Browsing by Subject "ANTIBIOTIC-RESISTANCE"

Sort by: Order: Results:

Now showing items 1-20 of 24
  • Fondi, Marco; Karkman, Antti; Tamminen, Manu V.; Bosi, Emanuele; Virta, Marko; Fani, Renato; Alm, Eric; McInerney, James O. (2016)
    The spatial distribution of microbes on our planet is famously formulated in the Baas Becking hypothesis as everything is everywhere but the environment selects." While this hypothesis does not strictly rule out patterns caused by geographical effects on ecology and historical founder effects, it does propose that the remarkable dispersal potential of microbes leads to distributions generally shaped by environmental factors rather than geographical distance. By constructing sequence similarity networks from uncultured environmental samples, we show that microbial gene pool distributions are not influenced nearly as much by geography as ecology, thus extending the Bass Becking hypothesis from whole organisms to microbial genes. We find that gene pools are shaped by their broad ecological niche (such as sea water, fresh water, host, and airborne). We find that freshwater habitats act as a gene exchange bridge between otherwise disconnected habitats. Finally, certain antibiotic resistance genes deviate from the general trend of habitat specificity by exhibiting a high degree of cross-habitat mobility. The strong cross-habitat mobility of antibiotic resistance genes is a cause for concern and provides a paradigmatic example of the rate by which genes colonize new habitats when new selective forces emerge.
  • Kneis, David; Hiltunen, Teppo; Hess, Stefanie (2019)
    Horizontal gene transfer is an essential component of bacterial evolution. Quantitative information on transfer rates is particularly useful to better understand and possibly predict the spread of antimicrobial resistance. A variety of methods has been proposed to estimate the rates of plasmid-mediated gene transfer all of which require substantial labor input or financial resources. A cheap but reliable method with high-throughput capabilities is yet to be developed in order to better capture the variability of plasmid transfer rates, e.g. among strains or in response to environmental cues. We explored a new approach to the culture-based estimation of plasmid transfer rates in liquid media allowing for a large number of parallel experiments. It deviates from established approaches in the fact that it exploits data on the absence/presence of transconjugant cells in the wells of a well plate observed over time. Specifically, the binary observations are compared to the probability of transconjugant detection as predicted by a dynamic model. The bulk transfer rate is found as the best-fit value of a designated model parameter. The feasibility of the approach is demonstrated on mating experiments where the RP4 plasmid is transfered from Serratia marcescens to several Escherichia coil recipients. The methods uncertainty is explored via split sampling and virtual experiments.
  • Zhao, Ke; Li, Jing; Shen, Meiling; Chen, Qiang; Liu, Maoke; Ao, Xiaolin; Liao, Decong; Gu, Yunfu; Xu, Kaiwei; Ma, Menggen; Yu, Xiumei; Xiang, Quanju; Chen, Ji; Zhang, Xiaoping; Penttinen, Petri (2018)
    Many actinobacteria produce secondary metabolites that include antimicrobial compounds. Since most of the actinobacteria cannot be cultivated, their antimicrobial potential awaits to be revealed. We hypothesized that the actinobacterial endophyte communities inside Melia toosendan (Chinaberry) tree are diverse, include strains with antimicrobial activity, and that antimicrobial activity can be detected using a cultivation independent approach and co-occurrence analysis. We isolated and identified actinobacteria from Chinaberry, tested their antimicrobial activities, and characterized the communities using amplicon sequencing and denaturing gradient gel electrophoresis as cultivation independent methods. Most of the isolates were identified as Streptomyces spp., whereas based on amplicon sequencing the most abundant OTU was assigned to Rhodococcus, and Tomitella was the most diverse genus. Out of the 135 isolates, 113 inhibited the growth of at least one indicator organism. Six out of the 7577 operational taxonomic units (OTUs) matched 46 cultivated isolates. Only three OTUs, Streptomyces OTU4, OTU11, and OTU26, and their corresponding isolate groups were available for comparing co-occurrences and antimicrobial activity. Streptomyces OTU4 correlated negatively with a high number of OTUs, and the isolates corresponding to Streptomyces OTU4 had high antimicrobial activity. However, for the other two OTUs and their corresponding isolate groups there was no clear relation between the numbers of negative correlations and antimicrobial activity. Thus, the applicability of co-occurrence analysis in detecting antimicrobially active actinobacteria could not be proven.
  • Raju, Sajan C.; Viljakainen, Heli; Figueiredo, Rejane A. O.; Neuvonen, Pertti J.; Eriksson, Johan G.; Weiderpass, Elisabete; Rounge, Trine B. (2020)
    Background: The human microbiota contributes to health and well-being. Antimicrobials (AM) have an immediate effect on microbial diversity and composition in the gut, but next to nothing is known about their long-term contribution to saliva microbiota. Our objectives were to investigate the long-term impact of AM use on saliva microbiota diversity and composition in preadolescents. We compared the lifetime effects by gender and AMs. We used data from 808 randomly selected children in the Finnish Health In Teens (Fin-HIT) cohort with register-based data on AM purchases from the Social Insurance Institution of Finland. Saliva microbiota was assessed with 16S rRNA (V3-V4) sequencing. The sequences were aligned to the SILVA ribosomal RNA database and classified and counted using the mothur pipeline. Associations between AM use and alpha-diversity (Shannon index) were identified with linear regression, while associations between beta-diversity (Bray-Curtis dissimilarity) and low, medium or high AM use were identified with PERMANOVA. Results: Of the children, 53.6% were girls and their mean age was 11.7 (0.4) years. On average, the children had 7.4 (ranging from 0 to 41) AM prescriptions during their lifespan. The four most commonly used AMs were amoxicillin (n= 2622, 43.7%), azithromycin (n= 1495, 24.9%), amoxicillin-clavulanate (n= 1123, 18.7%) and phenoxymethylpenicillin (n= 408, 6.8%). A linear inverse association was observed between the use of azithromycin and Shannon index (b- 0.015,pvalue = 0.002) in all children, the effect was driven by girls (b- 0.032,pvalue = 0.001), while not present in boys. Dissimilarities were marked between high, medium and low users of all AMs combined, in azithromycin users specifically, and in boys with amoxicillin use. Amoxicillin and amoxicillin-clavulanate use was associated with the largest decrease in abundance ofRikenellaceae. AM use in general and phenoxymethylpenicillin specifically were associated with a decrease ofPaludibacterand pathways related to amino acid degradations differed in proportion between high and low AM users. Conclusions: A systematic approach utilising reliable registry data on lifetime use of AMs demonstrated long-term effects on saliva microbiota diversity and composition. These effects are gender- and AM-dependent. We found that frequent lifelong use of AMs shifts bacterial profiles years later, which might have unforeseen health impacts in the future. Our findings emphasise a concern for high azithromycin use, which substantially decreases bacterial diversity and affects composition as well. Further studies are needed to determine the clinical implications of our findings.
  • Topp, Edward; Larsson, D. G. Joakim; Miller, Daniel N.; Van den Eede, Chris; Virta, Marko P. J. (2018)
    A roundtable discussion held at the fourth International Symposium on the Environmental Dimension of Antibiotic Resistance (EDAR4) considered key issues concerning the impact on the environment of antibiotic use in agriculture and aquaculture, and emissions from antibiotic manufacturing. The critical control points for reducing emissions of antibiotics from agriculture are antibiotic stewardship and the pre-treatment of manure and sludge to abate antibiotic-resistant bacteria. Antibiotics are sometimes added to fish and shellfish production sites via the feed, representing a direct route of contamination of the aquatic environment. Vaccination reduces the need for antibiotic use in high value (e.g. salmon) production systems. Consumer and regulatory pressure will over time contribute to reducing the emission of very high concentrations of antibiotics from manufacturing. Research priorities include the development of technologies, practices and incentives that will allow effective reduction in antibiotic use, together with evidence-based standards for antibiotic residues in effluents. All relevant stakeholders need to be aware of the threat of antimicrobial resistance and apply best practice in agriculture, aquaculture and pharmaceutical manufacturing in order to mitigate antibiotic resistance development. Research and policy development on antimicrobial resistance mitigation must be cognizant of the varied challenges facing high and low income countries.
  • Wysok, Beata; Wojtacka, Joanna; Hänninen, Marja-Liisa; Kivistö, Rauni (2020)
    Campylobacteriosis is one of the most common causes of bacterial gastroenteritis. However, the clinical course of the illness varies in symptoms and severity. The aim of this study was to characterizeCampylobacter jejuni(34 isolates) andC. coli(9 isolates) from persons with diarrheal and non-diarrheal stools at the time of examination and fecal sampling, in Poland by using whole-genome sequencing (WGS). Multilocus sequence typing (MLST) analysis revealed a high diversity with a total of 20 sequence types (STs) among 26Campylobacterisolates from diarrheic and 13 STs among 17 isolates from non-diarrheic persons. ST-50 and ST-257 were most common in both groups. The phenotypic resistance rate was 74.4% for ciprofloxacin, 67.4% for sulfamethoxazole/trimethoprim, 58.1% for amoxicillin, 48.8% for tetracycline, and 46.5% for ceftriaxone. Only single isolates were resistant to erythromycin, gentamicin, and amoxicillin/clavulanic acid. Overall genotypic resistance toward amoxicillin, fluoroquinolones, tetracyclines, and aminoglycosides was predicted to occur in 93.1, 67.4, 48.8, and 11.6% of the isolates, respectively. None of the isolates showed the presence of theerm(B) gene or mutation in 23S rRNA. Neither was variation found in the important target region in L4 and L22 ribosomal proteins. In regard to the CmeABC efflux pump, a set of variable mutations affecting the regulatory region was noted. AllCampylobacterisolates possessed genes associated with adhesion (cadF,jlpA,porA, andpebA) and invasion (ciaB,pldA, andflaC). The type IV secretion system (T4SS) was found in isolates from both diarrheic (15.4%, CI 95%: 6.1-33.5%) and non-diarrheic (23.5%, CI 95%: 9.6-47.3%) persons. The rates of the presence of cytolethal distending toxincdtABCgene cluster and type VI secretion system (T6SS) were higher inCampylobacterisolates obtained from persons with diarrhea (96.2%, CI 95%: 81.7-99.3% and 26.9%, CI 95%: 13.7-46.1%) compared to isolates from non-diarrheic persons (76.5%, CI 95%: 52.7-90.4% and 11.8%, CI 95%: 3.3-34.3%). The lack of statistically significant differences between two groups in tested virulence factors suggests that individual susceptibility of the host might play more determining role in the disease outcome than characteristics of the infecting strain.
  • Sali, Virpi Tuulikki; Nykäsenoja, Suvi; Heikinheimo, Annamari; Hälli, Outi; Tirkkonen, Taneli; Heinonen, Mari (2021)
    In pigs, antimicrobial use (AMU) practices vary at different production phases between herds and between countries. Antimicrobial resistance (AMR) development is linked to AMU but recognized as a multi-factorial issue, and thus, any information increasing knowledge of AMU and AMR relationships is valuable. We described AMU and screened the carriage of different AMR phenotypes of indicator Escherichia coli in 25 selected Finnish piglet-producing and finishing herds that formed nine birth-to-slaughter production lines. Moreover, we studied associations between AMU and AMR in both herd types and throughout the production line. Treatment records were obtained from the national Sikava register for 1year, and AMU was quantified as mg/PCU (population correction unit) and TIs (treatment incidences). For phenotypic antimicrobial susceptibility testing, ten pen-level pooled feces samples (n=250) in each herd were collected from one room representing the oldest weaned piglets or the oldest finishing pigs. Majority of the medications (96.8%) was administered parenterally, and penicillin was the predominant antimicrobial in every herd. More different antimicrobial substances were used in piglet-producing than in finishing herds (median 5 and 1, respectively, p
  • Yun, Jinhyeon; Muurinen, Johanna; Nykäsenoja, Suvi; Seppä-Lassila, Leena; Sali, Virpi; Suomi, Johanna; Tuominen, Pirkko; Joutsen, Suvi; Hämäläinen, Merja; Olkkola, Satu; Myllyniemi, Anna-Liisa; Peltoniemi, Olli; Heinonen, Mari (2021)
    We investigated connections between antimicrobial use (AMU), biosecurity, and the numbers of pigs and staff in ten Finnish farrow-to-finish herds. Data on AMU in each herd were collected for 12 months. AMU was quantified as treatment incidences per 1000 days at risk (TI) using the consensus defined daily dose calculation. Biosecurity was scored using the Biocheck.UGent T system. We also examined antimicrobial resistance patterns of indicator E. coli isolated from faeces of selected pigs. In each herd, two groups of five pigs were formed: 1) antimicrobial treatment group (ANT: at least one pig in the litter was identified as sick and treated with antimicrobials) and 2) non-antimicrobial treatment group (NON: the litter was not medicated). Faecal samples were taken from these pigs at 5 and 22 weeks of age, cultured, and indicator E. coli isolates were tested for antimicrobial susceptibilities. The AMU varied considerably between the herds. Altogether, most of the antimicrobial treatment courses were assigned to weaned piglets. When AMU was quantified as TIs, suckling piglets had the highest TI (mean 46.6), which was significantly higher (P < 0.05) than TIs in fatteners and breeders (9.3 and 7.3, respectively). The difference between TI in suckling and TI in weaned piglets (19.1) was not statistically significant. There was a tendency for a negative correlation between the TI in breeders and the number of sows (r = 0.56, P = 0.09). Larger herds had higher external biosecurity scores than smaller herds (LS-means; 72 vs. 66, P < 0.05). The proportions of E. coli isolates resistant to at least one antimicrobial were higher in pigs at 5 weeks than in pigs at 22 weeks of age (Binomial proportion means; 40.5 % vs. 15.5 %, P < 0.05); as well as proportions of isolates resistant to at least three antimicrobial classes (23.0 % vs. 3.7 %, P < 0.01). These proportions did not differ between the ANT and NON groups at either 5 or 22 weeks of age (P> 0.05). We found few connections: enhanced external biosecurity levels found in the large herds co-occurred with lower use of antimicrobials and herds with low biosecurity scores - especially in the internal subcategories - appeared to have higher proportions of resistant isolates. Conclusively, we suggest that enhancing internal biosecurity might contribute to a reduction in the spreading of antimicrobial resistance in pig herds.
  • Åvall-Jääskeläinen, Silja Tuulia; Taponen, Suvi Sinikka; Kant, Ravi; Paulin, Lars Göran; Blom, Jochen; Palva, Airi Marjatta; Koort, Joanna Maria Kataliina (2018)
    Non-aureus staphylococci (NAS) are most commonly isolated from subclinical mastitis. Different NAS species may, however, have diverse effects on the inflammatory response in the udder. We determined the genome sequences of 20 staphylococcal isolates from clinical or subclinical bovine mastitis, belonging to the NAS species Staphylococcus agnetis S. chromogenes, and S. simulans, and focused on the putative virulence factor genes present in the genomes. For comparison we used our previously published genome sequences of four S. aureus isolates from bovine mastitis. The pan-genome and core genomes of the non-aureus isolates were characterized. After that, putative virulence factor orthologues were searched in silico. We compared the presence of putative virulence factors in the NAS species and S. aureus and evaluated the potential association between bacterial genotype and type of mastitis (clinical vs. subclinical). The NAS isolates had much less virulence gene orthologues than the S. aureus isolates. One third of the virulence genes were detected only in S. aureus. About 100 virulence genes were present in all S. aureus isolates, compared to about 40 to 50 in each NAS isolate. S. simulans differed the most. Several of the virulence genes detected among NAS were harbored only by S. simulans, but it also lacked a number of genes present both in S. agnetis and S. chromogenes. The type of mastitis was not associated with any specific virulence gene profile. It seems that the virulence gene profiles or cumulative number of different virulence genes are not directly associated with the type of mastitis (clinical or)subclinical), indicating that host derived factors such as the immune status play a pivotal role in the manifestation of mastitis.
  • Hussain, Nazar; Tariq, Muhammad; Saris, Per Erik Joakim; Zaidi, Arsalan (2021)
    Introduction: Probiotic and postbiotic potential of thirty-two strains of lactic acid bacteria (LAB), obtained earlier from artisanal dairy sources in Pakistan, have been investigated against major multi-drug resistant (MDR) and food borne pathogenic bacteria. Methodology: LAB strains were identified by 16S rRNA gene sequencing and their antibacterial activity was assessed by the microdilution method. Four LAB isolates, Weissella confusa PL6, Enterococcus faecium PL7, and Lactobacillus delbrueckii PL11 and PL13 were shortlisted. Their ability to degrade lactose and safety for human consumption in terms of hemolysis and antibiotic susceptibility were assessed in vitro. The antibacterial components in the cell-free supernatants (CFSs) of isolate cultures were characterized biochemically by HPLC. Results: Acid neutralization but not protease treatment abolished the antibacterial activity of CFSs. Lactic, acetic and propionic acids were the main acids in the CFSs, and acid production peaked in the stationary phase of growth. The antibacterial activity of the LAB cultures resulted from secretion of organic acids that lowered the pH. The strains exhibited variable ability to degrade lactose and were non-hemolytic and susceptible to the most common antibiotics. Conclusions: These LAB strains are probiotic candidates for further investigation of their postbiotic role in naturally preserving processed foods and for attenuation of lactose intolerance.
  • Karcher, Nicolai; Nigro, Eleonora; Puncochar, Michal; Blanco-Miguez, Aitor; Ciciani, Matteo; Manghi, Paolo; Zolfo, Moreno; Cumbo, Fabio; Manara, Serena; Golzato, Davide; Cereseto, Anna; Arumugam, Manimozhiyan; Bui, Thi Phuong Nam; Tytgat, Hanne L. P.; Valles-Colomer, Mireia; de Vos, Willem M.; Segata, Nicola (2021)
    Background Akkermansia muciniphila is a human gut microbe with a key role in the physiology of the intestinal mucus layer and reported associations with decreased body mass and increased gut barrier function and health. Despite its biomedical relevance, the genomic diversity of A. muciniphila remains understudied and that of closely related species, except for A. glycaniphila, unexplored. Results We present a large-scale population genomics analysis of the Akkermansia genus using 188 isolate genomes and 2226 genomes assembled from 18,600 metagenomes from humans and other animals. While we do not detect A. glycaniphila, the Akkermansia strains in the human gut can be grouped into five distinct candidate species, including A. muciniphila, that show remarkable whole-genome divergence despite surprisingly similar 16S rRNA gene sequences. These candidate species are likely human-specific, as they are detected in mice and non-human primates almost exclusively when kept in captivity. In humans, Akkermansia candidate species display ecological co-exclusion, diversified functional capabilities, and distinct patterns of associations with host body mass. Analysis of CRISPR-Cas loci reveals new variants and spacers targeting newly discovered putative bacteriophages. Remarkably, we observe an increased relative abundance of Akkermansia when cognate predicted bacteriophages are present, suggesting ecological interactions. A. muciniphila further exhibits subspecies-level genetic stratification with associated functional differences such as a putative exo/lipopolysaccharide operon. Conclusions We uncover a large phylogenetic and functional diversity of the Akkermansia genus in humans. This variability should be considered in the ongoing experimental and metagenomic efforts to characterize the health-associated properties of A. muciniphila and related bacteria.
  • Prieto, Ana M. Guzman; van Schaik, Willem; Rogers, Malbert R. C.; Coque, Teresa M.; Baquero, Fernando; Corander, Jukka; Willems, Rob J. L. (2016)
    Enterococci are Gram-positive bacteria that are found in plants, soil and as commensals of the gastrointestinal tract of humans, mammals, and insects. Despite their commensal nature, they have also become globally important nosocomial pathogens. Within the genus Enterococcus. Enterococcus faecium, and Enterococcus faecalis are clinically most relevant. In this review, we will discuss how E. faecium and E. faecalis have evolved to become a globally disseminated nosocomial pathogen. E faecium has a defined sub-population that is associated with hospitalized patients and is rarely encountered in community settings. These hospital associated clones are characterized by the acquisition of adaptive genetic elements, including genes involved in metabolism, biofilm formation, and antibiotic resistance. In contrast to E. faecium, clones of E. faecalis isolated from hospitalized patients, including strains causing clinical infections, are not exclusively found in hospitals but are also present in healthy individuals and animals. This observation suggests that the division between commensals and hospital-adapted lineages is less clear for E. faecalis than for E. faecium. In addition, genes that are reported to be associated with virulence of E. faecalis are often not unique to clinical isolates, but are also found in strains that originate from commensal niches. As a reflection of more ancient association of E. faecalis with different hosts, these determinants Thus, they may not represent genuine virulence genes but may act as host adaptive functions that are useful in a variety of intestinal environments. The scope of the review is to summarize recent trends in the emergence of antibiotic resistance and explore recent developments in the molecular epidemiology, population structure and mechanisms of adaptation of E. faecium and E faecalls.
  • Pöntinen, Anna; Aalto-Araneda, Mariella; Lindström, Miia; Korkeala, Hannu (2017)
    Listeria monocytogenes is one of the most heat-resistant non-sporeforming food-borne pathogens and poses a notable risk to food safety, particularly when mild heat treatments are used in food processing and preparation. While general heat stress properties and response mechanisms of L. monocytogenes have been described, accessory mechanisms providing particular L. monocytogenes strains with the advantage of enhanced heat resistance are unknown. Here, we report plasmidmediated heat resistance of L. monocytogenes for the first time. This resistance is mediated by the ATP-dependent protease ClpL. We tested the survival of two wildtype L. monocytogenes strains-both of serotype 1/2c, sequence type ST9, and high sequence identity-at high temperatures and compared their genome composition in order to identify genetic mechanisms involved in their heat survival phenotype. L. monocytogenes AT3E was more heat resistant (0.0 CFU/ml log(10) reduction) than strain AL4E (1.4 CFU/ml log(10) reduction) after heating at 55 degrees C for 40 min. A prominent difference in the genome compositions of the two strains was a 58-kb plasmid (pLM58) harbored by the heat-resistant AT3E strain, suggesting plasmid-mediated heat resistance. Indeed, plasmid curing resulted in significantly decreased heat resistance (1.1 CFU/ml log(10) reduction) at 55 degrees C. pLM58 harbored a 2,115-bp open reading frame annotated as an ATP-dependent protease (ClpL)-encoding clpL gene. Introducing the clpL gene into a natively heat-sensitive L. monocytogenes strain (1.2 CFU/ml log(10) reduction) significantly increased the heat resistance of the recipient strain (0.4 CFU/ml log(10) reduction) at 55 degrees C. Plasmid-borne ClpL is thus a potential predictor of elevated heat resistance in L. monocytogenes. IMPORTANCE Listeria monocytogenes is a dangerous food pathogen causing the severe illness listeriosis that has a high mortality rate in immunocompromised individuals. Although destroyed by pasteurization, L. monocytogenes is among the most heat-resistant non-spore-forming bacteria. This poses a risk to food safety, as listeriosis is commonly associated with ready-to-eat foods that are consumed without thorough heating. However, L. monocytogenes strains differ in their ability to survive high temperatures, and comprehensive understanding of the genetic mechanisms underlying these differences is still limited. Whole-genome-sequence analysis and phenotypic characterization allowed us to identify a novel plasmid, designated pLM58, and a plasmid-borne ATP-dependent protease (ClpL), which mediated heat resistance in L. monocytogenes. As the first report on plasmid-mediated heat resistance in L. monocytogenes, our study sheds light on the accessory genetic mechanisms rendering certain L. monocytogenes strains particularly capable of surviving high temperatures-with plasmid-borne ClpL being a potential predictor of elevated heat resistance.
  • Sassetti, Elisa; Cruz, Cristina Durante; Tammela, Päivi; Winterhalter, Mathias; Augustyns, Koen; Gribbon, Philip; Windshügel, Björn (2019)
    The serine protease Caseinolytic protease subunit P (ClpP) plays an important role for protein homeostasis in bacteria and contributes to various developmental processes, as well as virulence. Therefore, ClpP is considered as a potential drug target in Gram-positive and Gram-negative bacteria. In this study, we utilized a biochemical assay to screen several small molecule libraries of approved and investigational drugs for Escherichia coli ClpP inhibitors. The approved drugs bortezomib, cefmetazole, cisplatin, as well as the investigational drug cDPCP, and the protease inhibitor 3,4-dichloroisocoumarin (3,4-DIC) emerged as ClpP inhibitors with IC50 values ranging between 0.04 and 31 mu M. Compound profiling of the inhibitors revealed cefmetazole and cisplatin not to inhibit the serine protease bovine -chymotrypsin, and for cefmetazole no cytotoxicity against three human cell lines was detected. Surface plasmon resonance studies demonstrated all novel ClpP inhibitors to bind covalently to ClpP. Investigation of the potential binding mode for cefmetazole using molecular docking suggested a dual covalent binding to Ser97 and Thr168. While only the antibiotic cefmetazole demonstrated an intrinsic antibacterial effect, cDPCP clearly delayed the bacterial growth recovery time upon chemically induced nitric oxide stress in a ClpP-dependent manner.
  • Kõiv, Viia; Andresen, Liis; Broberg, Erik Martin; Frolova, Jekaterina; Somervuo, Panu Juhani; Auvinen, Petri; Pirhonen, Minna; Tenson, Tanel; Mäe, Andres (2013)
  • Benkwitz-Bedford, Sam; Palm, Martin; Demirtas, Talip Yasir; Mustonen, Ville; Farewell, Anne; Warringer, Jonas; Parts, Leopold; Moradigaravand, Danesh (2021)
    Escherichia coli is an important cause of bacterial infections worldwide, with multidrug-resistant strains incurring substantial costs on human lives. Besides therapeutic concentrations of antimicrobials in health care settings, the presence of subinhibitory antimicrobial residues in the environment and in clinics selects for antimicrobial resistance (AMR), but the underlying genetic repertoire is less well understood. Here, we used machine learning to predict the population doubling time and cell growth yield of 1,407 genetically diverse E. coli strains expanding under exposure to three subinhibitory concentrations of six classes of antimicrobials from single-nucleotide genetic variants, accessory gene variation, and the presence of known AMR genes. We predicted cell growth yields in the held-out test data with an average correlation (Spearman's rho) of 0.63 (0.36 to 0.81 across concentrations) and cell doubling times with an average correlation of 0.59 (0.32 to 0.92 across concentrations), with moderate increases in sample size unlikely to improve predictions further. This finding points to the remaining missing heritability of growth under antimicrobial exposure being explained by effects that are too rare or weak to be captured unless sample size is dramatically increased, or by effects other than those conferred by the presence of individual single-nucleotide polymorphisms (SNPs) and genes. Predictions based on whole-genome information were generally superior to those based only on known AMR genes and were accurate for AMR resistance at therapeutic concentrations. We pinpointed genes and SNPs determining the predicted growth and thereby recapitulated many known AMR determinants. Finally, we estimated the effect sizes of resistance genes across the entire collection of strains, disclosing the growth effects for known resistance genes in each individual strain. Our results underscore the potential of predictive modeling of growth patterns from genomic data under subinhibitory concentrations of antimicrobials, although the remaining missing heritability poses a challenge for achieving the accuracy and precision required for clinical use. IMPORTANCE Predicting bacterial growth from genome sequences is important for a rapid characterization of strains in clinical diagnostics and to disclose candidate novel targets for anti-infective drugs. Previous studies have dissected the relationship between bacterial growth and genotype in mutant libraries for laboratory strains, yet no study so far has examined the predictive power of genome sequence in natural strains. In this study, we used a high-throughput phenotypic assay to measure the growth of a systematic collection of natural Escherichia coli strains and then employed machine learning models to predict bacterial growth from genomic data under nontherapeutic subinhibitory concentrations of antimicrobials that are common in nonclinical settings. We found a moderate to strong correlation between predicted and actual values for the different collected data sets. Moreover, we observed that the known resistance genes are still effective at sublethal concentrations, pointing to clinical implications of these concentrations.
  • Pyorälä, Satu; Baptiste, Keith Edward; Cary, Boudewijn; van Duijkeren, Engeline; Greko, Christina; Moreno, Miguel A.; Constanca Matias Ferreira Pomba, M.; Rantala, Merja; Ruzauskas, Modestas; Sanders, Pascal; Threlfall, E. John; Torren-Edo, Jordi; Torneke, Karolina (2014)
  • Suzuki, Satoru; Nakanishi, Sayoko; Tamminen, Manu; Yokokawa, Taichi; Sato-Takabe, Yuki; Ohta, Kohei; Chou, Hsin-Yiu; Muziasari, Windi I.; Virta, Marko (2019)
    The use of antibiotics in aquaculture causes selection pressure for antibiotic-resistant bacteria (ARB). Antibiotic resistance genes (ARGs) may persist in ARB and the environment for long time even after stopping drug administration. Here we show monthly differences in the occurrences of genes conferring resistance to sulfonamides (i.e. sul1, sul2, sul3), and tetracyclines (tet(M)) in Japanese aquaculture seawater accompanied by records of drug administration. sul2 was found to persist throughout the year, whereas the occurrences of sul1, sul3, and tet(M) changed month-to-month. sul3 and tet(M) were detected in natural bacterial assemblages in May and July, but not in colony-forming bacteria, thus suggesting that the sul3 was harbored by the non-culturable fraction of the bacterial community. Comparison of results from Taiwanese, Japanese, and Finnish aquaculture waters reveals that the profile of sul genes and tet(M) in Taiwan resembles that in Japan, but is distinct from that in Finland. To our knowledge, this work represents the first report to use the same method to compare the dynamics of sul genes and tet(M) in aquaculture seawater in different countries. (C) 2019 Elsevier B.V. All rights reserved.
  • Munsch-Alatossava, Patricia; Alatossava, Tapani (2020)
    Worldwide, the dairy sector remains of vital importance for food production despite severe environmental constraints. The production and handling conditions of milk, a rich medium, promote inevitably the entrance of microbial contaminants, with notable impact on the quality and safety of raw milk and dairy products. Moreover, the persistence of high concentrations of microorganisms (especially bacteria and bacterial spores) in biofilms (BFs) present on dairy equipment or environments constitutes an additional major source of milk contamination from pre- to post-processing stages: in dairies, BFs represent a major concern regarding the risks of disease outbreaks and are often associated with significant economic losses. One consumption trend toward "raw or low-processed foods" combined with current trends in food production systems, which tend to have more automation and longer processing runs with simultaneously more stringent microbiological requirements, necessitate the implementation of new and obligatory sustainable strategies to respond to new challenges regarding food safety. Here, in light of studies, performed mainly with raw milk, that considered dominant "planktonic" conditions, we reexamine the changes triggered by cold storage alone or combined with nitrogen gas (N-2) flushing on bacterial populations and discuss how the observed benefits of the treatment could also contribute to limiting BF formation in dairies.
  • Karkman, Antti; Berglund, Fanny; Flach, Carl-Fredrik; Kristiansson, Erik; Larsson, D. G. Joakim (2020)
    Antibiotic resistance surveillance through regional and up-to-date testing of clinical isolates is a foundation for implementing effective empirical treatment. Surveillance data also provides an overview of geographical and temporal changes that are invaluable for guiding interventions. Still, due to limited infrastructure and resources, clinical surveillance data is lacking in many parts of the world. Given that sewage is largely made up of human fecal bacteria from many people, sewage epidemiology could provide a cost-efficient strategy to partly fill the current gap in clinical surveillance of antibiotic resistance. Here we explored the potential of sewage metagenomic data to assess clinical antibiotic resistance prevalence using environmental and clinical surveillance data from across the world. The sewage resistome correlated to clinical surveillance data of invasive Escherichia coli isolates, but none of several tested approaches provided a sufficient resolution for clear discrimination between resistance towards different classes of antibiotics. However, in combination with socioeconomic data, the overall clinical resistance situation could be predicted with good precision. We conclude that analyses of bacterial genes in sewage could contribute to informing management of antibiotic resistance. Karkman et al. explore how well available global sewage metagenomic data can predict clinical resistance prevalence using different models. A combination of sewage metagenomic data with socioeconomic factors predicts overall clinical resistance well, but still has limited ability to discriminate between resistance to different classes of antibiotics.