Browsing by Subject "ANOXIA"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Salonen, Iines S.; Chronopoulou, Panagiota-Myrsini; Nomaki, Hidetaka; Langlet, Dewi; Tsuchiya, Masashi; Koho, Karoliina A. (2021)
    Foraminifera are unicellular eukaryotes that are an integral part of benthic fauna in many marine ecosystems, including the deep sea, with direct impacts on benthic biogeochemical cycles. In these systems, different foraminiferal species are known to have a distinct vertical distribution, i.e., microhabitat preference, which is tightly linked to the physico-chemical zonation of the sediment. Hence, foraminifera are well-adapted to thrive in various conditions, even under anoxia. However, despite the ecological and biogeochemical significance of foraminifera, their ecology remains poorly understood. This is especially true in terms of the composition and diversity of their microbiome, although foraminifera are known to harbor diverse endobionts, which may have a significant meaning to each species' survival strategy. In this study, we used 16S rRNA gene metabarcoding to investigate the microbiomes of five different deep-sea benthic foraminiferal species representing differing microhabitat preferences. The microbiomes of these species were compared intra- and inter-specifically, as well as with the surrounding sediment bacterial community. Our analysis indicated that each species was characterized with a distinct, statistically different microbiome that also differed from the surrounding sediment community in terms of diversity and dominant bacterial groups. We were also able to distinguish specific bacterial groups that seemed to be strongly associated with particular foraminiferal species, such as the family Marinilabiliaceae for Chilostomella ovoidea and the family Hyphomicrobiaceae for Bulimina subornata and Bulimina striata. The presence of bacterial groups that are tightly associated to a certain foraminiferal species implies that there may exist unique, potentially symbiotic relationships between foraminifera and bacteria that have been previously overlooked. Furthermore, the foraminifera contained chloroplast reads originating from different sources, likely reflecting trophic preferences and ecological characteristics of the different species. This study demonstrates the potential of 16S rRNA gene metabarcoding in resolving the microbiome composition and diversity of eukaryotic unicellular organisms, providing unique in situ insights into enigmatic deep-sea ecosystems.
  • Gammal, Johanna; Norkko, Joanna; Pilditch, Conrad A.; Norkko, Alf (2017)
    Coastal ecosystems are important because of the vital ecosystem functions and services they provide, but many are threatened by eutrophication and hypoxia. This results in loss of biodiversity and subsequent changes in ecosystem functioning. Consequently, the need for empirical field studies regarding biodiversity-ecosystem functioning in coastal areas has been emphasized. The present field study quantified the links between benthic macrofaunal communities (abundance, biomass, and species richness), sediment oxygen consumption, and solute fluxes (NO3- + NO2-, NH4+, PO43-, SiO4, Fe, Mn) along a 7.5-km natural gradient of seasonal hypoxia in the coastal northern Baltic Sea. Sampling was done in late August 2010 in the middle archipelago zone of the Hanko peninsula, Finland. As predicted, the macrofaunal communities were decimated with increasing hypoxia, and the nutrient transformation processes were changed at the sediment-water interface, with notably higher effluxes of phosphate and ammonium from the sediment. Solute fluxes varied even during normoxia, which implies a high context-dependency, and could be explained by even small variations in environmental variables such as organic matter and C/N ratios. Importantly, the low diversity benthic macrofaunal communities, which were dominated by Macoma balthica and the invasive Marenzelleria spp., had a large influence on the solute fluxes, especially under normoxia, but also under hypoxia.