Sort by: Order: Results:

Now showing items 1-3 of 3
  • Hemminki, Otto; Parviainen, Suvi; Juhila, Juuso; Turkki, Riku; Linder, Nina; Lundin, Johan; Kankainen, Matti; Ristimaki, Ari; Koski, Anniina; Liikanen, Ilkka; Oksanen, Minna; Nettelbeck, Dirk M.; Kairemo, Kalevi; Partanen, Kaarina; Joensuu, Timo; Kanerva, Anna; Hemminki, Akseli (2015)
    Oncolytic viruses that selectively replicate in tumor cells can be used for treatment of cancer. Accumulating data suggests that virus induced oncolysis can enhance anti-tumor immunity and break immune tolerance. To capitalize on the immunogenic nature of oncolysis, we generated a quadruple modified oncolytic adenovirus expressing granulocyte-macrophage colony-stimulating factor (GMCSF). Ad5/3-E2F-Delta 24-GMCSF (CGTG-602) was engineered to contain a tumor specific E2F1 promoter driving an E1 gene deleted at the retinoblastoma protein binding site ("Delta 24"). The fiber features a knob from serotype 3 for enhanced gene delivery to tumor cells. The virus was tested preclinically in vitro and in vivo and then 13 patients with solid tumors refractory to standard therapies were treated. Treatments were well tolerated and frequent tumor-and adenovirus-specific T-cell immune responses were seen. Overall, with regard to tumor marker or radiological responses, signs of antitumor efficacy were seen in 9/12 evaluable patients (75%). The radiological disease control rate with positron emission tomography was 83% while the response rate (including minor responses) was 50%. Tumor biopsies indicated accumulation of immunological cells, especially T-cells, to tumors after treatment. RNA expression analyses of tumors indicated immunological activation and metabolic changes secondary to virus replication.
  • Hemminki, Otto; Oksanen, Minna; Taipale, Kristian; Liikanen, Ilkka; Koski, Anniina; Joensuu, Timo; Kanerva, Anna; Hemminki, Akseli (2018)
    The first US Food and Drug Administration (FDA)- and EMA-approved oncolytic virus has been available since 2015. However, there are no markers available that would predict benefit for the individual patient. During 2007-2012, we treated 290 patients with advanced chemotherapy-refractory cancers, using 10 different oncolytic adenoviruses. Treatments were given in a Finnish Medicines Agency (FIMEA)-regulated individualized patient treatment program (the Advanced Therapy Access Program [ATAP]), which required long-term follow-up of patients, which is presented here. Focusing on the longest surviving patients, some key clinical and biological features are presented as "oncograms." Some key attributes that could be captured in the oncogram are suggested to predict treatment response and survival after oncolytic adenovirus treatment. The oncogram includes immunological laboratory parameters assessed in peripheral blood (leukocytes, neutrophil-to-lymphocyte ratio, interleukin-8 [IL-81, HMGB1, antiviral neutralizing antibody status), features of the patient (gender, performance status), tumor features (histological tumor type, tumor load, region of metastases), and oncolytic virus-specific features (arming of the virus). The retrospective approach used here facilitates verification in a prospective controlled trial setting. To our knowledge, the oncogram is the first holistic attempt to identify the patients most likely to benefit from adenoviral oncolytic virotherapy.
  • Hemminki, Otto; dos Santos, Joao Manuel; Hemminki, Akseli (2020)
    In this review, we discuss the use of oncolytic viruses in cancer immunotherapy treatments in general, with a particular focus on adenoviruses. These serve as a model to elucidate how versatile viruses are, and how they can be used to complement other cancer therapies to gain optimal patient benefits. Historical reports from over a hundred years suggest treatment efficacy and safety with adenovirus and other oncolytic viruses. This is confirmed in more contemporary patient series and multiple clinical trials. Yet, while the first viruses have already been granted approval from several regulatory authorities, room for improvement remains. As good safety and tolerability have been seen, the oncolytic virus field has now moved on to increase efficacy in a wide array of approaches. Adding different immunomodulatory transgenes to the viruses is one strategy gaining momentum. Immunostimulatory molecules can thus be produced at the tumor with reduced systemic side effects. On the other hand, preclinical work suggests additive or synergistic effects with conventional treatments such as radiotherapy and chemotherapy. In addition, the newly introduced checkpoint inhibitors and other immunomodulatory drugs could make perfect companions to oncolytic viruses. Especially tumors that seem not to be recognized by the immune system can be made immunogenic by oncolytic viruses. Logically, the combination with checkpoint inhibitors is being evaluated in ongoing trials. Another promising avenue is modulating the tumor microenvironment with oncolytic viruses to allow T cell therapies to work in solid tumors. Oncolytic viruses could be the next remarkable wave in cancer immunotherapy.