Browsing by Subject "ARCHIPELAGO SEA"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Jokinen, Sami; Virtasalo, Joonas J.; Jilbert, Tom; Kaiser, Jerome; Dellwig, Olaf; Arz, Helge W.; Hänninen, Jari; Arppe, Laura; Collander, Miia; Saarinen, Timo (2018)
    The anthropogenically forced expansion of coastal hypoxia is a major environmental problem affecting coastal ecosystems and biogeochemical cycles throughout the world. The Baltic Sea is a semi-enclosed shelf sea whose central deep basins have been highly prone to deoxygenation during its Holocene history, as shown previously by numerous paleoenvironmental studies. However, long-term data on past fluctuations in the intensity of hypoxia in the coastal zone of the Baltic Sea are largely lacking, despite the significant role of these areas in retaining nutrients derived from the catchment. Here we present a 1500-year multiproxy record of near-bottom water redox changes from the coastal zone of the northern Baltic Sea, encompassing the climatic phases of the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA), and the Modern Warm Period (MoWP). Our reconstruction shows that although multicentennial climate variability has modulated the depositional conditions and delivery of organic matter (OM) to the basin the modern aggravation of coastal hypoxia is unprecedented and, in addition to gradual changes in the basin configuration, it must have been forced by excess human-induced nutrient loading. Alongside the anthropogenic nutrient input, the progressive deoxygenation since the beginning of the 1900s was fueled by the combined effects of gradual shoaling of the basin and warming climate, which amplified sediment focusing and increased the vulnerability to hypoxia. Importantly, the eutrophication of coastal waters in our study area began decades earlier than previously thought, leading to a marked aggravation of hypoxia in the 1950s. We find no evidence of similar anthropogenic forcing during the MCA. These results have implications for the assessment of reference conditions for coastal water quality. Furthermore, this study highlights the need for combined use of sedimentological, ichnological, and geochemical proxies in order to robustly reconstruct subtle redox shifts especially in dynamic, non-euxinic coastal settings with strong seasonal contrasts in the bottom water quality.
  • Gammal, Johanna; Norkko, Joanna; Pilditch, Conrad A.; Norkko, Alf (2017)
    Coastal ecosystems are important because of the vital ecosystem functions and services they provide, but many are threatened by eutrophication and hypoxia. This results in loss of biodiversity and subsequent changes in ecosystem functioning. Consequently, the need for empirical field studies regarding biodiversity-ecosystem functioning in coastal areas has been emphasized. The present field study quantified the links between benthic macrofaunal communities (abundance, biomass, and species richness), sediment oxygen consumption, and solute fluxes (NO3- + NO2-, NH4+, PO43-, SiO4, Fe, Mn) along a 7.5-km natural gradient of seasonal hypoxia in the coastal northern Baltic Sea. Sampling was done in late August 2010 in the middle archipelago zone of the Hanko peninsula, Finland. As predicted, the macrofaunal communities were decimated with increasing hypoxia, and the nutrient transformation processes were changed at the sediment-water interface, with notably higher effluxes of phosphate and ammonium from the sediment. Solute fluxes varied even during normoxia, which implies a high context-dependency, and could be explained by even small variations in environmental variables such as organic matter and C/N ratios. Importantly, the low diversity benthic macrofaunal communities, which were dominated by Macoma balthica and the invasive Marenzelleria spp., had a large influence on the solute fluxes, especially under normoxia, but also under hypoxia.
  • Heikinheimo, Outi; Lehtonen, Hannu; Lehikoinen, Aleksi (2018)
    Hansson et al. (2017) concluded that competition between fisheries and piscivorous mammals and birds exists in the Baltic Sea, based on the estimation of biomass of the fish species consumed in the ICES subdivisions. We compared their results to the data and scientific knowledge from the coastal waters of Finland and show that local differences in fisheries, fish assemblages and abundance of predators should be taken into account to reliably assess potential competition. Hansson et al. (2017) did not include the piscivorous fish in their analysis, but these may be the most important predators. In the Archipelago Sea, for instance, the consumption by fish predators is considerably larger than that of cormorants.
  • Jilbert, Thomas Stephen; Asmala, Eero; Schröder, Christian; Tiihonen, Rosa Maria Elina; Myllykangas, Jukka-Pekka; Kotilainen, Aarno; Virtasalo, Joonas; Peltola, Pasi; Ekholm, Päivi Inkeri; Hietanen, Siru Susanna (2018)
    Iron (Fe) plays a key role in sedimentary diagenetic processes in coastal systems, participating in various redox reactions and influencing the burial of organic carbon. Large amounts of Fe enter the marine environment from boreal river catchments associated with dissolved organic matter (DOM) and as colloidal Fe oxyhydroxides, principally ferrihydrite. However, the fate of this Fe pool in estuarine sediments has not been extensively studied. Here we show that flocculation processes along a salinity gradient in an estuary of the northern Baltic Sea efficiently transfer Fe and OM from the dissolved phase into particulate material that accumulates in the sediments. Flocculation of Fe and OM is partially decoupled. This is likely due to the presence of discrete colloidal ferrihydrite in the freshwater Fe pool, which responds differently from DOM to estuarine mixing. Further decoupling of Fe from OM occurs during sedimentation. While we observe a clear decline with distance offshore in the proportion of terrestrial material in the sedimentary particulate organic matter (POM) pool, the distribution of flocculated Fe in sediments is modulated by focusing effects. Labile Fe phases are most abundant at a deep site in the inner basin of the estuary, consistent with input from flocculation and subsequent focusing. The majority of the labile Fe pool is present as Fe (II), including both acid-volatile sulfur (AVS)-bound Fe and unsulfidized phases. The ubiquitous presence of unsulfidized Fe (II) throughout the sediment column suggests Fe (II)-OM complexes derived from reduction of flocculated Fe (III)-OM, while other Fe (II) phases are likely derived from the reduction of flocculated ferrihydrite. Depth-integrated rates of Fe (II) accumulation (AVS-Fe + unsulfidized Fe (II) + pyrite) for the period 1970-2015 are greater in the inner basin of the estuary with respect to a site further offshore, confirming higher rates of Fe reduction in near-shore areas. Mossbauer Fe-57 spectroscopy shows that refractory Fe is composed largely of superparamagnetic Fe (III), high-spin Fe (II) in silicates, and, at one station, also oxide minerals derived from past industrial activities. Our results highlight that the cycling of Fe in boreal estuarine environments is complex, and that the partial decoupling of Fe from OM during flocculation and sedimentation is key to understanding the role of Fe in sedimentary diagenetic processes in coastal areas.
  • Ruiz, Sandra R.; Eeva, Tapio; Kanerva, Mirella; Blomberg, Anna; Lilley, Thomas M. (2019)
    Metal elements, ubiquitous in the environment, can cause negative effects in long-lived organisms even after low but prolonged exposure. Insectivorous bats living near metal emission sources can be vulnerable to such contaminants. Although it is known that bats can bioaccumulate metals, little information exists on the effects of metal elements on their physiological status. For example, oxidative status markers are known to vary after detoxification processes and immune reactions. Here, for two consecutive summers, we sampled individuals from a natural population of the insectivorous bat, Myotis daubentonii, inhabiting a site close to a metal emission source. We quantified metals and metalloids (As, Ca, Cd, Co, Cu, Mn, Ni, Pb, Se, Zn) from individual fecal pellets. We measured enzymatic antioxidants (GP, CAT, SOD), total glutathione (tGSH) and ratio between reduced and oxidized glutathione (GSH:GSSG) from their red blood cells together with biometrics, hematocrit and parasite prevalence. In general, metal concentrations in feces of M. daubentonii reflected the exposure to ambient contamination. This was especially evident in the higher concentrations of Cd, Co, Cu and Ni close to a smelter compared to a site with less contaminant exposure. Annual differences were also observed for most elements quantified. Sex-specific differences were observed for calcium and zinc excretion. SOD and CAT enzymatic activities were associated with metal levels (principal components of six metal elements), suggesting early signs of chronic stress in bats. The study also shows promise for the use of non-invasive sampling to assess the metal exposure on an individual basis and metal contamination in the environment.
  • Vesterinen, Eero Juhani; Puisto, Anna; Blomberg, Anna; Lilley, Thomas Mikael (2018)
    Differences in diet can explain resource partitioning in apparently similar, sympatric species. Here, we analyzed 1,252 fecal droppings from five species (Eptesicus nilssonii, Myotis brandtii, M. daubentonii, M. mystacinus, and Plecotus auritus) to reveal their dietary niches using fecal DNA metabarcoding. We identified nearly 550 prey species in 13 arthropod orders. Two main orders (Diptera and Lepidoptera) formed the majority of the diet for all species, constituting roughly 80%–90% of the diet. All five species had different dietary assemblages. We also found significant differences in the size of prey species between the bat species. Our results on diet composition remain mostly unchanged when using either read counts as a proxy for quantitative diet or presence–absence data, indicating a strong biological pattern. We conclude that although bats share major components in their ecology (nocturnal life style, insectivory, and echolocation), species differ in feeding behavior, suggesting bats may have distinctive evolutionary strategies. Diet analysis helps illuminate life history traits of various species, adding to sparse ecological knowledge, which can be utilized in conservation planning.
  • Lehikoinen, Aleksi; Heikinheimo, Outi; Lehtonen, Hannu; Rusanen, Pekka (2017)
    Population increase of piscivorous cormorants in Europe and in North America has created a conflict between fisheries and the species. The impact of cormorants on natural fish populations and yields of fishermen is still under debate. We investigated potential connection of the great cormorant Phalacrocorax carbo abundance, fishing effort and water temperature with the economically important perch Perca fluviatilis and pikeperch Sander lucioperca yields, measured as catches per unit of effort (CPUE) in gillnet fishing along the Finnish coastal areas (Baltic Sea) using 50 km International Council for the Exploration of the Sea (ICES) grids. Since cormorants generally take smaller prey than fishermen, we expected 2-5 years time lag effect of the cormorant numbers on CPUE. Correspondingly, we expected 4-7 years lag effect of temperature on CPUE. Despite the population increase of cormorants, CPUE of perch increased in 10 out of 29 ICES grids during the study period 2005-2014. Pikeperch CPUE increased in five out of 24 grids and decreased in one. There was significant annual variation in CPUE values of perch and pikeperch, but values were not significantly associated with changes in cormorant numbers and temperature either annually or long-term. However, the CPUE values of pikeperch decreased towards the north, which is likely temperature driven as northern colder waters are less suitable for this species than southern waters. There was no clear evidence that either predation by cormorants or fishing effort are associated with long-term trends of perch and pikeperch stocks on a larger scale along the Finnish coast. The increasing CPUE values in several areas indicate that stocks are more abundant than ten years ago despite an increasing cormorant population. Our study approach can be used to monitor potential changes in stocks and impacts of cormorant in the future. (C) 2017 Elsevier B.V. All rights reserved.