As the radiation level is insufficient in winter, vitamin D deficiency is common at higher latitudes. We assessed whether vernal solar UVB radiation at latitudes 61 degrees N and 67 degrees N in Finland has an impact on serum 25-hydroxyvitamin D [S-25(OH) D] concentrations. Twenty-seven healthy volunteers participated in outdoor activities in snow-covered terrain for 4-10 days in March or April, with their face and hands sun-exposed. The personal UVB doses and S-25(OH) D levels were monitored. A mean UVB dose of 11.8 standard erythema doses (SED) was received during an average of 12.3 outdoor hours. The mean S-25(OH) D concentration in subjects with a baseline concentration below 90.0 nmol/L (n=13) increased significantly, by 6.0 nmol/L from an initial mean of 62.4 nmol/L (p