Browsing by Subject "ANTIGEN"

Sort by: Order: Results:

Now showing items 1-20 of 23
  • Fusciello, Manlio; Fontana, Flavia; Tähtinen, Siri; Capasso, Cristian; Feola, Sara; da Silva Lopes Martins, Beatriz; Chiaro, Jacopo; Peltonen, Karita; Ylösmäki, Leena; Ylösmäki, Erkko; Hamdan Hissaoui, Firas; Kari, Otto K.; Ndika, Joseph; Alenius, Harri; Urtti, Arto; Hirvonen, Jouni T.; Santos, Hélder A.; Cerullo, Vincenzo (2019)
    Virus-based cancer vaccines are nowadays considered an interesting approach in the field of cancer immunotherapy, despite the observation that the majority of the immune responses they elicit are against the virus and not against the tumor. In contrast, targeting tumor associated antigens is effective, however the identification of these antigens remains challenging. Here, we describe ExtraCRAd, a multi-vaccination strategy focused on an oncolytic virus artificially wrapped with tumor cancer membranes carrying tumor antigens. We demonstrate that ExtraCRAd displays increased infectivity and oncolytic effect in vitro and in vivo. We show that this nanoparticle platform controls the growth of aggressive melanoma and lung tumors in vivo both in preventive and therapeutic setting, creating a highly specific anti-cancer immune response. In conclusion, ExtraCRAd might serve as the next generation of personalized cancer vaccines with enhanced features over standard vaccination regimens, representing an alternative way to target cancer.
  • Fontana, Flavia; Albertini, Silvia; Correia, Alexandra; Kemell, Marianna Leena; Lindgren, Rici; Mäkilä, Ermei; Salonen, Jarno; Hirvonen, Jouni Tapio; Ferrari, Franca; Almeida Santos, Helder (2018)
    Biohybrid nanosystems are at the center of personalized medicine, affording prolonged circulation time and targeting to the disease site, and serving as antigenic sources of vaccines. The optimization and functionality parameters of these nanosystems vary depending on the properties of the core particles. In this work, the effects of the core particles’ surface charge and hydrophobicity are evaluated on the nanosystem coating with vesicles derived from plasma membrane. The measured parameters are the dimensions, surface charge, shape, and stability of the biohybrid nanosystems, both in buffer and in biologically relevant media (plasma and simulated synovial fluid). Moreover, the cytocompatibility properties of the developed nanosystems are evaluated in different cell lines mimicking the target cell populations and other districts of the body involved in the distribution and elimination of the nanoparticles. Finally, the immunological profile of the particles is investigated, highlighting the absence of immune activation promoted by the nanoplatforms.
  • Fontana, Flavia; Fusciello, Manlio; Groeneveldt, Christianne; Capasso, Cristian; Chiaro, Jacopo; Feola, Sara; Liu, Zehua; Mäkilä, Ermei; Salonen, Jarno; Hirvonen, Jouni; Cerullo, Vincenzo; Santos, Hélder A. (2019)
    Recent approaches in the treatment of cancer focus on involving the immune system to control the tumor growth. The administration of immunotherapies, like checkpoint inhibitors, has shown impressive results in the long term survival of patients. Cancer vaccines are being investigated as further tools to prime tumor-specific immunity. Biomaterials show potential as adjuvants in the formulation of vaccines, and biomimetic elements derived from the membrane of tumor cells may widen the range of antigens contained in the vaccine. Here, we show how mice presenting an aggressive melanoma tumor model treated twice with the complete nanovaccine formulation showed control on the tumor progression, while in a less aggressive model, the animals showed remission and control on the tumor progression, with a modification in the immunological profile of the tumor microenvironment. We also prove that co-administration of the nanovaccine together with a checkpoint inhibitor increases the efficacy of the treatment (87.5% of the animals responding, with 2 remissions) compared to the checkpoint inhibitor alone in the B16.OVA model. Our platform thereby shows potential applications as a cancer nanovaccine in combination with the standard clinical care treatment for melanoma cancers.
  • Zhang, Kaiyi; Tao, Cong; Xu, Jianping; Ruan, Jinxue; Xia, Jihan; Zhu, Wenjuan; Xin, Leilei; Ye, Huaqiong; Xie, Ning; Xia, Boce; Li, Chenxiao; Wu, Tianwen; Wang, Yanfang; Schroyen, Martine; Xiao, Xinhua; Fan, Jiangao; Yang, Shulin (2021)
    Anti-inflammatory therapies have the potential to become an effective treatment for obesity-related diseases. However, the huge gap of immune system between human and rodent leads to limitations of drug discovery. This work aims at constructing a transgenic pig model with higher risk of metabolic diseases and outlining the immune responses at the early stage of metaflammation by transcriptomic strategy. We used CRISPR/Cas9 techniques to targeted knock-in three humanized disease risk genes, GIPR(dn) , hIAPP and PNPLA3(I148M) . Transgenic effect increased the risk of metabolic disorders. Triple-transgenic pigs with short-term diet intervention showed early symptoms of type 2 diabetes, including glucose intolerance, pancreatic lipid infiltration, islet hypertrophy, hepatic lobular inflammation and adipose tissue inflammation. Molecular pathways related to CD8(+) T cell function were significantly activated in the liver and visceral adipose samples from triple-transgenic pigs, including antigen processing and presentation, T-cell receptor signaling, co-stimulation, cytotoxicity, and cytokine and chemokine secretion. The similar pro-inflammatory signaling in liver and visceral adipose tissue indicated that there might be a potential immune crosstalk between the two tissues. Moreover, genes that functionally related to liver antioxidant activity, mitochondrial function and extracellular matrix showed distinct expression between the two groups, indicating metabolic stress in transgenic pigs' liver samples. We confirmed that triple-transgenic pigs had high coincidence with human metabolic diseases, especially in the scope of inflammatory signaling at early stage metaflammation. Taken together, this study provides a valuable large animal model for the clinical study of metaflammation and metabolic diseases.
  • Holm, Matilda; Saraswat, Mayank; Joenväärä, Sakari; Ristimäki, Ari; Haglund, Caj; Renkonen, Risto (2018)
    Over 1.4 million people are diagnosed with colorectal cancer (CRC) each year, making it the third most common cancer in the world. Increased screening and therapeutic modalities including improved combination treatments have reduced CRC mortality, although incidence and mortality rates are still increasing in some areas. Serum-based biomarkers are mainly used for follow-up of cancer, and are ideal due to the ease and minimally invasive nature of sample collection. Unfortunately, CEA and other serum markers have too low sensitivity for screening and preoperative diagnostic purposes. Increasing interest is focused on the possible use of biomarkers for predicting treatment response and prognosis in cancer. In this study, we have performed mass spectrometry analysis (UPLC-UDMSE) of serum samples from 19 CRC patients. Increased levels of C-reactive protein (CRP), which occur during local inflammation and the presence of a systemic inflammatory response, have been linked to poor prognosis in CRC patients. We chose to analyze samples according to CRP values by dividing them into the categories CRP 30, and, separately, according to short and long 5-year survival. The aim was to discover differentially expressed proteins associated with poor prognosis and shorter survival. We quantified 256 proteins and performed detailed statistical analyses and pathway analysis. We discovered multiple proteins that are up- or downregulated in patients with CRP >30 as compared to CRP
  • Huilaja, Laura; Makikallio, Kaarin; Hannula-Jouppi, Katariina; Vakeva, Liisa; Hook-Nikanne, Johanna; Tasanen, Kaisa (2015)
    Gestational pemphigoid, a rare autoimmune skin disease typically occurring during pregnancy, is caused by autoantibodies against collagen XVII. Clinically it is characterised by severe itching followed by erythematous and bullous lesions of the skin. Topical or oral glucocorticoids usually relieve symptoms, but in more severe cases systemic immunosuppressive treatments are needed. Data on immunosuppressive medication controlling gestational pemphigoid are sparse. We report 3 intractable cases of gestational pemphigoid treated with cyclosporine.
  • Soronen, Veera; Talala, Kirsi; Raitanen, Jani; Taari, Kimmo; Tammela, Teuvo; Auvinen, Anssi (2021)
    Objective To evaluate digital rectal examination (DRE) as a predictor of prostate cancer (PC) at serum PSA level 3.0-3.9 ng/ml. We compared the PC incidence rates of men with different screening test results in this PSA range and analyzed DRE in comparison with free/total PSA ratio as an additional screening test. Materials and methods Using data from the FinRSPC trial, PC incidence rate ratios (IRR) for groups defined by the secondary screening test results (DRE vs. free/total PSA) were calculated for 17-year follow-up, using adjustment for age, family history of PC and place of residence. Screening test performance was evaluated by calculating sensitivity, specificity, positive and negative predictive value, and likelihood ratio. Results The IRR for men with a positive DRE compared to those with a negative result was 1.40 (95% confidence interval (CI) 1.00-1.96), while the IRR for men with a positive free/total PSA result compared to those with a negative one was 1.62 (95% CI 1.08-2.43). The estimated sensitivity was 0.15 (95% CI 0.11-0.20, 40/270) for DRE and 0.32 (95% CI 0.23-0.41, 36/113) for free/total PSA, and the specificity 0.91 (95% CI 0.88-0.93, 419/461) for DRE and 0.85 (95% CI 0.78-0.90, 134/158) for free/total PSA. Conclusions Our results do not support utility of DRE as a screening test for PC at serum PSA level 3.0-3.9 ng/ml, while the results regarding free/total PSA determination were more encouraging and reconfirm the decision to switch from DRE to free/total PSA.
  • Peräsaari, J. P.; Jaatinen, T.; Merenmies, J. (2018)
    The virtual crossmatch, which is based on single antigen bead technology, is used in the prediction of crossmatch results. However, this assay differs in sensitivity and specificity from crossmatch methods. In our study, the results of physical crossmatches, performed with three different methods, were assessed against virtual cross match results. The aim was to determine the potential cut-off values for donor specific antibodies (DSA) that would predict the crossmatch results obtained by different methods. The results of different crossmatch techniques were correlated with the virtual crossmatch. The receiver operating characteristic (ROC) analysis revealed the Flow cytometric crossmatch (FCXM) and Luminex crossmatch (LXM) to be the most accurate, with area under curve (AUC) values of 0.861 and 0.805, respectively. While we found that the virtual crossmatch correlated well with all the crossmatch results, FCXM produced the best results (83% of the DSA detected). LXM outperformed the other tests in terms of the accuracy in separating class II DSA.
  • Tahtinen, Siri; Kaikkonen, Saija; Merisalo-Soikkeli, Maiju; Gronberg-Vaha-Koskela, Susanna; Kanerva, Anna; Parviainen, Suvi; Vaha-Koskela, Markus; Hemminki, Akseli (2015)
    Unfavorable ratios between the number and activation status of effector and suppressor immune cells infiltrating the tumor contribute to resistance of solid tumors to T-cell based therapies. Here, we studied the capacity of FDA and EMA approved recombinant cytokines to manipulate this balance in favor of efficient anti-tumor responses in B16. OVA melanoma bearing C57BL/6 mice. Intratumoral administration of IFN-alpha 2, IFN-gamma, TNF-alpha, and IL-2 significantly enhanced the anti-tumor effect of ovalbumin-specific CD8+ T-cell (OT-I) therapy, whereas GM-CSF increased tumor growth in association with an increase in immunosuppressive cell populations. None of the cytokines augmented tumor trafficking of OT-I cells significantly, but injections of IFN-alpha 2, IFN-gamma and IL-2 increased intratumoral cytokine secretion and recruitment of endogenous immune cells capable of stimulating T-cells, such as natural killer and maturated CD11c+ antigen-presenting cells. Moreover, IFN-alpha 2 and IL-2 increased the levels of activated tumor-infiltrating CD8+ T-cells concomitant with reduction in the CD8+ T-cell expression of anergy markers CTLA-4 and PD-1. In conclusion, intratumoral administration of IFN-alpha 2, IFN-gamma and IL-2 can lead to immune sensitization of the established tumor, whereas GM-CSF may contribute to tumor-associated immunosuppression. The results described here provide rationale for including local administration of immunostimulatory cytokines into T-cell therapy regimens. One appealing embodiment of this would be vectored delivery which could be advantageous over direct injection of recombinant molecules with regard to efficacy, cost, persistence and convenience.
  • Huilaja, Laura; Makikallio, Kaarin; Sormunen, Raija; Lohi, Jouko; Hurskainen, Tiina; Tasanen, Kaisa (2013)
  • Hetzel, Udo; Szirovicza, Leonora; Smura, Teemu; Prahauser, Barbara; Vapalahti, Olli; Kipar, Anja; Hepojoki, Jussi (2019)
    Hepatitis D virus (HDV) forms the genus Deltavirus unassigned to any virus family. HDV is a satellite virus and needs hepatitis B virus (HBV) to make infectious particles. Deltaviruses are thought to have evolved in humans, since for a long time, they had not been identified elsewhere. Herein we report, prompted by the recent discovery of an HDV-like agent in birds, the identification of a deltavirus in snakes (Boa constrictor) designated snake HDV (sHDV). The circular 1,711-nt RNA genome of sHDV resembles human HDV (hHDV) in its coding strategy and size. We discovered sHDV during a metatranscriptomic study of brain samples of a Boa constrictor breeding pair with central nervous system signs. Applying next-generation sequencing (NGS) to brain, blood, and liver samples from both snakes, we did not find reads matching hepadnaviruses. Sequence comparison showed the snake delta antigen (sHDAg) to be 55% and 37% identical to its human and avian counterparts. Antiserum raised against recombinant sHDAg was used in immunohistology and demonstrated a broad viral target cell spectrum, including neurons, epithelial cells, and leukocytes. Using RT-PCR, we also detected sHDV RNA in two juvenile offspring and in a water python (Liasis mackloti savuensis) in the same snake colony, potentially indicating vertical and horizontal transmission. Screening of 20 randomly selected boas from another breeder by RT-PCR revealed sHDV infection in three additional snakes. The observed broad tissue tropism and the failure to detect accompanying hepadnavirus suggest that sHDV could be a satellite virus of a currently unknown enveloped virus. IMPORTANCE So far, the only known example of deltaviruses is the hepatitis delta virus (HDV). HDV is speculated to have evolved in humans, since deltaviruses were until very recently found only in humans. Using a metatranscriptomic sequencing approach, we found a circular RNA, which resembles that of HDV in size and coding strategy, in a snake. The identification of similar deltaviruses in distantly related species other than humans indicates that the previously suggested hypotheses on the origins of deltaviruses need to be updated. It is still possible that the ancestor of deltaviruses emerged from cellular RNAs; however, it likely would have happened much earlier in evolution than previously thought. These findings open up completely new avenues in evolution and pathogenesis studies of deltaviruses.
  • Wang, Shiqi; Wannasarit, Saowanee; Figueiredo, Patricia; Molinaro, Giuseppina; Ding, Yaping; Correia, Alexandra; Casettari, Luca; Wiwattanapatapee, Ruedeekorn; Hirvonen, Jouni; Liu, Dongfei; Li, Wei; Santos, Hélder A. (2021)
    In this study, a rationally designed nanocomposite (BUDPDA@MAP) composed of polydopamine (PDA) nanoparticle and anti‐inflammatory drug budesonide (BUD) encapsulated in a pH‐responsive endosomolytic polymer (poly(butyl methacrylate‐co‐methacrylic acid) grafted acetalated dextran, denoted by MAP), is proposed. The uniform nanocomposite is prepared using a microfluidic device. At low endosomal pH (5.5), MAP destabilizes the endosomal membranes for the cytoplasmic delivery of PDA, and releases BUD simultaneously, resulting in a greater reactive oxygen species scavenging capability than both the free drug and PDA alone. The combined therapeutic efficacy from PDA and BUD also leads to a successful macrophage phenotype switch from pro‐inflammatory M1 to anti‐inflammatory M2.
  • Kinnunen, Paula Maria; Inkeroinen, Hanna; Ilander, Mette; Kallio, Eva Riikka; Heikkilä, Henna Pauliina; Koskela, Esa; Mappes, Tapio; Palva, Airi; Vaheri, Antti; Kipar, Anja; Vapalahti, Olli (2011)
  • Bozcal, Elif; Dagdeviren, Melih; Uzel, Atac; Skurnik, Mikael (2017)
    It is crucial to understand the in vitro and in vivo regulation of the virulence factor genes of bacterial pathogens. In this study, we describe the construction of a versatile reporter system for Yersinia enterocolitica serotype O:3 (YeO3) based on the luxCDABE operon. In strain YeO3-luxCDE we integrated the luciferase substrate biosynthetic genes, luxCDE, into the genome of the bacterium so that the substrate is constitutively produced. The luxAB genes that encode the luciferase enzyme were cloned into a suicide vector to allow cloning of any promoter-containing fragment upstream the genes. When the obtained suicide-construct is mobilized into YeO3-luxCDE bacteria, it integrates into the recipient genome via homologous recombination between the cloned promoter fragment and the genomic promoter sequence and thereby generates a single-copy and stable promoter reporter. Lipopolysaccharide (LPS) O-antigen (O-ag) and outer core hexasaccharide (OC) of YeO3 are virulence factors necessary to colonization of the intestine and establishment of infection. To monitor the activities of the OC and O-ag gene cluster promoters we constructed the reporter strains YeO3-P-oc::luxAB and YeO3-P-op1::luxAB, respectively. In vitro, at 37 degrees C both promoter activities were highest during logarithmic growth and decreased when the bacteria entered stationary growth phase. At 22 degrees C the OC gene cluster promoter activity increased during the late logarithmic phase. Both promoters were more active in late stationary phase. To monitor the promoter activities in vivo, mice were infected intragastrically and the reporter activities monitored by the IVIS technology. The mouse experiments revealed that both LPS promoters were well expressed in vivo and could be detected by IVIS, mainly from the intestinal region of orally infected mice.
  • Bergroth, Robin; Matikainen, Mika; Rannikko, Antti (2021)
    The prevalence of prostate cancer (PCa) is increasing. As the prognosis of PCa continues to improve, the increasing follow-up requirements after radical prosta-tectomy or radiotherapy puts significant pressure on health care systems. Follow-up is typically conducted by treating urologists, specialized nurses, or general practitioners. Despite the increase in patient numbers, resources are not likely to increase in proportion. Furthermore, the ongoing COVID-19 pandemic has led to a paradigm shift in our thinking towards telehealth solutions, primarily to avoid or limit physical contact and to spare resources. Here we report our novel telehealth solution for PCa follow-up, called Mobile PSA. Currently, more than 4500 PCa patients have been using Mobile PSA follow-up in our center. Mobile PSA can increase follow-up accuracy, as all biochemical relapses will be detected in a timely manner, can significantly reduce delays in reporting prostate-specific antigen results to patients, and can significantly reduce costs. Patient summary: We assessed a new telehealth information system for prostate cancer follow-up that does not use an app. More than 4500 prostate cancer patients in our center have used this system, called Mobile PSA, for follow-up. The system significantly reduces delays in reporting prostate-specific antigen (PSA) test results to patients, increases the accuracy of detecting recurrence of elevated PSA, and reduces costs. (c) 2021 The Authors. Published by Elsevier B.V. on behalf of European Association of Urology. This is an open access article under the CC BY-NC-ND license (http://creati-vecommons.org/licenses/by-nc-nd/4.0/).
  • Lumen, Dave; Vugts, Danielle; Chomet, Marion; Imlimthan, Surachet; Sarparanta, Mirkka; Vos, Ricardo; Schreurs, Maxime; Verlaan, Mariska; Lang, Pauline A.; Hippeläinen, Eero; Beaino, Wissam; Windhorst, Albert D.; Airaksinen, Anu J. (2022)
    The recent advances in the production of engineered antibodies have facilitated the development and application of tailored, target-specific antibodies. Positron emission tomography (PET) of these antibody-based drug candidates can help to better understand their in vivo behavior. In this study, we report an in vivo proof-ofconcept pretargeted immuno-PET study where we compare a pretargeting vs targeted approach using a new Zr-89-labeled tetrazine as a bio-orthogonal ligand in an inverse electron demand Diels-Alder (IEDDA) in vivo click reaction. A CD44v6-selective chimeric monoclonal U36 was selected as the targeting antibody because it has potential in immuno-PET imaging of head-and-neck squamous cell carcinoma (HNSCC). Zirconium-89 (t(1/2) = 78.41 h) was selected as the radionuclide of choice to be able to make a head-to-head comparison of the pretargeted and targeted approaches. [Zr-89]Zr-DFO-PEG S -Tz ([Zr-89]Zr-3) was synthesized and used in pretargeted PET imaging of HNSCC xenografts (VU-SCC-OE) at 24 and 48 h after administration of a trans-cyclooctene (TCO)-functionalized U36. The pretargeted approach resulted in lower absolute tumor uptake than the targeted approach (1.5 +/- 0.2 vs 17.1 +/- 3.0% ID/g at 72 h p.i. U36) but with comparable tumor-to-non-target tissue ratios and significantly lower absorbed doses. In conclusion, anti-CD44v6 monoclonal antibody U36 was successfully used for Zr-89-immuno-PET imaging of HNSCC xenograft tumors using both a targeted and pretargeted approach. The results not only support the utility of the pretargeted approach in immuno-PET imaging but also demonstrate the challenges in achieving optimal in vivo IEDDA reaction efficiencies in relation to antibody pharmacokinetics.
  • Szirovicza, Leonora; Hetzel, Udo; Kipar, Anja; Hepojoki, Jussi (2022)
    Human hepatitis D virus (HDV) depends on hepatitis B virus co-infection and its glycoproteins for infectious particle formation. HDV was the sole known deltavirus for decades and believed to be a human-only pathogen. However, since 2018, several groups reported finding HDV-like agents from various hosts but without co-infecting hepadnaviruses. In vitro systems enabling helper virus-independent replication are key for studying the newly discovered deltaviruses. Others and we have successfully used constructs containing multimers of the deltavirus genome for the replication of various deltaviruses via transfection in cell culture. Here, we report the establishment of deltavirus infectious clones with 1.2x genome inserts bearing two copies of the genomic and antigenomic ribozymes. We used Swiss snake colony virus 1 as the model to compare the ability of the previously reported "2x genome" and the "1.2x genome" infectious clones to initiate replication in cell culture. Using immunofluorescence, qRT-PCR, immuno- and northern blotting, we found the 2x and 1.2x genome clones to similarly initiate deltavirus replication in vitro and both induced a persistent infection of snake cells. The 1.2x genome constructs enable easier introduction of modifications required for studying deltavirus replication and cellular interactions.
  • Rissanen, Ilona; Krumm, Stefanie A.; Stass, Robert; Whitaker, Annalis; Voss, James E.; Bruce, Emily A.; Rothenberger, Sylvia; Kunz, Stefan; Burton, Dennis R.; Huiskonen, Juha T.; Botten, Jason W.; Bowden, Thomas A.; Doores, Katie J. (2021)
    Hantaviruses are a group of emerging pathogens capable of causing severe disease upon zoonotic transmission to humans. The mature hantavirus surface presents higher-order tetrameric assemblies of two glycoproteins, Gn and Gc, which are responsible for negotiating host cell entry and constitute key therapeutic targets. Here, we demonstrate that recombinantly derived Gn from Hantaan virus (HTNV) elicits a neutralizing antibody response (serum dilution that inhibits 50% infection [ID50], 1:200 to 1:850) in an animal model. Using antigen-specific B cell sorting, we isolated monoclonal antibodies (mAbs) exhibiting neutralizing and non-neutralizing activity, termed mAb HTN-Gn1 and mAb nn-ITN-Gn2, respectively. Crystallographic analysis reveals that these mAbs target spatially distinct epitopes at disparate sites of the N-terminal region of the HTNV Gn ectodomain. Epitope mapping onto a model of the higher order (Gn-Gc)(4) spike supports the immune accessibility of the mAb HTN-Gn1 epitope, a hypothesis confirmed by electron cryo-tomography of the antibody with virus-like particles. These data define natively exposed regions of the hantaviral Gn that can be targeted in immunogen design. IMPORTANCE The spillover of pathogenic hantaviruses from rodent reservoirs into the human population poses a continued threat to human health. Here, we show that a recombinant form of the Hantaan virus (HTNV) surface-displayed glycoprotein, Gn, elicits a neutralizing antibody response in rabbits. We isolated a neutralizing (HTN-Gn1) and a non-neutralizing (nn-ITN-Gn2) monoclonal antibody and provide the first molecular-level insights into how the Gn glycoprotein may be targeted by the antibody-mediated immune response. These findings may guide rational vaccine design approaches focused on targeting the hantavirus glycoprotein envelope.