Browsing by Subject "ANALOGS"

Sort by: Order: Results:

Now showing items 1-17 of 17
  • Buettner, Ralf; Le Xuan Truong Nguyen,; Kumar, Bijender; Morales, Corey; Liu, Chao; Chen, Lisa S.; Pemovska, Tea; Synold, Timothy W.; Palmer, Joycelynne; Thompson, Ryan; Li, Ling; Dinh Hoa Hoang,; Zhang, Bin; Ghoda, Lucy; Kowolik, Claudia; Kontro, Mika; Leitch, Calum; Wennerberg, Krister; Yu, Xiaochun; Chen, Ching-Cheng; Horne, David; Gandhi, Varsha; Pullarkat, Vinod; Marcucci, Guido; Rosen, Steven T. (2019)
    Nucleoside analogs represent the backbone of several distinct chemotherapy regimens for acute myeloid leukemia (AML) and combination with tyrosine kinase inhibitors has improved survival of AML patients, including those harboring the poor-risk FLT3-ITD mutation. Although these compounds are effective in killing proliferating blasts, they lack activity against quiescent leukemia stem cells (LSCs), which contributes to initial treatment refractoriness or subsequent disease relapse. The reagent 8-chloro-adenosine (8-Cl-Ado) is a ribose-containing, RNA-directed nucleoside analog that is incorporated into newly transcribed RNA rather than in DNA, causing inhibition of RNA transcription. In this report, we demonstrate antileukemic activities of 8-Cl-Ado in vitro and in vivo and provide mechanistic insight into the mode of action of 8-Cl-Ado in AML. 8-Cl-Ado markedly induced apoptosis in LSC, with negligible effects on normal stem cells. 8-Cl-Ado was particularly effective against AML cell lines and primary AML blast cells harboring the FLT3-ITD mutation. FLT3-ITD is associated with high expression of miR-155. Furthermore, we demonstrate that 8-Cl-Ado inhibits miR-155 expression levels accompanied by induction of DNA-damage and suppression of cell proliferation, through regulation of miR-155/ErbB3 binding protein 1(Ebp1)/p53/PCNA signaling. Finally, we determined that combined treatment of NSG mice engrafted with FLT3-ITD (+) MV4-11 AML cells with 8-Cl-Ado and the FLT3 inhibitor AC220 (quizartinib) synergistically enhanced survival, compared with that of mice treated with the individual drugs, suggesting a potentially effective approach for FLT3-ITD AML patients.
  • Benetto Tiz, Davide; Skok, Žiga; Durcik, Martina; Tomašič, Tihomir; Peterlin Mašič, Lucija; Ilaš, Janez; Draskovits, Gábor; Révész, Tamás; Nyerges, Ákos; Pál, Csaba; Cruz, Cristina D.; Tammela, Päivi Sirpa Marjaana; Žigon, Dušan; Kikelj, Danijel; Zidar, Nace (2019)
    ATP competitive inhibitors of DNA gyrase and topoisomerase IV have great therapeutic potential, but none of the described synthetic compounds has so far reached the market. To optimise the activities and physicochemical properties of our previously reported N-phenylpyrrolamide inhibitors, we have synthesized an improved, chemically variegated selection of compounds and evaluated them against DNA gyrase and topoisomerase IV enzymes, and against selected Gram-positive and Gram-negative bacteria. The most potent compound displayed IC50 values of 6.9 nM against Escherichia coli DNA gyrase and 960 nM against Staphylococcus aureus topoisomerase IV. Several compounds displayed minimum inhibitory concentrations (MICs) against Gram-positive strains in the 1-50 mu M range, one of which inhibited the growth of Enterococcus faecalis, Enterococcus faecium, S. aureus and Streptococcus pyogenes with MIC values of 1.56 mu M, 1.56 mu M, 0.78 mu M and 0.72 mu M, respectively. This compound has been investigated further on methicillin-resistant S. aureus (MRSA) and on ciprofloxacin non-susceptible and extremely drug resistant strain of S. aureus (MRSA VISA). It exhibited the MIC value of 2.5 mu M on both strains, and MIC value of 32 mu M against MRSA in the presence of inactivated human blood serum. Further studies are needed to confirm its mode of action. (C) 2019 Elsevier Masson SAS. All rights reserved.
  • Mgbeahuruike, Eunice Ego; Stålnacke, Milla; Vuorela, Heikki; Holm, Yvonne (2019)
    Microbial resistance to currently available antibiotics is a public health problem in the fight against infectious diseases. Most antibiotics are characterized by numerous side effects that may be harmful to normal body cells. To improve the efficacy of these antibiotics and to find an alternative way to minimize the adverse effects associated with most conventional antibiotics, piperine and piperlongumine were screened in combination with conventional rifampicin, tetracycline, and itraconazole to evaluate their synergistic, additive, or antagonistic interactions against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The fractional inhibitory concentration index was used to estimate the synergistic effects of various combination ratios of the piperamides and antibiotics against the bacterial and fungal strains. Both piperine and piperlongumine showed synergistic effects against S. aureus when combined at various ratios with rifampicin. Synergistic interaction was also observed with piperine in combination with tetracycline against S. aureus, while antagonistic interaction was recorded for piperlongumine and tetracycline against S. aureus. All the piperamide/antibacterial combinations tested against P. aeruginosa showed antagonistic effects, with the exception of piperine and rifampicin, which recorded synergistic interaction at a ratio of 9:1 rifampicin/piperine. No synergistic interaction was observed when the commercial compounds were combined with itraconazole and tested against C. albicans. The results showed that piperine and piperlongumine are capable of improving the effectiveness of rifampicin and tetracycline. Dosage combinations of these bioactive compounds with the antibiotics used may be a better option for the treatment of bacterial infections that aims to minimize the adverse effects associated with the use of these conventional antibacterial drugs.
  • Feil, Christoph M.; Hettich, Thomas D.; Beyer, Katharina; Sondermann, Christina; Schlindwein, Simon H.; Nieger, Martin; Gudat, Dietrich (2019)
    N-Heterocyclic phosphenium (NHP) and nitro-sonium (NO+) ligands are often viewed as isolobal analogues that share the capability to switch between different charge states and thus display redox "noninnocent" behavior. We report here on mixed complexes [(NHP)M(CO)(n)(NO)] (M = Fe, Cr; n = 2, 3), which permit evaluating the donor/acceptor properties of both types of ligands and their interplay in a single complex. The crystalline target compounds were obtained from reactions of N-heterocyclic phosphenium triflates with PPN[Fe(CO)(3)(NO)] or PPN[Cr(CO)(4)-(NO)], respectively, and fully characterized (PPN = nitride-bistriphenylphosphonium cation). The structural and spectroscopic (IR, UV-vis) data support the presence of carbene-analogue NHP ligands with an overall positive charge state and pi-acceptor character. Even if the structural features of the M-NO unit were in all but one product blurred by crystallographic CO/NO disorder, spectroscopic studies and the structural data of the remaining compound suggest that the NO units exhibit nitroxide (NO-) character. This assignment was validated by computational studies, which reveal also that the electronic structure of iron NHP/ NO complexes is closely akin to that of the Hieber anion, [Fe(CO)(3)(NO)](-). The electrophilic character of the NHP units is further reflected in the chemical behavior of the mixed complexes. Cyclic voltammetry and IR-SEC studies revealed that complex [(NHP)Fe(CO)(2) (NO)] (4) undergoes chemically reversible one-electron reduction. Computational studies indicate that the NHP unit in the resulting product carries significant radical character, and the reduction may thus be classified as predominantly ligand-centered. Reaction of 4 with sodium azide proceeded likewise under nucleophilic attack at phosphorus and decomplexation, while super hydride and methyl lithium reacted with all chromium and iron complexes via transfer of a hydride or methyl anion to the NHP unit to afford anionic phosphine complexes. Some of these species were isolated after cation exchange or trapped with electrophiles (H+, SnPh3(+)) to afford neutral complexes representing the products of a formal hydrogenation or hydrostannylation of the original M=P double bond.
  • Tomašič, Tihomir; Mirt, Matic; Barančoková, Michaela; Ilaš, Janez; Zidar, Nace; Tammela, Päivi Sirpa Marjaana; Kikelj, Danijel (2017)
    Development of novel DNA gyrase B inhibitors is an important field of antibacterial drug discovery whose aim is to introduce a more effective representative of this mechanistic class into the clinic. In the present study, two new series of Escherichia coli DNA gyrase inhibitors bearing the 4,5-dibromopyrrolamide moiety have been designed and synthesized. 4,5,6,7-Tetrahydrobenzo[1,2-d] thiazole-2,6-diamine derivatives inhibited E. coli DNA gyrase in the submicromolar to low micromolar range (IC50 values between 0.891 and 10.4 mu M). Their "ring-opened" analogues, based on the 2-(2-aminothiazol-4-yl) acetic acid scaffold, displayed weaker DNA gyrase inhibition with IC50 values between 15.9 and 169 mu M. Molecular docking experiments were conducted to study the binding modes of inhibitors. (C) 2016 Elsevier Ltd. All rights reserved.
  • Skledar, Darja Gramec; Carino, Adriana; Trontelj, Jurij; Troberg, Johanna; Distrutti, Eleonora; Marchiano, Silvia; Tornasic, Tihomir; Zega, Anamarija; Finel, Moshe; Fiorucci, Stefano; Maisic, Lucija Peterlin (2019)
    Bisphenol AF (BPAF) is a fluorinated analog of bisphenol A (BPA), and it is a more potent estrogen receptor (ER) agonist. BPAF is mainly metabolized to BPAF-glucuronide (BPAF-G), which has been reported to lack ER agonist activity and is believed to be biologically inactive. The main goal of the current study was to examine the influence of the metabolism of BPAF via glucuronidation on its ER activity and adipogenesis. Also, as metabolites can have different biological activities, the effects of BPAF-G on other nuclear receptors were evaluated. First, in-vitro BPAF glucuronidation was investigated using recombinant human enzymes. Specific reporter-gene assays were used to determine BPAF and BPAF-G effects on estrogen, androgen, glucocorticoid, and thyroid receptor pathways, and on PXR, FXR, and PPAR gamma pathways. Their effects on lipid accumulation and differentiation were determined in murine 3T3L1 preadipocytes using Nile Red, with mRNA expression analysis of the adipogenic markers adiponectin, Fabp4, Cebp alpha, and PPAR gamma. BPAF showed strong agonistic activity for hER alpha and moderate antagonistic activities for androgen and thyroid receptors, and for PXR. BPAF-G was antagonistic for PXR and PPAR gamma. BPAF (0.1 mu M) and BPAF-G (1.0 mu M) induced lipid accumulation and increased expression of key adipogenic markers in murine preadipocytes. BPAF-G is therefore not an inactive metabolite of BPAF. Further toxicological and epidemiological investigations of BPAF effects on human health are warranted, to provide better understanding of the metabolic end-elimination of BPAF. (C) 2018 Elsevier Ltd. All rights reserved.
  • Zong, Guanghui; Hu, Zhijian; O'Keefe, Sarah; Tranter, Dale; Iannotti, Michael J.; Baron, Ludivine; Hall, Belinda; Corfield, Katherine; Paatero, Anja O.; Henderson, Mark J.; Roboti, Peristera; Zhou, Jianhong; Sun, Xianwei; Govindarajan, Mugunthan; Rohde, Jason M.; Blanchard, Nicolas; Simmonds, Rachel; Inglese, James; Du, Yuchun; Demangel, Caroline; High, Stephen; Paavilainen, Ville O.; Shi, Wei Q. (2019)
    Ipomoeassin F is a potent natural cytotoxin that inhibits growth of many tumor cell lines with single-digit nanomolar potency. However, its biological and pharmacological properties have remained largely unexplored. Building upon our earlier achievements in total synthesis and medicinal chemistry, we used chemical proteomics to identify Sec61 alpha (protein transport protein Sec61 subunit alpha isoform 1), the pore-forming subunit of the Sec61 protein translocon, as a direct binding partner of ipomoeassin F in living cells. The interaction is specific and strong enough to survive lysis conditions, enabling a biotin analogue of ipomoeassin F to pull down Sec61 alpha from live cells, yet it is also reversible, as judged by several experiments including fluorescent streptavidin staining, delayed competition in affinity pulldown, and inhibition of TNF biogenesis after washout. Sec61 alpha forms the central subunit of the ER protein translocation complex, and the binding of ipomoeassin F results in a substantial, yet selective, inhibition of protein translocation in vitro and a broad ranging inhibition of protein secretion in live cells. Lastly, the unique resistance profile demonstrated by specific amino acid single-point mutations in Sec61 alpha provides compelling evidence that Sec61 alpha is the primary molecular target of ipomoeassin F and strongly suggests that the binding of this natural product to Sec61 alpha is distinctive. Therefore, ipomoeassin F represents the first plant-derived, carbohydrate-based member of a novel structural class that offers new opportunities to explore Sec61 alpha function and to further investigate its potential as a therapeutic target for drug discovery.
  • Durcik, Martina; Lovison, Denise; Skok, Žiga; Durante Cruz, Cristina; Tammela, Päivi; Tomašič, Tihomir; Benetto Tiz, Davide; Draskovits, Gábor; Nyerges, Ákos; Pál, Csaba; Ilaš, Janez; Peterlin Mašič, Lucija; Kikelj, Danijel; Zidar, Nace (2018)
    The ATP binding site located on the subunit B of DNA gyrase is an attractive target for the development of new antibacterial agents. In recent decades, several small-molecule inhibitor classes have been discovered but none has so far reached the market. We present here the discovery of a promising new series of N-phenylpyrrolamides with low nanomolar IC50 values against DNA gyrase, and submicromolar IC50 values against topoisomerase IV from Escherichia coil and Staphylococcus aureus. The most potent compound in the series has an IC50 value of 13 nM against E. coil gyrase. Minimum inhibitory concentrations (MICs) against Gram-positive bacteria are in the low micromolar range. The oxadiazolone derivative with an IC50 value of 85 nM against E. coli DNA gyrase displays the most potent antibacterial activity, with MIC values of 1.56 mu M against Enterococcus faecalis, and 3.13 mu M against wild type S. aureus, methicillinresistant S. aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). The activity against wild type E. coli in the presence of efflux pump inhibitor phenylalanine-arginine beta-naphthylamide (PA beta N) is 4.6 mu M. (C) 2018 Elsevier Masson SAS. All rights reserved.
  • Kaaz, Manuel; Locke, Ralf J. C.; Merz, Luisa; Benedikter, Mathis; Koenig, Simon; Bender, Johannes; Schlindwein, Simon H.; Nieger, Martin; Gudat, Dietrich (2019)
    Boryl-substituted phosphines NHB-P(R)Ph (R = H, Ph, NHB = N-heterocyclic boryl substituent) react with Fe-2(CO)(9) to give isolable Fe(CO)(4) complexes, two of which were characterized by single-crystal XRD studies. The electronic and steric properties for a series of the boryl phosphines were further assessed by evaluation of TEPs for in-situ formed complexes [RhCl(NHB-(PRR2)-R-1)(CO)(2)] (R-1, R-2 = H, Ph, Me, NMe2), and calculations of buried volumes for Fe(CO)(4) complexes. The results imply that the NHB-phosphines exhibit due to their conformational flexibility some variability in their steric bulk, and that some specimens may exhibit similar electron releasing power and steric demand as tBu(3)P. Studies of the amination of bromobenzene with 2,6-diisopropylaniline confirmed that these properties can be exploited to promote Pd-catalyzed C-N cross coupling reactions, and that formal replacement of a phenyl by a NHB substituent in the auxiliary phosphine has a beneficial effect on catalyst performance.
  • Wilkman, Olli; Gritsevich, Maria; Zubko, Nataliya; Peltoniemi, Jouni I.; Muinonen, Karri (2016)
    We have performed laboratory measurements of the bidirectional reflectance factor (BRF) of a sample of dark volcanic sand. The measurements were carried out with three different treatments of the sample to produce different porosity and roughness characteristics. We model the measured BRF with a semi-numerical scattering model for particulate media, meant especially for dark planetary regoliths. We compare the BRF in two different spectral bands, 500-600 nm and 800-900 nm. The particulate medium (PM). scattering model is found to fit the measured data well, with a phase function representing the differences between the spectral bands. The interpretation of the physical parameters of the PM model is qualitatively sound, but remains somewhat uncertain due in part to the difficulty of characterizing the measured sample. (C) 2016 Elsevier Ltd. All rights reserved.
  • Meinander, Kristian; Weisell, Janne; Pakkala, Miikka; Tadd, Andrew C.; Hekim, Can; Kallionpää, Roope Aleksi; Widell, Kim; Stenman, Ulf Håkan; Koistinen, Hannu; Narvanen, Ale; Vepsalainen, Jouko; Luthman, Kristina; Wallen, Erik A. A. (2013)
  • Vesterinen, Tiina; Leijon, Helena; Mustonen, Harri; Remes, Satu; Knuuttila, Aija; Salmenkivi, Kaisa; Vainio, Paula; Arola, Johanna; Haglund, Caj (2019)
    Context: Pulmonary carcinoids (PCs) belong to neuroendocrine tumors that often overexpress somatostatin receptors (SSTRs). This overexpression provides a molecular basis for tumor imaging and treatment with somatostatin analogs. Objective: To evaluate SSTR1 to SSTR5 distribution in a large set of PC tumors and to investigate whether the expression is associated with clinicopathological and outcome data. Design, Setting, and Patients: This retrospective study was conducted at Helsinki University Hospital and University of Helsinki. It included 178 PC tumors coupled with patients' clinical data retrieved through Finnish biobanks. After histological reclassification, tissue specimens were processed into next-generation tissue microarray format and stained immunohistochemically with monoclonal SSTR1 to SSTR5 antibodies. Main Outcome Measure: SSTR1 to SSTR5 expression in PC tumors. Results: Expression of SSTR1 to SSTR5 was detected in 52%, 75%, 56%, 16%, and 32% of the tumors, respectively. Membrane-bound staining was observed for all receptors. SSTR2 negativity and SSTR4 positivity was associated with lymph node involvement at the time of surgery (P = 0.014 and P = 0.017, respectively) and with distant metastasis (P = 0.027 and P = 0.015, respectively). SSTR3 and SSTR4 expression was associated with increased risk of shorter survival [P = 0.046, hazard ratio (HR) 4.703, 95% CI 1.027 to 21.533; and P = 0.013, HR 6.64, 95% CI 1.48 to 29.64, respectively], whereas expression of SSTR1 and SSTR2 was associated with improved outcome (P = 0.021, HR 0.167, 95% CI 0.037 to 0.765; and P = 0.022, HR 0.08, 95% CI 0.01 to 0.70, respectively). Conclusion: SSTR1 to SSTR5 expression is observed in PCs. As SSTR expression is associated with the tumor's metastatic potential and patient outcome, these receptors may offer the possibility for individualized prognosis estimation.
  • Karhu, Lasse; Weisell, Janne; Turunen, Pauli M.; Leino, Teppo O.; Pätsi, Henri; Xhaard, Henri; Kukkonen, Jyrki P.; Wallén, Erik A.A. (2018)
    The peptides orexin-A and -B, the endogenous agonists of the orexin receptors, have similar 19-amino-acid C-termini which retain full maximum response as truncated peptides with only marginally reduced potency, while further N-terminal truncations successively reduce the activity. The peptides have been suggested to bind in an α‐helical conformation, and truncation beyond a certain critical length is likely to disrupt the overall helical structure. In this study, we set out to stabilize the α‐helical conformation of orexin‐A15–33 via peptide stapling at four different sites. At a suggested hinge region, we varied the length of the cross-linker as well as replaced the staple with two α-aminoisobutyric acid residues. Modifications close to the peptide C‐terminus, which is crucial for activity, were not allowed. However, central and N‐terminal modifications yielded bioactive peptides, albeit with decreased potencies. This provides evidence that the orexin receptors can accommodate and be activated by α-helical peptides. The decrease in potency is likely linked to a stabilization of suboptimal peptide conformation or blocking of peptide backbone–receptor interactions at the hinge region by the helical stabilization or the modified amino acids.
  • Aly, Ashraf A.; El-Sheref, Essmat M.; Mourad, Aboul-Fetouh E.; Brown, Alan B.; Bräse, Stefan; Bakheet, Momtaz E. M.; Nieger, Martin (2018)
    Quinoline-2,4-diones reacted with 2-(2-oxo-1,2-dihydroindol-3-ylidene)malononitrile in pyridine to give 2'-amino-2,5'-dioxo-5',6'-dihydrospiro(indoline-3,4'-pyrano[3,2-c]quinoline)-3'-carbonitriles in good to excellent yields. The structures of all new products were proven using one- and two-dimensional NMR, IR, and mass spectral data, and in five cases X-ray structural analyses. The possible mechanism for the reaction is also discussed. [GRAPHICS] .
  • Figueiredo, Joana; Serrano, João L.; Cavalheiro, Eunice; Keurulainen, Leena; Yli-Kauhaluoma, Jari Tapani; Moreira, Vânia M.; Ferreira, Susana; Domingues, Fernanda C.; Silvestre, Samuel; Almeida, Paulo (2018)
    Barbituric and thiobarbituric acid derivatives have become progressively attractive to medicinal chemists due to their wide range of biological activities. Herein, different series of 1,3,5-trisubstituted barbiturates and thiobarbiturates were prepared in moderate to excellent yields and their activity as xanthine oxidase inhibitors, antioxidants, antibacterial agents and as anti-proliferative compounds was evaluated in vitro. Interesting bioactive barbiturates were found namely, 1,3-dimethyl-5-[1-(2-phenylhydrazinyl)ethylidene]pyrimidine-2,4,6(1H,3H,5H)-trione (6c) and 1,3-dimethyl-5-[1-[2-(4-nitrophenyl)hydrazinyl]ethylidene]pyrimidine-2,4,6(1H,3H,5H)-trione (6e), which showed concomitant xanthine oxidase inhibitory effect (IC50 values of 24.3 and 27.9 mu M, respectively), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (IC50 values of 18.8 and 23.8 mu M, respectively). In addition, 5-[1-(2-phenylhydrazinyl)ethylidene]pyrimidine-2,4,6(1H,3H,5H)-trione (6d) also revealed DPPH radical scavenger effect, with an IC50 value of 20.4 mu M. Moreover, relevant cytotoxicity against MCF-7 cells (IC50 = 13.3 mu M) was observed with 5-[[(2-chloro-4-nitrophenyl)amino]methylene]-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (7d). Finally, different 5-hydrazinylethylidenepyrimidines revealed antibacterial activity against Acinetobacter baumannii (MIC values between 12.5 and 25.0 mu M) which paves the way for developing new treatments for infections caused by this Gram-negative coccobacillus bacterium, known to be an opportunistic pathogen in humans with high relevance in multidrug-resistant nosocomial infections. The most promising bioactive barbiturates were studied in silico with emphasis on compliance with the Lipinski's rule of five as well as several pharmacokinetics and toxicity parameters. (C) 2017 Elsevier Masson SAS. All rights reserved.
  • Leijon, Helena; Remes, Satu; Hagström, Jaana; Louhimo, Johanna; Mäenpää, Hanna; Schalin-Jäntti, Camilla; Miettinen, Markku; Haglund, Caj; Arola, Johanna (2019)
    Pheochromocytomas (PHEOs) and paragangliomas (PGLs) are neuroendocrine tumors that express somatostatin receptors (SSTRs), a phenomenon that constitutes a basis for tumor imaging and treatment with somatostatin analogues and peptide receptor radionuclide therapy. We studied the immunohistochemical expression of SSTR1-5 in 151 primary tumors, including 14 metastasized and 16 SDHB-deficient tumors. SSTR2 and SSTR3 were most abundantly present in these tumors, whereas the tumors were mostly negative for SSTR1, SSTR4, and SSTR5. All metastasized PGLs (9/9), but only one metastasized PHEO (1/5), were strongly SSTR2 positive. SSTR3 expression was lower in metastatic tumors and tumors with a high proliferation rate (MIB1 >= 5%), but tumors had variable individual SSTR profiles. No correlation was found between SDHB status and SSTR expression. Our results suggest that new SSTR analogues with affinity for several SSTRs could be relevant for a subgroup of patients with these tumors. Better knowledge of tumor SSTR profiles could open the door for personalized imaging and treatment in the future. Because SSTR profiles vary in PHEOs and PGLs, individual analysis is required for each tumor. (C) 2018 The Authors. Published by Elsevier Inc.
  • Moreno-Cinos, Carlos; Sassetti, Elisa; Salado, Irene G.; Witt, Gesa; Benramdane, Siham; Reinhardt, Laura; Cruz, Cristina D.; Joossens, Jurgen; Van der Veken, Pieter; Brötz-Oesterhelt, Heike; Tammela, Päivi Sirpa Marjaana; Winterhalter, Mathias; Gribbon, Philip; Windshügel, Björn; Augustyns, Koen (2019)
    Increased Gram-negative bacteria resistance to antibiotics is becoming a global problem, and new classes of antibiotics with novel mechanisms of action are required. The caseinolytic protease subunit P (ClpP) is a serine protease conserved among bacteria that is considered as an interesting drug target. ClpP function is involved in protein turnover and homeostasis, stress response, and virulence among other processes. The focus of this study was to identify new inhibitors of Escherichia coli ClpP and to understand their mode of action. A focused library of serine protease inhibitors based on diaryl phosphonate warheads was tested for ClpP inhibition, and a chemical exploration around the hit compounds was conducted. Altogether, 14 new potent inhibitors of E. coli ClpP were identified. Compounds 85 and 92 emerged as most interesting compounds from this study due to their potency and, respectively, to its moderate but consistent antibacterial properties as well as the favorable cytotoxicity profile.