Browsing by Subject "ARCTIC SEA-ICE"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Tyrrell, Nicholas L.; Karpechko, Alexey Yu.; Uotila, Petteri; Vihma, Timo (2019)
    Abstract: The warm Arctic-cold continent pattern was of record strength in October 2016, providing the opportunity to test its proposed influence on large-scale atmospheric circulation. We find a record weak polar stratospheric vortex and negative North Atlantic Oscillation in November-December 2016 and link them to increased planetary wave generation associated with cold Siberian anomalies followed by troposphere-stratosphere dynamical coupling. At the same time the warm Arctic anomalies, in particular those over the Barents-Kara Seas, do not appear to play an important role in forcing the atmospheric circulation. Long-range forecasts initialized on 1 October 2016 reproduced both the weak polar vortex and negative North Atlantic Oscillation, as well as their link with the Siberian temperatures. Our results support the stratospheric pathway for atmospheric circulation forcing associated with Siberian surface anomalies and uncover a source of skill for subseasonal forecasts from October to December. Plain Language Summary: The warm Arctic-cold continent pattern is an observed, large-scale pattern of near-surface temperatures where the Arctic is warmer than average and Siberia is colder than average. This pattern was of record strength in October 2016, providing the opportunity to test its influence on the Northern Hemisphere atmospheric circulation and the possibility of skillful long-range forecasts. It has been proposed that the warm Arctic-cold continent pattern can drive large atmospheric waves, which are able to travel from the troposphere into the stratosphere, where they weaken the strong wintertime winds that make up the stratospheric polar vortex. A weakened polar vortex can then lead to changes in the surface pressure that can affect weather patterns. We find a record weak polar stratospheric vortex in late autumn 2016 and link that to cold Siberian anomalies. At the same time the warm Arctic anomalies do not appear to play an important role in forcing the atmospheric circulation. Long-range forecasts initialized in October 2016 reproduced both the weak polar vortex and resulting surface pressure patterns. Our results support the stratospheric pathway for atmospheric circulation forcing by Siberian surface anomalies and uncover a source of skill for subseasonal forecasts in the Northern Hemisphere autumn.
  • Lu, P.; Cao, X.; Wang, Q.; Leppäranta, M.; Cheng, B.; Li, Z. (2018)
    To investigate the influence of a surface ice lid on the optical properties of a melt pond, a radiative transfer model was employed that includes four plane-parallel layers: an ice lid, a melt pond, the underlying ice, and the ocean beneath the ice. The thickness H-s and the scattering coefficient sigma(s) of the ice lid are altered. Variations in the spectral albedo and transmittance T due to H-s for a transparent ice lid are limited, and scattering in the ice lid has a pronounced impact on the albedo of melt ponds as well as the vertical distribution of spectral irradiance in ponded sea ice. The thickness of the ice lid determines the amount of solar energy absorbed. A 2-cm-thick ice lid can absorb 13% of the incident solar energy, half of the energy absorbed by a 30-cm-deep meltwater layer below the lid. This has an influence on the thermodynamics of melting sea ice. The color and spectral albedo of refreezing melt ponds depend on the value of the dimensionless number sigma(s) H- s. Good agreement between field measurements and our model simulations is found. The number sigma(s) H- s is confirmed to be a good index showing that the influence of an ice lid with sigma(s) H- s Plain Language Summary Melt ponds are pools of open water that form on sea ice in the warm months of the Arctic Ocean, and they will frequently be refrozen due to loss of heat and then covered by an ice lid or snow even in summer. This lid is very important to the optical properties of melt ponds. If the ice lid is very thin, the change in the reflective characteristics of the melt pond is minimal; that is, the influence of the ice lid is negligible. If snow accumulates on the ice lid, the reflective characteristics of the melt pond change completely. How about the situation between the above two extreme cases? In this study, we find that a dimensionless number is a good index to quantify the impact of the ice lid. Visual inspections on the color of refreezing melt ponds also help to judge the significance of the influence of the ice lid. This will allow for an accurate estimation on the role of surface ice lid during field investigations on the optical properties of melt ponds.
  • de Jesus, Alma Lorelei; Thompson, Helen; Knibbs, Luke D.; Kowalski, Michal; Cyrys, Josef; Niemi, Jarkko V.; Kousa, Anu; Timonen, Hilkka; Luoma, Krista; Petäjä, Tuukka; Beddows, David; Harrison, Roy M.; Hopke, Philip; Morawska, Lidia (2020)
    Urbanisation and industrialisation led to the increase of ambient particulate matter (PM) concentration. While subsequent regulations may have resulted in the decrease of some PM matrices, the simultaneous changes in climate affecting local meteorological conditions could also have played a role. To gain an insight into this complex matter, this study investigated the long-term trends of two important matrices, the particle mass (PM2.5) and particle number concentrations (PNC), and the factors that influenced the trends. Mann-Kendall test, Sen's slope estimator, the generalised additive model, seasonal decomposition of time series by LOESS (locally estimated scatterplot smoothing) and the Buishand range test were applied. Both PM2.5 and PNC showed significant negative monotonic trends (0.03-0.6 mg m(-3).yr(-1) and 0.40-3.8 x 10(3) particles. cm(-3). yr(-1), respectively) except Brisbane (+0.1 mg m(-3). yr(-1) and +53 particles. cm(-3). yr(-1), respectively). For the period covered in this study, temperature increased (0.03-0.07 degrees C.yr(-1)) in all cities except London; precipitation decreased (0.02-1.4 mm.yr(-1)) except in Helsinki; and wind speed was reduced in Brisbane and Rochester but increased in Helsinki, London and Augsburg. At the change-points, temperature increase in cold cities influenced PNC while shifts in precipitation and wind speed affected PM2.5. Based on the LOESS trend, extreme events such as dust storms and wildfires resulting from changing climates caused a positive step-change in concentrations, particularly for PM2.5. In contrast, among the mitigation measures, controlling sulphur in fuels caused a negative step-change, especially for PNC. Policies regarding traffic and fleet management (e.g. low emission zones) that were implemented only in certain areas or in a progressive uptake (e.g. Euro emission standards), resulted to gradual reductions in concentrations. Therefore, as this study has clearly shown that PM2.5 and PNC were influenced differently by the impacts of the changing climate and by the mitigation measures, both metrics must be considered in urban air quality management. (C) 2020 Elsevier Ltd. All rights reserved.
  • Yang, Yu; Leppäranta, Matti; Cheng, Bin; Li, Zhijun (2012)
  • Lappalainen, Hanna K.; Petäjä, Tuukka; Vihma, Timo; Räisänen, Jouni; Baklanov, Alexander; Chalov, Sergey; Esau, Igor; Ezhova, Ekaterina; Leppäranta, Matti; Pozdnyakov, Dmitry; Pumpanen, Jukka; Andreae, Meinrat O.; Arshinov, Mikhail; Asmi, Eija; Bai, Jianhui; Bashmachnikov, Igor; Belan, Boris; Bianchi, Federico; Biskaborn, Boris; Boy, Michael; Bäck, Jaana; Cheng, Bin; Chubarova, Natalia; Duplissy, Jonathan; Dyukarev, Egor; Eleftheriadis, Konstantinos; Forsius, Martin; Heimann, Martin; Juhola, Sirkku; Konovalov, Vladimir; Konovalov, Igor; Konstantinov, Pavel; Köster, Kajar; Lapshina, Elena; Lintunen, Anna; Mahura, Alexander; Makkonen, Risto; Malkhazova, Svetlana M.; Mammarella, Ivan; Mammola, Stefano; Buenrostro Mazon, Stephany N.; Meinander, Outi; Mikhailov, Eugene; Miles, Victoria; Myslenkov, Stanislav; Orlov, Dmitry; Paris, Jean-Daniel; Pirazzini, Roberta; Popovicheva, Olga; Pulliainen, Jouni; Rautiainen, Kimmo; Sachs, Torsten; Shevchenko, Vladimir; Skorokhod, Andrey; Stohl, Andreas; Suhonen, Elli Anna Julia; Thomson, Erik S.; Tsidilina, Marina; Tynkkynen, Veli-Pekka; Uotila, Petteri; Virkkula, Aki Olavi; Voropay, Nadezhda; Wolf, Tobias; Yasunaka, Sayaka; Zhang, Jiahua; Qiu, Yubao; Ding, Aijun; Guo, Huadong; Bondur, Valery; Kasimov, Nikolay; Zilitinkevich, Sergej; Kerminen, Veli-Matti; Kulmala, Markku (2022)
    The Pan-Eurasian Experiment (PEEX) Science Plan, released in 2015, addressed a need for a holistic system understanding and outlined the most urgent research needs for the rapidly changing Arctic-boreal region. Air quality in China, together with the long-range transport of atmospheric pollutants, was also indicated as one of the most crucial topics of the research agenda. These two geographical regions, the northern Eurasian Arctic-boreal region and China, especially the megacities in China, were identified as a "PEEX region". It is also important to recognize that the PEEX geographical region is an area where science-based policy actions would have significant impacts on the global climate. This paper summarizes results obtained during the last 5 years in the northern Eurasian region, together with recent observations of the air quality in the urban environments in China, in the context of the PEEX programme. The main regions of interest are the Russian Arctic, northern Eurasian boreal forests (Siberia) and peatlands, and the megacities in China. We frame our analysis against research themes introduced in the PEEX Science Plan in 2015. We summarize recent progress towards an enhanced holistic understanding of the land-atmosphere-ocean systems feedbacks. We conclude that although the scientific knowledge in these regions has increased, the new results are in many cases insufficient, and there are still gaps in our understanding of large-scale climate-Earth surface interactions and feedbacks. This arises from limitations in research infrastructures, especially the lack of coordinated, continuous and comprehensive in situ observations of the study region as well as integrative data analyses, hindering a comprehensive system analysis. The fast-changing environment and ecosystem changes driven by climate change, socio-economic activities like the China Silk Road Initiative, and the global trends like urbanization further complicate such analyses. We recognize new topics with an increasing importance in the near future, especially "the enhancing biological sequestration capacity of greenhouse gases into forests and soils to mitigate climate change" and the "socio-economic development to tackle air quality issues".