Browsing by Subject "ARABIDOPSIS-THALIANA"

Sort by: Order: Results:

Now showing items 1-20 of 45
  • Kovalchuk, Andriy; Raffaello, Tommaso; Jaber, Emad; Keriö, Susanna; Ghimire, Rajendra; Lorenz, W. Walter; Dean, Jeffrey F. D.; Holopainen, Jarmo K.; Asiegbu, Fred O. (2015)
    Background: During their lifetime, conifer trees are exposed to numerous herbivorous insects. To protect themselves against pests, trees have developed a broad repertoire of protective mechanisms. Many of the plant's defence reactions are activated upon an insect attack, and the underlying regulatory mechanisms are not entirely understood yet, in particular in conifer trees. Here, we present the results of our studies on the transcriptional response and the volatile compounds production of Scots pine (Pinus sylvestris) upon the large pine weevil (Hylobius abietis) feeding. Results: Transcriptional response of Scots pine to the weevil attack was investigated using a novel customised 36.4 K Pinus taeda microarray. The weevil feeding caused large-scale changes in the pine transcriptome. In total, 774 genes were significantly up-regulated more than 4-fold (p = 0.05), whereas 64 genes were significantly down-regulated more than 4-fold. Among the up-regulated genes, we could identify genes involved in signal perception, signalling pathways, transcriptional regulation, plant hormone homeostasis, secondary metabolism and defence responses. The weevil feeding on stem bark of pine significantly increased the total emission of volatile organic compounds from the undamaged stem bark area. The emission levels of monoterpenes and sesquiterpenes were also increased. Interestingly, we could not observe any correlation between the increased production of the terpenoid compounds and expression levels of the terpene synthase-encoding genes. Conclusions: The obtained data provide an important insight into the transcriptional response of conifer trees to insect herbivory and illustrate the massive changes in the host transcriptome upon insect attacks. Moreover, many of the induced pathways are common between conifers and angiosperms. The presented results are the first ones obtained by the use of a microarray platform with an extended coverage of pine transcriptome (36.4 K cDNA elements). The platform will further facilitate the identification of resistance markers with the direct relevance for conifer tree breeding.
  • Randall, Ricardo S.; Miyashima, Shunsuke; Blomster, Tiina; Zhang, Jing; Elo, Annakaisa; Karlberg, Anna; Immanen, Juha; Nieminen, Kaisa; Lee, Ji-Young; Kakimoto, Tatsuo; Blajecka, Karolina; Melnyk, Charles W.; Alcasabas, Annette; Forzani, Celine; Matsumoto-Kitano, Miho; Mähönen, Ari Pekka; Bhalerao, Rishikesh; Dewitte, Walter; Helariutta, Yrjö; Murray, James A. H. (2015)
    Higher plant vasculature is characterized by two distinct developmental phases. Initially, a well-defined radial primary pattern is established. In eudicots, this is followed by secondary growth, which involves development of the cambium and is required for efficient water and nutrient transport and wood formation. Regulation of secondary growth involves several phytohormones, and cytokinins have been implicated as key players, particularly in the activation of cell proliferation, but the molecular mechanisms mediating this hormonal control remain unknown. Here we show that the genes encoding the transcription factor AINTEGUMENTA (ANT) and the D-type cyclin CYCD3;1 are expressed in the vascular cambium of Arabidopsis roots, respond to cytokinins and are both required for proper root secondary thickening. Cytokinin regulation of ANT and CYCD3 also occurs during secondary thickening of poplar stems, suggesting this represents a conserved regulatory mechanism.
  • Liu, Miao; Liu, Xiucheng; Du, Xuhua; Korpelainen, Helena; Niinemets, Ulo; Li, Chunyang (2021)
    Synergistic regulation in leaf architecture and photosynthesis is essential for salt tolerance. However, how plant sex and inorganic nitrogen sources alter salt stress-dependent photosynthesis remains unknown. Leaf anatomical characteristics and photosynthesis of Populus cathayana Rehder females and males were investigated under salt stress conditions combined with nitrate NO3- and ammonium NH4+ supplies to clarify the underlying mechanisms. In salt-stressed females, we observed an increased mesophyll spongy cell density, a reduced chloroplast density, a decreased surface area of chloroplasts adjacent to the intercellular air space (S-c/S) and an increased mesophyll cell area per transverse section width (S/W), consequently causing mesophyll conductance (g(m)) and photosynthesis inhibition, especially under NH4+ supply. Conversely, males with a greater mesophyll palisade tissue thickness and chloroplast density, but a lower spongy cell density had lower S/W and higher S-c/S, and higher g(m) and photosynthesis. NH4+-fed females had a lower CO2 conductance through cell wall and stromal conductance perpendicular to the cell wall, but a higher chloroplast conductance from the cell wall (g(cyt1)) than females supplied with NO3-, whereas males had a higher chloroplast conductance and lower CO2 conductance through cell wall when supplied with NO3- instead of NH4+ under salt stress. These findings indicate sex-specific strategies in coping with salt stress related to leaf anatomy and g(m) under both types of nitrogen supplies, which may contribute to sex-specific CO2 capture and niche segregation.
  • Rinne, Päivi L. H.; Paul, Laju K.; Vahala, Jorma; Kangasjärvi, Jaakko; van der Schoot, Christiaan (2016)
    Axillary buds uniquely regulate gibberellin (GA) pathway genes, enabling them to stay inhibited but simultaneously poised for growth. Decapitation promotes expression of GA-inducible 1,3-beta-glucanase genes that function to reinvigorate symplasmic connections to the stem.Axillary buds (AXBs) of hybrid aspen (Populus tremulaxP. tremuloides) contain a developing dwarfed shoot that becomes para-dormant at the bud maturation point. Para-dormant AXBs can grow out after stem decapitation, while dormant AXBs pre-require long-term chilling to release them from dormancy. The latter is mediated by gibberellin (GA)-regulated 1,3-beta-glucanases, but it is unknown if GA is also important in the development, activation, and outgrowth of para-dormant AXBs. The present data show that para-dormant AXBs up-regulate GA receptor genes during their maturation, but curtail GA biosynthesis by down-regulating the rate-limiting GIBBERELLIN 3-OXIDASE2 (GA3ox2), which is characteristically expressed in the growing apex. However, decapitation significantly up-regulated GA3ox2 and GA(4)-responsive 1,3-beta-glucanases (GH17-family; alpha-clade). In contrast, decapitation down-regulated gamma-clade 1,3-beta-glucanases, which were strongly up-regulated in maturing AXBs concomitant with lipid body accumulation. Overexpression of selected GH17 members in hybrid aspen resulted in characteristic branching patterns. The alpha-clade member induced an acropetal branching pattern, whereas the gamma-clade member activated AXBs in recurrent flushes during transient cessation of apex proliferation. The results support a model in which curtailing the final step in GA biosynthesis dwarfs the embryonic shoot, while high levels of GA precursors and GA receptors keep AXBs poised for growth. GA signaling, induced by decapitation, reinvigorates symplasmic supply routes through GA-inducible 1,3-beta-glucanases that hydrolyze callose at sieve plates and plasmodesmata.
  • Immanen, Juha; Nieminen, Kaisa; Duchens Silva, Hector; Rodriguez Rojas, Fernanda; Meisel, Lee A.; Silva, Herman; Albert, Victor A.; Hvidsten, Torgeir R.; Helariutta, Yrjö (2013)
  • Ruokolainen, Satu; Ng, Yan Peng; Broholm, Suvi K.; Albert, Victor A.; Elomaa, Paula; Teeri, Teemu H. (2010)
  • Egamberdieva, Dilfuza; Wirth, Stephan; Jabborova, Dilfuza; Rasanen, Leena A.; Liao, Hong (2017)
    It is a well accepted strategy to improve plant salt tolerance through inoculation with beneficial microorganisms. However, its underlying mechanisms still remain unclear. In the present study, hydroponic experiments were conducted to evaluate the effects of Bradyrhizobium japonicum USDA 110 with salt-tolerant Pseudomonas putida TSAU1 on growth, protein content, nitrogen, and phosphorus uptake as well as root system architecture of soybean (Glycine max L.) under salt stress. The results indicated that the combined inoculation with USDA 110 and TSAU1 significantly improved plant growth, nitrogen and phosphorus contents, and contents of soluble leaf proteins under salt stress compared to the inoculation with the symbiont alone or compared to un-inoculated ones. The root architectural traits, like root length, surface area, project area, and root volume; as well as nodulation traits were also significantly increased by co-inoculation with USDA 110 and TSAU1. The plant-growth promoting rhizobacteria (PGPR) P. putida strain TSAU1 could improve the symbiotic interaction between the salt-stressed soybean and B. japonicum USDA 110. In conclusion, inoculation with B. japonicum and salt-tolerant P. putida synergistically improved soybean salt tolerance through altering root system architecture facilitating nitrogen and phosphorus acquisition, and nodule formation.
  • Rashid, Fatimah Azzahra Ahmad; Scafaro, Andrew P.; Asao, Shinichi; Fenske, Ricarda; Dewar, Roderick; Masle, Josette; Taylor, Nicolas L.; Atkin, Owen K. (2020)
    Leaf respiration in the dark (R-dark) is often measured at a single time during the day, with hot-acclimation lowering R-dark at a common measuring temperature. However, it is unclear whether the diel cycle influences the extent of thermal acclimation of R-dark, or how temperature and time of day interact to influence respiratory metabolites. To examine these issues, we grew rice under 25 degrees C : 20 degrees C, 30 degrees C : 25 degrees C and 40 degrees C : 35 degrees C day : night cycles, measuring R-dark and changes in metabolites at five time points spanning a single 24-h period. R-dark differed among the treatments and with time of day. However, there was no significant interaction between time and growth temperature, indicating that the diel cycle does not alter thermal acclimation of R-dark. Amino acids were highly responsive to the diel cycle and growth temperature, and many were negatively correlated with carbohydrates and with organic acids of the tricarboxylic acid (TCA) cycle. Organic TCA intermediates were significantly altered by the diel cycle irrespective of growth temperature, which we attributed to light-dependent regulatory control of TCA enzyme activities. Collectively, our study shows that environmental disruption of the balance between respiratory substrate supply and demand is corrected for by shifts in TCA-dependent metabolites.
  • Seppanen, Mervi M.; Ebrahimi, Nashmin; Kontturi, Juha; Hartikainen, Helina; Lopez Heras, Isabel; Camara, Carmen; Madrid, Yolanda (2018)
  • Sablok, Gaurav; Powell, Jonathan J.; Kazan, Kemal (2017)
    Plants use a wide range of mechanisms to adapt to different environmental stresses. One of the earliest responses displayed under stress is rapid alterations in stress responsive gene expression that has been extensively analyzed through expression profiling such as microarrays and RNA-sequencing. Recently, expression profiling has been complemented with proteome analyses to establish a link between transcriptional and the corresponding translational changes. However, proteome profiling approaches have their own technical limitations. More recently, ribosome-associated mRNA profiling has emerged as an alternative and a robust way of identifying translating mRNAs, which are a set of mRNAs associated with ribosomes and more likely to contribute to proteome abundance. In this article, we briefly review recent studies that examined the processes affecting the abundance of translating mRNAs, their regulation during plant development and tolerance to stress conditions and plant factors affecting the selection of translating mRNA pools. This review also highlights recent findings revealing differential roles of alternatively spliced mRNAs and their translational control during stress adaptation. Overall, better understanding of processes involved in the regulation of translating mRNAs has obvious implications for improvement of stress tolerance in plants.
  • Siipola, Sari M.; Kotilainen, Titta; Sipari, Nina; Morales Suarez, Luis Orlando; Lindfors, Anders V.; Robson, T. Matthew; Aphalo, Pedro J. (2015)
    Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A We studied the relative importance of the UV and blue wavebands of sunlight for the phenolics in leaves of pea (Pisum sativum cv. Meteor) plants grown outdoors. We report a large reduction in epidermal flavonoids and a change in the flavonoid composition in leaf extracts when solar blue light was attenuated. Under the conditions of our experiment, these effects of blue light attenuation were much larger than those caused by attenuation of UV radiation.
  • Kurokura, Takeshi; Samad, Samia; Koskela, Elli; Mouhu, Katriina; Hytonen, Timo (2017)
    According to the external coincidence model, photoperiodic flowering occurs when CONSTANS ( CO) mRNA expression coincides with light in the afternoon of long days (LDs), leading to the activation of FLOWERING LOCUS T (FT). CO has evolved in Brassicaceae from other Group Ia CO-like (COL) proteins which do not control photoperiodic flowering in Arabidopsis. COLs in other species have evolved different functions as floral activators or even as repressors. To understand photoperiodic development in the perennial rosaceous model species woodland strawberry, we functionally characterized FvCO, the only Group Ia COL in its genome. We demonstrate that FvCO has a major role in the photoperiodic control of flowering and vegetative reproduction through runners. FvCO is needed to generate a bimodal rhythm of FvFT1 which encodes a floral activator in the LD accession Hawaii-4: a sharp FvCO expression peak at dawn is followed by the FvFT1 morning peak in LDs indicating possible direct regulation, but additional factors that may include FvGI and FvFKF1 are probably needed to schedule the second FvFT1 peak around dusk. These results demonstrate that although FvCO and FvFT1 play major roles in photoperiodic development, the CO-based external coincidence around dusk is not fully applicable to the woodland strawberry.
  • Kontturi, Juha; Osama, Raisa; Deng, Xianbao; Bashandy, Hany; Albert, Victor A.; Teeri, Teemu H. (2017)
    The chalcone synthase superfamily consists of type III polyketidesynthases (PKSs), enzymes responsible for producing plant secondary metabolites with various biological and pharmacological activities. Anther-specific chalcone synthase-like enzymes (ASCLs) represent an ancient group of type III PKSs involved in the biosynthesis of sporopollenin, the main component of the exine layer of moss spores and mature pollen grains of seed plants. In the latter, ASCL proteins are localized in the tapetal cells of the anther where they participate in sporopollenin biosynthesis and exine formation within the locule. It is thought that the enzymes responsible for sporopollenin biosynthesis are highly conserved, and thus far, each angiosperm species with a genome sequenced has possessed two ASCL genes, which in Arabidopsis thaliana are PKSA and PKSB. The Gerbera hybrida (gerbera) PKS protein family consists of three chalcone synthases (GCHS1, GCHS3 and GCHS4) and three 2-pyrone synthases (G2PS1, G2PS2 and G2PS3). In previous studies we have demonstrated the functions of chalcone synthases in flavonoid biosynthesis, and the involvement of 2-pyrone synthases in the biosynthesis of antimicrobial compounds found in gerbera. In this study we expanded the gerbera PKS-family by functionally characterizing two gerbera ASCL proteins. In vitro enzymatic studies using purified recombinant proteins showed that both GASCL1 and GASCL2 were able to use medium and long-chain acyl-CoA starters and perform two to three condensation reactions of malonyl-CoA to produce tri- and tetraketide 2-pyrones, usually referred to as alpha-pyrones in sporopollenin literature. Both GASCL1 and GASCL2 genes were expressed only floral organs, with most expression observed in anthers. In the anthers, transcripts of both genes showed strict tapetum-specific localization. (C) 2016 Elsevier Ltd. All rights reserved.
  • Jokela, Venla; Trevaskis, Ben; Seppanen, Mervi M. (2015)
    Timothy is a perennial forage grass grown commonly in Boreal regions. This study explored the effect of vernalization and photoperiod (PP) on flowering and growth characteristics and how this related to changes in expression of three flowering related genes in accessions from different geographic origin. Large variation was found in accessions in their vernalization and PP responses. In southern accessions vernalization response or requirement was not observed, the heading date remained unchanged, and plants flowered without vernalization. On the contrary, northern types had obligatory requirement for vernalization and long PP, but the tiller elongation did not require vernalization at 16-h PP. Longer vernalization or PP treatments reduced the genotypical differences in flowering. Moreover, the vernalization saturation progressed stepwise from main tiller to lateral tillers, and this process was more synchronized in southern accessions. The expression of PpVRN1 was associated with vernalization while PpVRN3 accumulated at long PP. A crucial role for PpVRN3 in the transition to flowering was supported as in southern accession the transcript accumulated in non-vernalized plants after transfer to 16-h PP, and the apices transformed to generative stage. Differences in vernalization requirements were associated with variation in expression levels of PpVRN1 and PpVRN3, with higher expression levels in southern type. Most divergent transcript accumulation of PpMADS10 was found under different vernalization conditions. These differences between accessions can be translated into agronomic traits, such as the tiller composition of canopy, which affects the forage yield. The southern types, with minimal vernalization response, have fast re-growth ability and rapidly decreasing nutritive value, whereas northern types grow slowly and have better quality. This information can be utilized in breeding for new cultivars for longer growing seasons at high latitudes.
  • Salojärvi, Jarkko; Smolander, Olli-Pekka; Nieminen, Kaisa; Rajaraman, Sitaram; Safronov, Omid; Safdari, Pezhman; Lamminmäki, Airi; Immanen, Juha; Lan, Tianying; Tanskanen, Jaakko; Rastas, Pasi; Amiryousefi, Ali; Jayaprakash, Balamuralikrishna; Kammonen, Juhana I.; Hagqvist, Risto; Eswaran, Gugan; Ahonen, Viivi Helena; Serra, Juan Alonso; Asiegbu, Fred O.; Barajas-Lopez, Juan de Dios; Blande, Daniel; Blokhina, Olga; Blomster, Tiina; Broholm, Suvi; Brosche, Mikael; Cui, Fuqiang; Dardick, Chris; Ehonen, Sanna E.; Elomaa, Paula; Escamez, Sacha; Fagerstedt, Kurt V.; Fujii, Hiroaki; Gauthier, Adrien; Gollan, Peter J.; Halimaa, Pauliina; Heino, Pekka I.; Himanen, Kristiina; Hollender, Courtney; Kangasjarvi, Saijaliisa; Kauppinen, Leila; Kelleher, Colin T.; Kontunen-Soppela, Sari; Koskinen, J. Patrik; Kovalchuk, Andriy; Karenlampi, Sirpa O.; Kärkönen, Anna K.; Lim, Kean-Jin; Leppälä, Johanna; Macpherson, Lee; Mikola, Juha; Mouhu, Katriina; Mähönen, Ari Pekka; Niinemets, Ulo; Oksanen, Elina; Overmyer, Kirk; Palva, E. Tapio; Pazouki, Leila; Pennanen, Ville; Puhakainen, Tuula; Poczai, Peter; Possen, Boy J. H. M.; Punkkinen, Matleena; Rahikainen, Moona M.; Rousi, Matti; Ruonala, Raili; van der Schoot, Christiaan; Shapiguzov, Alexey; Sierla, Maija; Sipilä, Timo P.; Sutela, Suvi; Teeri, Teemu H.; Tervahauta, Arja I.; Vaattovaara, Aleksia; Vahala, Jorma; Vetchinnikova, Lidia; Welling, Annikki; Wrzaczek, Michael; Xu, Enjun; Paulin, Lars G.; Schulman, Alan H.; Lascoux, Martin; Albert, Victor A.; Auvinen, Petri; Helariutta, Ykä; Kangasjarvi, Jaakko (2017)
    Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.
  • Deger, Aysin Guzel; Scherzer, Sönke; Nuhkat, Maris; Kedzierska, Justyna; Kollist, Hannes; Brosche, Mikael; Unyayar, Serpil; Boudsocq, Marie; Hedrich, Rainer; Roelfsema, M. Rob G. (2015)
    During infection plants recognize microbe-associated molecular patterns (MAMPs), and this leads to stomatal closure. This study analyzes the molecular mechanisms underlying this MAMP response and its interrelation with ABA signaling. Stomata in intact Arabidopsis thaliana plants were stimulated with the bacterial MAMP flg22, or the stress hormone ABA, by using the noninvasive nanoinfusion technique. Intracellular double-barreled microelectrodes were applied to measure the activity of plasma membrane ion channels. Flg22 induced rapid stomatal closure and stimulated the SLAC1 and SLAH3 anion channels in guard cells. Loss of both channels resulted in cells that lacked flg22-induced anion channel activity and stomata that did not close in response to flg22 or ABA. Rapid flg22-dependent stomatal closure was impaired in plants that were flagellin receptor (FLS2)-deficient, as well as in the ost1-2 (Open Stomata 1) mutant, which lacks a key ABA-signaling protein kinase. By contrast, stomata of the ABA protein phosphatase mutant abi1-1 (ABscisic acid Insensitive 1) remained flg22-responsive. These data suggest that the initial steps in flg22 and ABA signaling are different, but that the pathways merge at the level of OST1 and lead to activation of SLAC1 and SLAH3 anion channels.
  • Meng, Xiangxiang; Li, Lu; Pascual, Jesus; Rahikainen, Moona; Yi, Changyu; Jost, Ricarda; He, Cunman; Fournier-Level, Alexandre; Borevitz, Justin; Kangasjärvi, Saijaliisa; Whelan, James; Berkowitz, Oliver (2022)
    Mitochondrial ACONITASE3 is important for the acclimation to submergence stress by integrating carbon and nitrogen metabolism and impacting stress signaling pathways. Flooding causes severe crop losses in many parts of the world. Genetic variation in flooding tolerance exists in many species; however, there are few examples for the identification of tolerance genes and their underlying function. We conducted a genome-wide association study (GWAS) in 387 Arabidopsis (Arabidopsis thaliana) accessions. Plants were subjected to prolonged submergence followed by desubmergence, and seven traits (score, water content, Fv/Fm, and concentrations of nitrate, chlorophyll, protein, and starch) were quantified to characterize their acclimation responses. These traits showed substantial variation across the range of accessions. A total of 35 highly significant single-nucleotide polymorphisms (SNPs) were identified across the 20 GWA datasets, pointing to 22 candidate genes, with functions in TCA cycle, DNA modification, and cell division. Detailed functional characterization of one candidate gene, ACONITASE3 (ACO3), was performed. Chromatin immunoprecipitation followed by sequencing showed that a single nucleotide polymorphism in the ACO3 promoter co-located with the binding site of the master regulator of retrograde signaling ANAC017, while subcellular localization of an ACO3-YFP fusion protein confirmed a mitochondrial localization during submergence. Analysis of mutant and overexpression lines determined changes in trait parameters that correlated with altered submergence tolerance and were consistent with the GWAS results. Subsequent RNA-seq experiments suggested that impairing ACO3 function increases the sensitivity to submergence by altering ethylene signaling, whereas ACO3 overexpression leads to tolerance by metabolic priming. These results indicate that ACO3 impacts submergence tolerance through integration of carbon and nitrogen metabolism via the mitochondrial TCA cycle and impacts stress signaling during acclimation to stress.
  • Smetana, Ondrej; Mäkilä, Riikka; Lyu, Munan; Amiryousefi, Ali; Rodriguez, Filomeno Sanchez; Wu, Miin-Feng; Sole-Gil, Anna; Gavarron, Marina Leal; Siligato, Riccardo; Miyashima, Shunsuke; Roszak, Pawel; Blomster, Tiina; Reed, Jason W.; Broholm, Suvi; Mähönen, Ari Pekka (2019)
    Wood, a type of xylem tissue, originates from cell proliferation of the vascular cambium. Xylem is produced inside, and phloem outside, of the cambium(1). Morphogenesis in plants is typically coordinated by organizer cells that direct the adjacent stem cells to undergo programmed cell division and differentiation. The location of the vascular cambium stem cells and whether the organizer concept applies to the cambium are currently unknown(2). Here, using lineage-tracing and molecular genetic studies in the roots of Arabidopsis thaliana, we show that cells with a xylem identity direct adjacent vascular cambial cells to divide and function as stem cells. Thus, these xylem-identity cells constitute an organizer. A local maximum of the phytohormone auxin, and consequent expression of CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) transcription factors, promotes xylem identity and cellular quiescence of the organizer cells. Additionally, the organizer maintains phloem identity in a non-cell-autonomous fashion. Consistent with this dual function of the organizer cells, xylem and phloem originate from a single, bifacial stem cell in each radial cell file, which confirms the classical theory of a uniseriate vascular cambium(3). Clones that display high levels of ectopically activated auxin signalling differentiate as xylem vessels; these clones induce cell divisions and the expression of cambial and phloem markers in the adjacent cells, which suggests that a local auxin-signalling maximum is sufficient to specify a stem-cell organizer. Although vascular cambium has a unique function among plant meristems, the stem-cell organizer of this tissue shares features with the organizers of root and shoot meristems.