Browsing by Subject "ATHEROGENIC LIPOPROTEINS"

Sort by: Order: Results:

Now showing items 1-8 of 8
  • Nguyen, Su Duy; Javanainen, Matti; Rissanen, Sami; Zhao, Hongxia; Huusko, Jenni; Kivelä, Annukka M.; Ylä-Herttuala, Seppo; Navab, Mohamad; Fogelman, Alan M.; Vattulainen, Ilpo; Kovanen, Petri T.; Öörni, Katariina (2015)
    Lipolytic modification of LDL particles by SMase generates LDL aggregates with a strong affinity for human arterial proteoglycans and may so enhance LDL retention in the arterial wall. Here, we evaluated the effects of apoA-I mimetic peptide 4F on structural and functional properties of the SMase-modified LDL particles. LDL particles with and without 4F were incubated with SMase, after which their aggregation, structure, and proteoglycan binding were analyzed. At a molar ratio of L-4F to apoB-100 of 2.5 to 20: 1, 4F dose-dependently inhibited SMase-induced LDL aggregation. At a molar ratio of 20: 1, SMase-induced aggregation was fully blocked. Binding of 4F to LDL particles inhibited SMase-induced hydrolysis of LDL by 10% and prevented SMase-induced LDL aggregation. In addition, the binding of the SMase-modifi ed LDL particles to human aortic proteoglycans was dose-dependently inhibited by pretreating LDL with 4F. The 4F stabilized apoB-100 conformation and inhibited SMase-induced conformational changes of apoB-100. Molecular dynamic simulations showed that upon binding to protein-free LDL surface, 4F locally alters membrane order and fluidity and induces structural changes to the lipid layer. Collectively, 4F stabilizes LDL particles by preventing the SMase-induced conformational changes in apoB-100 and so blocks SMase-induced LDL aggregation and the resulting increase in LDL retention.
  • Taskinen, Marja-Riitta; Packard, Chris J.; Boren, Jan (2019)
    Purpose of ReviewApolipoprotein C-III (apoC-III) is known to inhibit lipoprotein lipase (LPL) and function as an important regulator of triglyceride metabolism. In addition, apoC-III has also more recently been identified as an important risk factor for cardiovascular disease. This review summarizes the mechanisms by which apoC-III induces hypertriglyceridemia and promotes atherogenesis, as well as the findings from recent clinical trials using novel strategies for lowering apoC-III.Recent FindingsGenetic studies have identified subjects with heterozygote loss-of-function (LOF) mutations in APOC3, the gene coding for apoC-III. Clinical characterization of these individuals shows that the LOF variants associate with a low-risk lipoprotein profile, in particular reduced plasma triglycerides. Recent results also show that complete deficiency of apoC-III is not a lethal mutation and is associated with very rapid lipolysis of plasma triglyceride-rich lipoproteins (TRL). Ongoing trials based on emerging gene-silencing technologies show that intervention markedly lowers apoC-III levels and, consequently, plasma triglyceride. Unexpectedly, the evidence points to apoC-III not only inhibiting LPL activity but also suppressing removal of TRLs by LPL-independent pathways.SummaryAvailable data clearly show that apoC-III is an important cardiovascular risk factor and that lifelong deficiency of apoC-III is cardioprotective. Novel therapies have been developed, and results from recent clinical trials indicate that effective reduction of plasma triglycerides by inhibition of apoC-III might be a promising strategy in management of severe hypertriglyceridemia and, more generally, a novel approach to CHD prevention in those with elevated plasma triglyceride.
  • Matikainen, Niina; Burza, Maria Antonella; Romeo, Stefano; Hakkarainen, Antti; Adiels, Martin; Folkersen, Lasse; Eriksson, Per; Lundbom, Nina; Ehrenborg, Ewa; Orho-Melander, Marju; Taskinen, Marja-Riitta; Boren, Jan (2013)
  • Ruuth, Maija; Janssen, Laura G. M.; Aikas, Lauri; Tigistu-Sahle, Feven; Nahon, Kimberly J.; Ritvos, Olli; Ruhanen, Hanna; Käkelä, Reijo; Boon, Marlette R.; Öörni, Katariina; Rensen, Patrick C. N. (2019)
    BACKGROUND: South Asians are more prone to develop atherosclerotic cardiovascular disease (ASCVD) compared with white Caucasians, which is not fully explained by classical risk factors. We recently reported that the presence of aggregation-prone low-density lipoprotein (LDL) in the circulation is associated with increased ASCVD mortality. OBJECTIVE: We hypothesized that LDL of South Asians is more prone to aggregate, which may be explained by differences in their LDL lipid composition. METHODS: In this cross-sectional hypothesis-generating study, LDL was isolated from plasma of healthy South Asians (n = 12) and age- and BMI-matched white Caucasians (n = 12), and its aggregation susceptibility and lipid composition were analyzed. RESULTS: LDL from South Asians was markedly more prone to aggregate compared with white Caucasians. Among all measured lipids, sphingomyelin 24:0 and triacylglycerol 56:8 showed the highest positive correlation with LDL aggregation. In addition, LDL from South Asians was enriched in arachidonic acid containing phosphatidylcholine 38:4 and had less phosphatidylcholines and cholesteryl esters containing monounsaturated fatty acids. Interestingly, body fat percentage, which was higher in South Asians (+26%), positively correlated with LDL aggregation and highly positively correlated with triacylglycerol 56:8, sphingomyelin 24:0, and total sphingomyelin. CONCLUSIONS: LDL aggregation susceptibility is higher in healthy young South Asians compared with white Caucasians. This may be partly explained by the higher body fat percentage of South Asians, leading to sphingomyelin enrichment of LDL. We anticipate that the presence of sphingomyelin-rich, aggregation -prone LDL particles in young South Asians may increase LDL accumulation in the arterial wall and thereby contribute to their increased risk of developing ASCVD later in life. (C) 2019 National Lipid Association. Published by Elsevier Inc.
  • Lehti, Satu; Käkelä, Reijo; Horkko, Sohvi; Kummu, Outi; Helske-Suihko, Satu; Kupari, Markku; Werkkala, Kalervo; Kovanen, Petri T.; Öörni, Katariina (2013)
  • Ruuth, Maija; Lahelma, Mari; Luukkonen, Panu K.; Lorey, Martina B.; Qadri, Sami; Sädevirta, Sanja; Hyötyläinen, Tuulia; Kovanen, Petri T.; Hodson, Leanne; Yki-Järvinen, Hannele; Öörni, Katariina (2021)
    OBJECTIVE: We recently showed that measurement of the susceptibility of LDL (low-density lipoprotein) to aggregation is an independent predictor of cardiovascular events. We now wished to compare effects of overfeeding different dietary macronutrients on LDL aggregation, proteoglycan-binding of plasma lipoproteins, and on the concentration of oxidized LDL in plasma, 3 in vitro parameters consistent with increased atherogenicity. APPROACH AND RESULTS: The participants (36 subjects; age, 48±10 years; body mass index, 30.9±6.2 kg/m2) were randomized to consume an extra 1000 kcal/day of either unsaturated fat, saturated fat, or simple sugars (CARB) for 3 weeks. We measured plasma proatherogenic properties (susceptibility of LDL to aggregation, proteoglycan-binding, oxidized LDL) and concentrations and composition of plasma lipoproteins using nuclear magnetic resonance spectroscopy, and in LDL using liquid chromatography mass spectrometry, before and after the overfeeding diets. LDL aggregation increased in the saturated fat but not the other groups. This change was associated with increased sphingolipid and saturated triacylglycerols in LDL and in plasma and reduction of clusterin on LDL particles. Proteoglycan binding of plasma lipoproteins decreased in the unsaturated fat group relative to the baseline diet. Lipoprotein properties remained unchanged in the CARB group. CONCLUSIONS: The type of fat during 3 weeks of overfeeding is an important determinant of the characteristics and functional properties of plasma lipoproteins in humans.
  • Boren, Jan; Packard, Chris J.; Taskinen, Marja-Riitta (2020)
    Cardiovascular disease (CVD) is the leading cause of death globally. It is well-established based on evidence accrued during the last three decades that high plasma concentrations of cholesterol-rich atherogenic lipoproteins are causatively linked to CVD, and that lowering these reduces atherosclerotic cardiovascular events in humans (1-9). Historically, most attention has been on low-density lipoproteins (LDL) since these are the most abundant atherogenic lipoproteins in the circulation, and thus the main carrier of cholesterol into the artery wall. However, with the rise of obesity and insulin resistance in many populations, there is increasing interest in the role of triglyceride-rich lipoproteins (TRLs) and their metabolic remnants, with accumulating evidence showing they too are causatively linked to CVD. Plasma triglyceride, measured either in the fasting or non-fasting state, is a useful index of the abundance of TRLs and recent research into the biology and genetics of triglyceride heritability has provided new insight into the causal relationship of TRLs with CVD. Of the genetic factors known to influence plasma triglyceride levels variation inAPOC3- the gene for apolipoprotein (apo) C-III - has emerged as being particularly important as a regulator of triglyceride transport and a novel therapeutic target to reduce dyslipidaemia and CVD risk (10).
  • Taskinen, Marja-Riitta; Boren, Jan (2016)
    ApoC-III was discovered almost 50 years ago, but for many years, it did not attract much attention. However, as epidemiological and Mendelian randomization studies have associated apoC-III with low levels of triglycerides and decreased incidence of cardiovascular disease (CVD), it has emerged as a novel and potentially powerful therapeutic approach to managing dyslipidemia and CVD risk. The atherogenicity of apoC-III has been attributed to both direct lipoprotein lipase-mediated mechanisms and indirect mechanisms, such as promoting secretion of triglyceride-rich lipoproteins (TRLs), provoking proinflammatory responses in vascular cells and impairing LPL-independent hepatic clearance of TRL remnants. Encouraging results from clinical trials using antisense oligonucleotide, which selectively inhibits apoC-III, indicate that modulating apoC-III may be a potent therapeutic approach to managing dyslipidemia and cardiovascular disease risk.