Browsing by Subject "ATLAS"

Sort by: Order: Results:

Now showing items 1-14 of 14
  • Kaprio, Tuomas; Hagstrom, Jaana; Fermer, Christian; Mustonen, Harri; Bockelman, Camilla; Nilsson, Olle; Haglund, Caj (2014)
  • Noguchi, Shuhei; Arakawa, Takahiro; Fukuda, Shiro; Furuno, Masaaki; Hasegawa, Akira; Hori, Fumi; Ishikawa-Kato, Sachi; Kaida, Kaoru; Kaiho, Ai; Kanamori-Katayama, Mutsumi; Kawashima, Tsugumi; Kojima, Miki; Kubosaki, Atsutaka; Manabe, Ri-ichiroh; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakazato, Kenichi; Ninomiya, Noriko; Nishiyori-Sueki, Hiromi; Noma, Shohei; Saijyo, Eri; Saka, Akiko; Sakai, Mizuho; Simon, Christophe; Suzuki, Naoko; Tagami, Michihira; Watanabe, Shoko; Yoshida, Shigehiro; Arner, Peter; Axton, Richard A.; Babina, Magda; Baillie, J. Kenneth; Barnett, Timothy C.; Beckhouse, Anthony G.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Carlisle, Ailsa J.; Clevers, Hans C.; Davis, Carrie A.; Detmar, Michael; Dohi, Taeko; Edge, Albert S. B.; Edinger, Matthias; Ehrlund, Anna; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Eslami, Afsaneh; Fagiolini, Michela; Fairbairn, Lynsey; Farach-Carson, Mary C.; Faulkner, Geoffrey J.; Ferrai, Carmelo; Fisher, Malcolm E.; Forrester, Lesley M.; Fujita, Rie; Furusawa, Jun-ichi; Geijtenbeek, Teunis B.; Gingeras, Thomas; Goldowitz, Daniel; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J.; Hamaguchi, Masahide; Hara, Mitsuko; Hasegawa, Yuki; Herlyn, Meenhard; Heutink, Peter; Hitchens, Kelly J.; Hume, David A.; Ikawa, Tomokatsu; Ishizu, Yuri; Kai, Chieko; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Khachigian, Levon M.; Kitamura, Toshio; Klein, Sarah; Klinken, S. Peter; Knox, Alan J.; Kojima, Soichi; Koseki, Haruhiko; Koyasu, Shigeo; Lee, Weonju; Lennartsson, Andreas; Mackay-sim, Alan; Mejhert, Niklas; Mizuno, Yosuke; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Morris, Kelly J.; Motohashi, Hozumi; Mummery, Christine L.; Nakachi, Yutaka; Nakahara, Fumio; Nakamura, Toshiyuki; Nakamura, Yukio; Nozaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Passier, Robert; Patrikakis, Margaret; Pombo, Ana; Pradhan-Bhatt, Swati; Qin, Xian-Yang; Rehli, Michael; Rizzu, Patrizia; Roy, Sugata; Sajantila, Antti; Sakaguchi, Shimon; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schmidl, Christian; Schneider, Claudio; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sheng, Guojun; Shin, Jay W.; Sugiyama, Daisuke; Sugiyama, Takaaki; Summers, Kim M.; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Tatsukawa, Hideki; Tomoiu, Andru; Toyoda, Hiroo; van de Wetering, Marc; van den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Wells, Christine A.; Winteringham, Louise N.; Wolvetang, Ernst; Yamaguchi, Yoko; Yamamoto, Masayuki; Yanagi-Mizuochi, Chiyo; Yoneda, Misako; Yonekura, Yohei; Zhang, Peter G.; Zucchelli, Silvia; Abugessaisa, Imad; Arner, Erik; Harshbarger, Jayson; Kondo, Atsushi; Lassmann, Timo; Lizio, Marina; Sahin, Serkan; Sengstag, Thierry; Severin, Jessica; Shimoji, Hisashi; Suzuki, Masanori; Suzuki, Harukazu; Kawai, Jun; Kondo, Naoto; Itoh, Masayoshi; Daub, Carsten O.; Kasukawa, Takeya; Kawaji, Hideya; Carninci, Piero; Forrest, Alistair R. R.; Hayashizaki, Yoshihide (2017)
    In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.
  • de Hoon, Michiel; Bonetti, Alessandro; Plessy, Charles; Ando, Yoshinari; Hon, Chung-Chau; Ishizu, Yuri; Itoh, Masayoshi; Kato, Sachi; Lin, Dongyan; Maekawa, Sho; Murata, Mitsuyoshi; Nishiyori, Hiromi; Shin, Jay W.; Stolte, Jens; Suzuki, Ana Maria; Tagami, Michihira; Takahashi, Hazuki; Forrest, Alistair R. R.; Hayashizaki, Yoshihide; Kere, Juha; Carninci, Piero; Thongjuea, Supat (2022)
    In eukaryotes, capped RNAs include long transcripts such as messenger RNAs and long noncoding RNAs, as well as shorter transcripts such as spliceosomal RNAs, small nucleolar RNAs, and enhancer RNAs. Long capped transcripts can be profiled using cap analysis gene expression (CAGE) sequencing and other methods. Here, we describe a sequencing library preparation protocol for short capped RNAs, apply it to a differentiation time course of the human cell line THP-1, and systematically compare the landscape of short capped RNAs to that of long capped RNAs. Transcription initiation peaks associated with genes in the sense direction have a strong preference to produce either long or short capped RNAs, with one out of six peaks detected in the short capped RNA libraries only. Gene-associated short capped RNAs have highly specific 3 ' ends, typically overlapping splice sites. Enhancers also preferentially generate either short or long capped RNAs, with 10% of enhancers observed in the short capped RNA libraries only. Enhancers producing either short or long capped RNAs show enrichment for GWAS-associated disease SNPs. We conclude that deep sequencing of short capped RNAs reveals new families of noncoding RNAs and elucidates the diversity of transcripts generated at known and novel promoters and enhancers.
  • Pradhan, Barun; Kauppi, Liisa (2019)
    Long interspersed nuclear elements 1 (LINE-1s) are the only family of mobile genetic elements in the human genome that can move autonomously. They do so by a process called retrotransposition wherein they transcribe to form an mRNA intermediate which is then consequently inserted into the genome by reverse transcription. Despite being silent in normal cells, LINE-1s are highly active in different epithelial tumors. De novo LINE-1 insertions can potentially drive tumorigenesis, and hence it is important to systematically study LINE-1 retrotransposition in cancer. Out of similar to 150 retrotransposition-competent LINE-1s present in the human genome, only a handful of LINE-1 loci, also referred to as "hot" LINE-1s, account for the majority of de novo LINE-1 insertion in different cancer types. We have developed a simple polymerase chain reaction (PCR)-based method to monitor retrotransposition activity of these hot LINE-1s. This method, based on long-distance inverse (LDI)-PCR, takes advantage of 3 ' transduction, a mechanism by which a LINE-1 mobilizes its flanking non-repetitive region, which can subsequently be used to identify de novo LINE-1 3 ' transduction events stemming from a particular hot LINE-1.
  • Pradhan, Barun; Cajuso, Tatiana; Katainen, Riku; Sulo, Paivi; Tanskanen, Tomas; Kilpivaara, Outi; Pitkanen, Esa; Aaltonen, Lauri A.; Kauppi, Liisa; Palin, Kimmo (2017)
    Long interspersed nuclear elements-1 (L1s) are a large family of retrotransposons. Retrotransposons are repetitive sequences that are capable of autonomous mobility via a copy-and-paste mechanism. In most copy events, only the L1 sequence is inserted, however, they can also mobilize the flanking non-repetitive region by a process known as 3' transduction. L1 insertions can contribute to genome plasticity and cause potentially tumorigenic genomic instability. However, detecting the activity of a particular source L1 and identifying new insertions stemming from it is a challenging task with current methodological approaches. We developed a long-distance inverse PCR (LDI-PCR) based approach to monitor the mobility of active L1 elements based on their 3' transduction activity. LDI-PCR requires no prior knowledge of the insertion target region. By applying LDI-PCR in conjunction with Nanopore sequencing (Oxford Nanopore Technologies) on one L1 reported to be particularly active in human cancer genomes, we detected 14 out of 15 3' transductions previously identified by whole genome sequencing in two different colorectal tumour samples. In addition we discovered 25 novel highly subclonal insertions. Furthermore, the long sequencing reads produced by LDI-PCR/Nanopore sequencing enabled the identification of both the 5' and 3' junctions and revealed detailed insertion sequence information.
  • Metsäniitty, Mari; Varkkola, Olli; Waltimo-Siren, Janna; Ranta, Helena (2017)
    In Finland, forensic age assessment is strictly regulated by legislation. According to the Aliens Act (301/2004) and the amendment of the Act (549/2010), the police authorities, the frontier guard authorities, and the immigration authorities have the right to refer asylum seekers to the University of Helsinki, Department of Forensic Medicine, for age assessment. These assessments are especially performed to solve if the person is of major age, the cutoff being 18 completed years. The forensic age assessment is largely based on dental development, since the special permit of the Radiation and Nuclear Safety Authority (STUK) to the Department of Forensic Medicine of the University of Helsinki, allowing the use of ionizing radiation for non-medical purposes, includes dental and hand X-rays. Forensic age assessment is always performed by two forensic odontologists. In 2015, the total number of forensic age assessment examinations was 149, and the countries of origin of the asylum seekers were most commonly Iraq, Afghanistan, and Somalia. The current legislation on forensic age assessment has been well received and approved. Radiological and other examinations can be performed in different parts of Finland, but the forensic odontologist at the University of Helsinki is always involved in the process and ensures joint quality standards for the forensic age assessment.
  • Brown, Rachel E.; Jacobse, Justin; Anant, Shruti A.; Blunt, Koral M.; Chen, Bob; Vega, Paige N.; Jones, Chase T.; Pilat, Jennifer M.; Revetta, Frank; Gorby, Aidan H.; Stengel, Kristy R.; Choksi, Yash A.; Palin, Kimmo; Piazuelo, M. Blanca; Washington, Mary Kay; Lau, Ken S.; Goettel, Jeremy A.; Hiebert, Scott W.; Short, Sarah P.; Williams, Christopher S. (2022)
    Aberrant epithelial differentiation and regeneration contribute to colon pathologies, including inflammatory bowel disease (iBD) and colitis-associated cancer (CAC). Myeloid translocation gene 16 (MTG16, also known as CBFA2T3) is a transcriptional corepressor expressed in the colonic epithelium. MTG16 deficiency in mice exacerbates colitis and increases tumor burden in CAC, though the underlying mechanisms remain unclear. Here, we identified MTG16 as a central mediator of epithelial differentiation, promoting goblet and restraining enteroendocrine cell development in homeostasis and enabling regeneration following dextran sulfate sodium-induced (DSS-induced) colitis. Transcriptomic analyses implicated increased Ephrussi box-binding transcription factor (E protein) activity in MTG16-deficient colon crypts. Using a mouse model with a point mutation that attenuates MTG16:E protein interactions (Mtg16(P20ST)), we showed that MTG16 exerts control over colonic epithelial differentiation and regeneration by repressing E protein-mediated transcription. Mimicking murine colitis, MTG16 expression was increased in biopsies from patients with active IBD compared with unaffected controls. Finally, uncoupling MTG16:E protein interactions partially phenocopied the enhanced tumorigenicity of Mtg16(-/)(-) colon in the azoxymethane/DSS-induced model of CAC, indicating that MTG16 protects from tumorigenesis through additional mechanisms. Collectively, our results demonstrate that MTG16, via its repression of E protein targets. is a key regulator of cell fate decisions during colon homeostasis, colitis, and cancer.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Talvitie, J.; Tuuva, T. (2018)
    A measurement of the H -> tau tau signal strength is performed using events recorded in proton-proton collisions by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13TeV. The data set corresponds to an integrated luminosity of 35.9 fb(-1). The H -> tau tau signal is established with a significance of 4.9 standard deviations, to be compared to an expected significance of 4.7 standard deviations. The best fit of the product of the observed H -> tau tau signal production cross section and branching fraction is 1.09(-0.2)(6+0.27) times the standard model expectation. The combination with the corresponding measurement performed with data collected by the CMS experiment at center-of-mass energies of 7 and 8 TeV leads to an observed significance of 5.9 standard deviations, equal to the expected significance. This is the first observation of Higgs boson decays to tau leptons by a single experiment. (c) 2018 The Author(s). Published by Elsevier B.V.
  • Iivonen, Anna-Pauliina; Känsäkoski, Johanna; Vaaralahti, Kirsi; Raivio, Taneli (2019)
    In approximately half of congenital hypogonadotropic hypogonadism (cHH) patients, the genetic cause remains unidentified. Since the lack of certain miRNAs in animal models has led to cHH, we sequenced human miRNAs predicted to regulate cHH-related genes (MIR7-3, MIR141, MIR429 and MIR200A-C) in 24 cHH patients with Sanger sequencing. A heterozygous variant in MIR200A (rs202051309; general population frequency of 0.02) was found in one patient. Our results suggest that mutations in the studied miRNAs are unlikely causes of cHH. However, the complex interplay between miRNAs and their target genes in these diseases requires further investigations.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Talvitie, J.; Tuuva, T. (2018)
    An inclusive search for anomalous Higgs boson production in the diphoton decay channel and in association with at least one jet is presented, using LHC proton-proton collision data collected by the CMS experiment at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 35.9 fb(-1). The razor variables M-R and R-2, as well as the momentum and mass resolution of the diphoton system, are used to categorize events into different search regions. The search result is interpreted in the context of strong and electroweak production of supersymmetric particles. We exclude bottom squark pair-production with masses below 450 GeV for bottom squarks decaying to a bottom quark, a Higgs boson, and the lightest supersymmetric particle (LSP) for LSP masses below 250 GeV. For wino-like chargino-neutralino production, we exclude charginos with mass below 170 GeV for LSP masses below 25 GeV. In the GMSB scenario, we exclude charginos with mass below 205 GeV for neutralinos decaying to a Higgs boson and a goldstino LSP with 100% branching fraction. C) 2018 The Author(s). Published by Elsevier B.V.
  • COMPASS Consortium; INVENT Consortium; Estonian Biobank; PRECISEQ Consortium; FinnGen Consortium; MEGASTROKE Consortium; SIREN Consortium; Biobank Japan; CHARGE Consortium; GIGASTROKE Consortium; Regeneron Genetics Ctr; ODYSSEY Study; SICFAIL Study; Generacion Study; SMART Study; Helsinki Stroke Project; EPIC; Mishra, Aniket; Malik, Rainer; Hachiya, Tsuyoshi; Tomppo, Liisa; Havulinna, Aki S.; Puurunen, Marja K.; Weir, David; Putaala, Jukka; Sibolt, Gerli; Perola, Markus; Jousilahti, Pekka; Sarin, Antti-Pekka; Martinez-Majander, Nicolas; Zhou, Wei; Curtze, Sami; Curtze, Sami; Tiainen, Marjaana; Kinnunen, Janne; Strbian, Daniel (2022)
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.
  • Lee, Moon Hee; Järvinen, Petrus; Nisen, Harry; Brück, Oscar; Ilander, Mette; Uski, Ilona; Theodoropoulos, Jason; Kankainen, Matti; Mirtti, Tuomas; Mustjoki, Satu; Kreutzman, Anna (2022)
    Renal cell carcinoma (RCC) is considered as an immunogenic cancer. Because not all patients respond to current immunotherapies, we aimed to investigate the immunological heterogeneity of RCC tumors. We analyzedthe immunophenotype of the circulating, tumor, and matching adjacent healthy kidney immune cells from 52 nephrectomy patients with multi-parameter flow cytometry. Additionally, we studied the transcriptomic and mutation profiles of 20 clear cell RCC (ccRCC) tumors with bulk RNA sequencing and a customized pan-cancer gene panel. The tumor samples clustered into two distinct subgroups defined by the abundance of intratumoral CD3+ T cells (CD3(high), 25/52) and NK cells (NKhigh, 27/52). CD3(high) tumors had an overall higher frequency of tumor infiltrating lymphocytes and PD-1 expression on the CD8+ T cells compared to NKhigh tumors. The tumor infiltrating T and NK cells had significantly elevated expression levels of LAG-3, PD-1, and HLA-DR compared to the circulating immune cells. Transcriptomic analysis revealed increased immune signaling (IFN-gamma, TNF-alpha via NF-kappa B, and T cell receptor signaling) and kidney metabolism pathways in the CD3(high) subgroup. Genomic analysis confirmed the typical ccRCC mutation profile including VHL, PBRM1, and SETD2 mutations, and revealed PBRM1 as a uniquely mutated gene in the CD3(high) subgroup. Approximately half of the RCC tumors have a high infiltration of NK cells associated with a lower number of tumor infiltrating lymphocytes, lower PD-1 expression, a distinct transcriptomic and mutation profile, providing insights to the immunological heterogeneity of RCC which may impact treatment responses to immunological therapies.
  • d'Enterria, David; Krajczar, Krisztian; Paukkunen, Hannu (2015)
    Single and pair top-quark production in proton-lead (p-Pb) and lead-lead (Pb-Pb) collisions at the CERN Large Hadron Collider (LHC) and Future Circular Collider (FCC) energies, are studied with next-to-leading-order perturbative QCD calculations including nuclear parton distribution functions. At the LHC, the pair-production cross sections amount to sigma(t (t) over bar) = 3.4 mu b in Pb-Pb at root s(NN) = 5.5 TeV, and sigma(t (t) over bart) = 60 nb in p-Pb at root s(NN) = 8.8 TeV. At the FCC energies of root s(NN) = 39 and 63 TeV, the same cross sections are factors of 90 and 55 times larger respectively. In the leptonic final-state t (t) over bar --> W(+)b W-(b) over bar --> b (b) over bar ll nu nu with l = e(+/-), mu(+/-), after typical acceptance and efficiency cuts, one expects about 90 and 300 top-quarks per nominal LHC-year and 4.7 . 10(4) and 10(5) per FCC-year in Pb-Pb and p-Pb collisions respectively. The total t (t) over bar cross sections, dominated by gluon fusion processes, are enhanced by 3-8% in nuclear compared to p-p collisions due to an overall net gluon antishadowing, although different regions of their differential distributions are depleted due to shadowing or EMC-effect corrections. The rapidity distributions of the decay leptons in t (t) over bar processes can be used to reduce the uncertainty on the Pb gluon density at high virtualities by up to 30% at the LHC (full heavy-ion programme), and by 70% per FCC-year. The cross sections for single-top production in electroweak processes are also computed, yielding about a factor of 30 smaller number of measurable top-quarks after cuts, per system and per year. (C) 2015 The Authors. Published by Elsevier B.V.
  • Rheault, Francois; Schilling, Kurt G.; Valcourt-Caron, Alex; Theberge, Antoine; Poirier, Charles; Grenier, Gabrielle; Guberman, Guido; Begnoche, John; Legarreta, Jon Haitz; Cai, Leon Y.; Roy, Maggie; Edde, Manon; Caceres, Marco Perez; Ocampo-Pineda, Mario; Al-Sharif, Noor; Karan, Philippe; Bontempi, Pietro; Obaid, Sami; Bosticardo, Sara; Schiavi, Simona; Sairanen, Viljami; Daducci, Alessandro; Cutting, Laurie E.; Petit, Laurent; Descoteaux, Maxime; Landman, Bennett A. (2022)
    The segmentation of brain structures is a key component of many neuroimaging studies. Consistent anatomical definitions are crucial to ensure consensus on the position and shape of brain structures, but segmentations are prone to variation in their interpretation and execution. White-matter (WM) pathways are global structures of the brain defined by local landmarks, which leads to anatomical definitions being difficult to convey, learn, or teach. Moreover, the complex shape of WM pathways and their representation using tractography (streamlines) make the design and evaluation of dissection protocols difficult and time-consuming. The first iteration of Tractostorm quantified the variability of a pyramidal tract dissection protocol and compared results between experts in neuroanatomy and nonexperts. Despite virtual dissection being used for decades, in-depth investigations of how learning or practicing such protocols impact dissection results are nonexistent. To begin to fill the gap, we evaluate an online educational tractography course and investigate the impact learning and practicing a dissection protocol has on interrater (groupwise) reproducibility. To generate the required data to quantify reproducibility across raters and time, 20 independent raters performed dissections of three bundles of interest on five Human Connectome Project subjects, each with four timepoints. Our investigation shows that the dissection protocol in conjunction with an online course achieves a high level of reproducibility (between 0.85 and 0.90 for the voxel-based Dice score) for the three bundles of interest and remains stable over time (repetition of the protocol). Suggesting that once raters are familiar with the software and tasks at hand, their interpretation and execution at the group level do not drastically vary. When compared to previous work that used a different method of communication for the protocol, our results show that incorporating a virtual educational session increased reproducibility. Insights from this work may be used to improve the future design of WM pathway dissection protocols and to further inform neuroanatomical definitions.