Browsing by Subject "ARABIDOPSIS"

Sort by: Order: Results:

Now showing items 1-20 of 51
  • Radhakrishnan, Dhanya; Shanmukhan, Anju Pallipurath; Kareem, Abdul; Aiyaz, Mohammed; Varapparambathu, Vijina; Toms, Ashna; Kerstens, Merijn; Valsakumar, Devisree; Landge, Amit N.; Shaji, Anil; Mathew, Mathew K.; Sawchuk, Megan G.; Scarpella, Enrico; Krizek, Beth A.; Efroni, Idan; Mähönen, Ari Pekka; Willemsen, Viola; Scheres, Ben; Prasad, Kalika (2020)
    Aerial organs of plants, being highly prone to local injuries, require tissue restoration to ensure their survival. However, knowledge of the underlying mechanism is sparse. In this study, we mimicked natural injuries in growing leaves and stems to study the reunion between mechanically disconnected tissues. We show that PLETHORA (PLT) and AINTEGUMENTA (ANT) genes, which encode stem cell-promoting factors, are activated and contribute to vascular regeneration in response to these injuries. PLT proteins bind to and activate the CUC2 promoter. PLT proteins and CUC2 regulate the transcription of the local auxin biosynthesis gene YUC4 in a coherent feed-forward loop, and this process is necessary to drive vascular regeneration. In the absence of this PLT-mediated regeneration response, leaf ground tissue cells can neither acquire the early vascular identity marker ATHB8, nor properly polarise auxin transporters to specify new venation paths. The PLT-CUC2 module is required for vascular regeneration, but is dispensable for midvein formation in leaves. We reveal the mechanisms of vascular regeneration in plants and distinguish between the wound-repair ability of the tissue and its formation during normal development.
  • Sageman-Furnas, Katelyn; Nurmi, Markus; Contag, Meike; Ploetner, Bjoern; Alseekh, Saleh; Wiszniewski, Andrew; Fernie, Alisdair R.; Smith, Lisa M.; Laitinen, Roosa A. E. (2022)
    Hybrids between Arabidopsis thaliana accessions are important in revealing the consequences of epistatic interactions in plants. F-1 hybrids between the A. thaliana accessions displaying either defense or developmental phenotypes have been revealing the roles of the underlying epistatic genes. The interaction of two naturally occurring alleles of the OUTGROWTH-ASSOCIATED KINASE (OAK) gene in Sha and Lag2-2, previously shown to cause a similar phenotype in a different allelic combination in A. thaliana, was required for the hybrid phenotype. Outgrowth formation in the hybrids was associated with reduced levels of salicylic acid, jasmonic acid and abscisic acid in petioles and the application of these hormones mitigated the formation of the outgrowths. Moreover, different abiotic stresses were found to mitigate the outgrowth phenotype. The involvement of stress and hormone signaling in outgrowth formation was supported by a global transcriptome analysis, which additionally revealed that TCP1, a transcription factor known to regulate leaf growth and symmetry, was downregulated in the outgrowth tissue. These results demonstrate that a combination of natural alleles of OAK regulates growth and development through the integration of hormone and stress signals and highlight the importance of natural variation as a resource to discover the function of gene variants that are not present in the most studied accessions of A. thaliana.
  • Pascual, Jesus; Rahikainen, Moona; Angeleri, Martina; Alegre, Sara; Gossens, Richard; Shapiguzov, Alexey; Heinonen, Arttu; Trotta, Andrea; Durian, Guido; Winter, Zsofia; Sinkkonen, Jari; Kangasjarvi, Jaakko; Whelan, James; Kangasjärvi, Saijaliisa (2021)
    Mitochondria are tightly embedded within metabolic and regulatory networks that optimize plant performance in response to environmental challenges. The best-known mitochondrial retrograde signaling pathway involves stress-induced activation of the transcription factor NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), which initiates protective responses to stress-induced mitochondrial dysfunction in Arabidopsis (Arabidopsis thaliana). Posttranslational control of the elicited responses, however, remains poorly understood. Previous studies linked protein phosphatase 2A subunit PP2A-B'gamma, a key negative regulator of stress responses, with reversible phosphorylation of ACONITASE 3 (ACO3). Here we report on ACO3 and its phosphorylation at Ser91 as key components of stress regulation that are induced by mitochondrial dysfunction. Targeted mass spectrometry-based proteomics revealed that the abundance and phosphorylation of ACO3 increased under stress, which required signaling through ANAC017. Phosphomimetic mutation at ACO3-Ser91 and accumulation of ACO3(S91D)-YFP promoted the expression of genes related to mitochondrial dysfunction. Furthermore, ACO3 contributed to plant tolerance against ultraviolet B (UV-B) or antimycin A-induced mitochondrial dysfunction. These findings demonstrate that ACO3 is both a target and mediator of mitochondrial dysfunction signaling, and critical for achieving stress tolerance in Arabidopsis leaves.
  • Wang, Xin; Ye, Lingling; Lyu, Munan; Ursache, Robertas; Löytynoja, Ari; Mähönen, Ari Pekka (2020)
    Conditional manipulation of gene expression is a key approach to investigating the primary function of a gene in a biological process. While conditional and cell-type-specific overexpression systems exist for plants, there are currently no systems available to disable a gene completely and conditionally. Here, we present a new tool with which target genes can efficiently and conditionally be knocked out by genome editing at any developmental stage. Target genes can also be knocked out in a cell-type-specific manner. Our tool is easy to construct and will be particularly useful for studying genes having null alleles that are non-viable or show pleiotropic developmental defects.
  • Hematy, Kian; De Bellis, Damien; Wang, Xin; Mähönen, Ari Pekka; Geldner, Niko (2022)
    The exocyst is the main plasma membrane vesicle-tethering complex in eukaryotes and is composed of eight different subunits. Yet, in plant genomes, many subunits display multiple copies, thought to reflect evolution of complex subtypes with divergent functions. In Arabidopsis thaliana root endodermal cells, the isoform EXO70A1 is required for positioning of CASP1 at the Casparian Strip Domain, but not for its non-targeted secretion to the plasma membrane. Here, we show that exo84b resembles exo70a1 mutants regarding CASP1 mistargeting and secretion of apoplastic proteins, but exo84b additionally affects secretion of other integral plasma membrane proteins. Moreover, conditional, cell-type-specific gene editing of the single-copy core component SEC6 allows visualization of secretion defects in plant cells with a complete lack of exocyst complex function. Our approach opens avenues for deciphering the complexity/diversity of exocyst functions in plant cells and enables analysis of central trafficking components with lethal phenotypes. Genetic analysis of exocyst isoforms reveals their distinct roles in cargo secretion.
  • Plunkett, Blue J.; Henry-Kirk, Rebecca; Friend, Adam; Diack, Robert; Helbig, Susanne; Mouhu, Katriina; Tomes, Sumathi; Dare, Andrew P.; Espley, Richard V.; Putterill, Joanna; Allan, Andrew C. (2019)
    Environmentally-responsive genes can affect fruit red colour via the activation of MYB transcription factors. The apple B-box (BBX) gene, BBX33/CONSTANS-like 11 (COL11) has been reported to influence apple red-skin colour in a light- and temperature-dependent manner. To further understand the role of apple BBX genes, other members of the BBX family were examined for effects on colour regulation. Expression of 23 BBX genes in apple skin was analysed during fruit development. We investigated the diurnal rhythm of expression of the BBX genes, the anthocyanin biosynthetic genes and a MYB activator, MYB10. Transactivation assays on the MYB10 promoter, showed that BBX proteins 1, 17, 15, 35, 51, and 54 were able to directly function as activators. Using truncated versions of the MYB10 promoter, a key region was identified for activation by BBX1. BBX1 enhanced the activation of MYB10 and MdbHLH3 on the promoter of the anthocyanin biosynthetic gene DFR. In transformed apple lines, over-expression of BBX1 reduced internal ethylene content and altered both cyanidin concentration and associated gene expression. We propose that, along with environmental signals, the control of MYB10 expression by BBXs in 'Royal Gala' fruit involves the integration of the expression of multiple BBXs to regulate fruit colour.
  • Li, Jing; Xiong, Yacen; Li, Yi; Ye, Shiqi; Yin, Qi; Gao, Siqi; Yang, Dong; Yang, Mei; Palva, E. Tapio; Deng, Xianbao (2019)
    The WRKY family is one of the largest transcription factor (TF) families in plants and plays central roles in modulating plant stress responses and developmental processes, as well as secondary metabolic regulations. Lotus (Nelumbo nucifera) is an aquatic crop that has significant food, ornamental and pharmacological values. Here, we performed an overview analysis of WRKY TF family members in lotus, and studied their functions in environmental adaptation and regulation of lotus benzylisoquinoline alkaloid (BIA) biosynthesis. A total of 65 WRKY genes were identified in the lotus genome and they were well clustered in a similar pattern with their Arabidopsis homologs in seven groups (designated I, IIa-IIe, and III), although no lotus WRKY was clustered in the group IIIa. Most lotus WRKYs were functionally paired, which was attributed to the recently occurred whole genome duplication in lotus. In addition, lotus WRKYs were regulated dramatically by salicilic acid (SA), jasmonic acid (JA), and submergence treatments, and two lotus WRKYs, NnWRKY40a and NnWRKY40b, were significantly induced by JA and promoted lotus BIA biosynthesis through activating BIA biosynthetic genes. The investigation of WRKY TFs for this basal eudicot reveals new insights into the evolution of the WRKY family, and provides fundamental information for their functional studies and lotus breeding.
  • Kimura, Sachie; Hunter, Kerri; Vaahtera, Lauri; Tran, Cuong; Citterico, Matteo; Vaattovaara, Aleksia; Rokka, Anne; Stolze, Sara Christina; Harzen, Anne; Meißner, Lena; Wilkens, Maya Melina Tabea; Hamann, Thorsten; Toyoga, Masatsugu; Nakagami, Hirofumi; Wrzaczek, Michael (2020)
    Reactive oxygen species (ROS) are important messengers in eukaryotic organisms and their production is tightly controlled. Active extracellular ROS production by NADPH oxidases in plants is triggered by receptor-like protein kinase (RLK)-dependent signaling networks. Here we show that the cysteine-rich RLK CRK2 kinase activity is required for plant growth and CRK2 exists in a preformed complex with the NADPH oxidase RBOHD in Arabidopsis. Functional CRK2 is required for the full elicitor-induced ROS burst and consequently the crk2 mutant is impaired in defense against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Our work demonstrates that CRK2 regulates plant innate immunity. We identified in vitro CRK2-dependent phosphorylation sites in the C-terminal region of RBOHD. Phosphorylation of S703 RBOHD is enhanced upon flg22 treatment and substitution of S703 with alanine reduced ROS production in Arabidopsis. Phylogenetic analysis suggests that phospho-sites in C-terminal region of RBOHD are conserved throughout the plant lineage and between animals and plants. We propose that regulation of NADPH oxidase activity by phosphorylation of the C-terminal region might be an ancient mechanism and that CRK2 is an important element in regulating MAMP-triggered ROS production.
  • Safronov, Omid; Kreuzwieser, Juergen; Haberer, Georg; Alyousif, Mohamed S.; Schulze, Waltraud; Al-Harbi, Naif; Arab, Leila; Ache, Peter; Stempfl, Thomas; Kruse, Joerg; Mayer, Klaus X.; Hedrich, Rainer; Rennenberg, Heinz; Salojarvi, Jarkko; Kangasjarvi, Jaakko (2017)
    Plants adapt to the environment by either long-term genome evolution or by acclimatization processes where the cellular processes and metabolism of the plant are adjusted within the existing potential in the genome. Here we studied the adaptation strategies in date palm, Phoenix dactylifera, under mild heat, drought and combined heat and drought by transcriptomic and metabolomic profiling. In transcriptomics data, combined heat and drought resembled heat response, whereas in metabolomics data it was more similar to drought. In both conditions, soluble carbohydrates, such as fucose, and glucose derivatives, were increased, suggesting a switch to carbohydrate metabolism and cell wall biogenesis. This result is consistent with the evidence from transcriptomics and cis-motif analysis. In addition, transcriptomics data showed transcriptional activation of genes related to reactive oxygen species in all three conditions (drought, heat, and combined heat and drought), suggesting increased activity of enzymatic antioxidant systems in cytosol, chloroplast and peroxisome. Finally, the genes that were differentially expressed in heat and combined heat and drought stresses were significantly enriched for circadian and diurnal rhythm motifs, suggesting new stress avoidance strategies.
  • Yang, Kun; Wen, Xiaopeng; Mudunuri, Suresh; Varma, G. P. Saradhi; Sablok, Gaurav (2019)
    Plants have an amazing ability to cope with wide variety of stresses by regulating the expression of genes and thus by altering the physiological status. In the past few years, canonical microRNA variants (isomiRs) have been shown to play pivotal roles by acting as regulators of the transcriptional machinery. In the present research, we present Diff isomiRs, a web-based exploratory repository of differential isomiRs across 16 sequenced plant species representing a total of 433 datasets across 21 different stresses and 158 experimental states. Diff isomiRs provides the high-throughput detection of differential isomiRs using mapping-based and model-based differential analysis revealing a total of 16,157 and 2,028 differential isomiRs, respectively. Easy-to-use and web-based exploration of differential isomiRs provides several features such as browsing of the differential isomiRs according to stress or species, as well as association of the differential isomiRs to targets and plant endogenous target mimics (PeTMs). Diff isomiRs also provides the relationship between the canonical miRNAs, isomiRs and the miRNA-target interactions. This is the first web-based large-scale repository for browsing differential isomiRs and will facilitate better understanding of the regulatory role of the isomiRs with respect to the canonical microRNAs. Diff isomiRs can be accessed at:
  • Salgado, Ana L.; Suchan, Tomasz; Pellissier, Loic; Rasmann, Sergio; Ducrest, Anne-Lyse; Alvarez, Nadir (2016)
    Elevation gradients impose large differences in abiotic and biotic conditions over short distances, in turn, likely driving differences in gene expression more than would genetic variation per se, as natural selection and drift are less likely to fix alleles at such a narrow spatial scale. As elevation increases, the pressure exerted on plants by herbivores and on arthropod herbivores by predators decreases, and organisms spanning the elevation gradient are thus expected to show lower levels of defence at high elevation. The alternative hypothesis, based on the optimal defence theory, is that defence allocation should be higher in low-resource habitats such as those at high elevation, due to higher costs associated with tissue replacement. In this study, we analyse variation with elevation in (i) defence compound content in the plant Lotus corniculatus and (ii) gene expression associated with defence against predators in the specific phytophagous moth, Zygaena filipendulae. Both species produce cyanogenic glycosides (CNglcs) such as lotaustralin and linamarin as defence mechanisms, with the moth, in addition, being able to sequester CNglcs from its host plant. Specifically, we tested the assumption that the defence-associated phenotype in plants and the gene expression in the insect herbivore should covary between low-and high-elevation environments. We found that L. corniculatus accumulated more CNglcs at high elevation, a result in agreement with the optimal defence theory. By contrast, we found that the levels of expression in the defence genes of Z. filipendulae larvae were not related to the CNglc content of their host plant. Overall, expression levels were not correlated with elevation either, with the exception of the UGT33A1 gene, which showed a marginally significant trend towards higher expression at high elevation when using a simple statistical framework. These results suggest that the defence phenotype of plants against herbivores, and subsequent herbivore sequestration machineries and de novo production, are based on a complex network of interactions.
  • Chen, Jia-Jia; Wang, Ling-Yan; Immanen, Juha; Nieminen, Kaisa; Spicer, Rachel; Helariutta, Ykä; Zhang, Jing; He, Xin-Qiang (2019)
    Tissue regeneration upon wounding in plants highlights the developmental plasticity of plants. Previous studies have described the morphological and molecular changes of secondary vascular tissue (SVT) regeneration after large-scale bark girdling in trees. However, how phytohormones regulate SVT regeneration is still unknown. Here, we established a novel in vitro SVT regeneration system in the hybrid aspen (Populus tremula x Populus tremuloides) clone T89 to bypass the limitation of using field-grown trees. The effects of phytohormones on SVT regeneration were investigated by applying exogenous hormones and utilizing various transgenic trees. Vascular tissue-specific markers and hormonal response factors were also examined during SVT regeneration. Using this in vitro regeneration system, we demonstrated that auxin and cytokinin differentially regulate phloem and cambium regeneration. Whereas auxin is sufficient to induce regeneration of phloem prior to continuous cambium restoration, cytokinin only promotes the formation of new phloem, not cambium. The positive role of cytokinin on phloem regeneration was further confirmed in cytokinin overexpression trees. Analysis of a DR5 reporter transgenic line further suggested that cytokinin blocks the re-establishment of auxin gradients, which is required for the cambium formation. Investigation on the auxin and cytokinin signalling genes indicated these two hormones interact to regulate SVT regeneration. Taken together, the in vitro SVT regeneration system allows us to make use of various molecular and genetic tools to investigate SVT regeneration. Our results confirmed that complementary auxin and cytokinin domains are required for phloem and cambium reconstruction.
  • Smet, Wouter; Sevilem, Iris; de Luis Balaguer, MA; Wybouw, B; Mor, E; Miyashima, Shunsuke; Blob, Bernhard; Roszak, Pawel; Jacobs, TB; Boekschoten, M; Hooiveld, G; Sozzani, Rosangela; Helariutta, Yrjö Eero; De Rybel, Bert (2019)
    To create a three-dimensional structure, plants rely on oriented cell divisions and cell elongation. Oriented cell divisions are specifically important in procambium cells of the root to establish the different vascular cell types [1, 2]. These divisions are in part controlled by the auxin-controlled TARGET OF MONOPTEROS5 (TMO5) and LONESOME HIGHWAY (LHW) transcription factor complex [3-7]. Loss-of-function of tmo5 or lhw clade members results in strongly reduced vascular cell file numbers, whereas ectopic expression of both TMO5 and LHW can ubiquitously induce periclinal and radial cell divisions in all cell types of the root meristem. TMO5 and LHW interact only in young xylem cells, where they promote expression of two direct target genes involved in the final step of cytokinin (CK) biosynthesis, LONELY GUY3 (LOG3) and LOG4 [8, 9] Therefore, CK was hypothesized to act as a mobile signal from the xylem to trigger divisions in the neighboring procambium cells [3, 6]. To unravel how TMO5/LHW-dependent cytokinin regulates cell proliferation, we analyzed the transcriptional responses upon simultaneous induction of both transcription factors. Using inferred network analysis, we identified AT2G28510/DOF2.1 as a cytokinin-dependent downstream target gene. We further showed that DOF2.1 controls specific procambium cell divisions without inducing other cytokinin-dependent effects such as the inhibition of vascular differentiation. In summary, our results suggest that DOF2.1 and its closest homologs control vascular cell proliferation, thus leading to radial expansion of the root.
  • Wang, Jinhui; Haapalainen, Minna; Nissinen, Anne I.; Pirhonen, Minna (2021)
    The interactions between the phloem-limited pathogen 'Candidatus Liberibacter solanacearum' haplotype C and carrot (Daucus carota subsp. sativus) were studied at 4, 5, and 9 weeks postinoculation (wpi), by combining dual RNA-Seq results with data on bacterial colonization and observations of the plant phenotype. In the infected plants, genes involved in jasmonate biosynthesis, salicylate signaling, pathogen-associated molecular pattern- and effector-triggered immunity, and production of pathogenesis-related proteins were up-regulated. At 4 wpi, terpenoid synthesis-related genes were up-regulated, presumably as a response to the psyllid feeding, whereas at 5 and 9 wpi, genes involved in both the terpenoid and flavonoid production were down-regulated and phenylpropanoid genes were up-regulated. Chloroplast-related gene expression was down-regulated, in concordance with the observed yellowing of the infected plant leaves. Both the RNA-Seq data and electron microscopy suggested callose accumulation in the infected phloem vessels, likely to impair the transport of photosynthates, while phloem regeneration was suggested by the formation of new sieve cells and the upregulation of cell wall-related gene expression. The 'Ca. L. solanacearum' genes involved in replication, transcription, and translation were expressed at high levels at 4 and 5 wpi, whereas, at 9 wpi, the Flp pilus genes were highly expressed, suggesting adherence and reducedmobility of the bacteria. The 'Ca. L. solanacearum' genes encoding ATP and C4-dicarboxylate uptake were differentially expressed between the early and late infection stages, suggesting a change in the dependence on different host-derived energy sources. HPE1 effector and salicylate hydroxylasewere expressed, presumably to suppress host cell death and salicylic acid-dependent defenses during the infection.
  • Alonso Serra, Juan Antonio; Shi, Xueping; Peaucelle, Alexis; Rastas, Pasi; Bourdon, Matthieu; Immanen, Juha; Takahashi, Junko; Koivula, Hanna; Eswaran, Gugan; Muranen, Sampo Johannes; Help-Rinta-Rahko, Hanna; Smolander, Olli-Pekka; Su, Chang; Safronov, Omid; Gerber, Lorenz; Salojärvi, Jarkko; Hagqvist, Risto; Mähönen, Ari Pekka; Helariutta, Yrjö; Nieminen, Kaisa (2020)
    Tree architecture has evolved to support a top-heavy above-ground biomass, but this integral feature poses a weight-induced challenge to trunk stability. Maintaining an upright stem is expected to require vertical proprioception through feedback between sensing stem weight and responding with radial growth. Despite its apparent importance, the principle by which plant stems respond to vertical loading forces remains largely unknown. Here, by manipulating the stem weight of downy birch (Betula pubescens) trees, we show that cambial development is modulated systemically along the stem. We carried out a genetic study on the underlying regulation by combining an accelerated birch flowering program with a recessive mutation at the ELIMAKI locus (EKI), which causes a mechanically defective response to weight stimulus resulting in stem collapse after just 3 months. We observed delayed wood morphogenesis in eki compared with WT, along with a more mechanically elastic cambial zone and radial compression of xylem cell size, indicating that rapid tissue differentiation is critical for cambial growth under mechanical stress. Furthermore, the touch-induced mechanosensory pathway was transcriptionally misregulated in eki, indicating that the ELIMAKI locus is required to integrate the weight-growth feedback regulation. By studying this birch mutant, we were able to dissect vertical proprioception from the gravitropic response associated with reaction wood formation. Our study provides evidence for both local and systemic responses to mechanical stimuli during secondary plant development.
  • Niemi, Outi; Laine, Pia; Koskinen, Patrik; Pasanen, Miia; Pennanen, Ville; Harjunpaa, Heidi; Nykyri, Johanna; Holm, Liisa; Paulin, Lars; Auvinen, Petri; Palva, E. Tapio; Pirhonen, Minna (2017)
    Bacteria of the genus Pectobacterium are economically important plant pathogens that cause soft rot disease on a wide variety of plant species. Here, we report the genome sequence of Pectobacterium carotovorum strain SCC1, a Finnish soft rot model strain isolated from a diseased potato tuber in the early 1980's. The genome of strain SCC1 consists of one circular chromosome of 4,974,798 bp and one circular plasmid of 5524 bp. In total 4451 genes were predicted, of which 4349 are protein coding and 102 are RNA genes.
  • Mukrimin, Mukrimin; Kovalchuk, Andriy; Neves, Leandro G.; Jaber, Emad H. A.; Haapanen, Matti; Kirst, Matias; Asiegbu, Fred O. (2018)
    Root and butt rot caused by members of the Heterobasidion annosum species complex is the most economically important disease of conifer trees in boreal forests. Wood decay in the infected trees dramatically decreases their value and causes considerable losses to forest owners. Trees vary in their susceptibility to Heterobasidion infection, but the genetic determinants underlying the variation in the susceptibility are not well-understood. We performed the identification of Norway spruce genes associated with the resistance to Heterobasidion parviporum infection using genome-wide exon-capture approach. Sixty-four clonal Norway spruce lines were phenotyped, and their responses to H. parviporum inoculation were determined by lesion length measurements. Afterwards, the spruce lines were genotyped by targeted resequencing and identification of genetic variants (SNPs). Genome-wide association analysis identified 10 SNPs located within 8 genes as significantly associated with the larger necrotic lesions in response to H. parviporum inoculation. The genetic variants identified in our analysis are potential marker candidates for future screening programs aiming at the differentiation of disease-susceptible and resistant trees.
  • Huang, Bin; Huang, Zhinuo; Ma, Ruifang; Chen, Jialu; Zhang, Zhijun; Yrjälä, Kim (2021)
    Heat shock transcription factors (HSFs) are central elements in the regulatory network that controls plant heat stress response. They are involved in multiple transcriptional regulatory pathways and play important roles in heat stress signaling and responses to a variety of other stresses. We identified 41 members of the HSF gene family in moso bamboo, which were distributed non-uniformly across its 19 chromosomes. Phylogenetic analysis showed that the moso bamboo HSF genes could be divided into three major subfamilies; HSFs from the same subfamily shared relatively conserved gene structures and sequences and encoded similar amino acids. All HSF genes contained HSF signature domains. Subcellular localization prediction indicated that about 80% of the HSF proteins were located in the nucleus, consistent with the results of GO enrichment analysis. A large number of stress response-associated cis-regulatory elements were identified in the HSF upstream promoter sequences. Synteny analysis indicated that the HSFs in the moso bamboo genome had greater collinearity with those of rice and maize than with those of Arabidopsis and pepper. Numerous segmental duplicates were found in the moso bamboo HSF gene family. Transcriptome data indicated that the expression of a number of PeHsfs differed in response to exogenous gibberellin (GA) and naphthalene acetic acid (NAA). A number of HSF genes were highly expressed in the panicles and in young shoots, suggesting that they may have functions in reproductive growth and the early development of rapidly-growing shoots. This study provides fundamental information on members of the bamboo HSF gene family and lays a foundation for further study of their biological functions in the regulation of plant responses to adversity.
  • Mariotti, Lorenzo; Huarancca Reyes, Thais; Ramos-Diaz, Jose Martin; Jouppila, Kirsi; Guglielminetti, Lorenzo (2021)
    Increased ultraviolet-B (UV-B) due to global change can affect plant development and metabolism. Quinoa tolerates extreme conditions including high UV levels. However, the physiological mechanisms behind its abiotic stress tolerance are unclear, especially those related to UV-B. We previously demonstrated that 9.12 kJ m−2 d−1 may induce UV-B-specific signaling while 18.24 kJ m−2 d−1 promotes a UV-B-independent response. Here, we explored the effects of these UV-B doses on hormonal regulation linked to plant morphology and defense among diverse varieties. Changes in fluorescence parameters of photosystem II, flavonoids and hormones (indoleacetic acid (IAA), jasmonic acid (JA), abscisic acid (ABA) and salicylic acid (SA)) were surveyed under controlled conditions. Here, we showed that the sensitivity to short acute UV-B doses in varieties from different habitats is influenced by their parental lines and breeding time. UV-B sensitivity does not necessarily correlate with quinoa’s geographical distribution. The role of flavonoids in the UV-B response seems to be different depending on varieties. Moreover, we found that the extent of changes in JA and SA correlate with UV-B tolerance, while the increase of ABA was mainly related to UV-B stress.
  • Rai, Neha; Neugart, Susanne; Yan, Yan; Wang, Fang; Siipola, Sari M.; Lindfors, Anders V.; Winkler, Jana Barbro; Albert, Andreas; Brosche, Mikael; Lehto, Tarja; Morales, Luis O.; Aphalo, Pedro J. (2019)
    Cryptochromes (CRYs) and UV RESISTANCE LOCUS 8 (UVR8) photoreceptors perceive UV-A/blue (315-500 nm) and UV-B (280-315 nm) radiation in plants, respectively. While the roles of CRYs and UVR8 have been studied in separate controlled-environment experiments, little is known about the interaction between these photoreceptors. Here, Arabidopsis wild-type Ler, CRYs and UVR8 photoreceptor mutants (uvr8-2, cry1cry2 and cry1cry2uvr8-2), and a flavonoid biosynthesis-defective mutant (tt4) were grown in a sun simulator. Plants were exposed to filtered radiation for 17 d or for 6 h, to study the effects of blue, UV-A, and UV-B radiation. Both CRYs and UVR8 independently enabled growth and survival of plants under solar levels of UV, while their joint absence was lethal under UV-B. CRYs mediated gene expression under blue light. UVR8 mediated gene expression under UV-B radiation, and in the absence of CRYs, also under UV-A. This negative regulation of UVR8-mediated gene expression by CRYs was also observed for UV-B. The accumulation of flavonoids was also consistent with this interaction between CRYs and UVR8. In conclusion, we provide evidence for an antagonistic interaction between CRYs and UVR8 and a role of UVR8 in UV-A perception.