Browsing by Subject "ATMOSPHERIC AEROSOL NUCLEATION"

Sort by: Order: Results:

Now showing items 1-20 of 25
  • Mazon, Stephany Buenrostro; Kontkanen, Jenni; Manninen, Hanna E.; Nieminen, Tuomo; Kerminen, Veli-Matti; Kulmala, Markku (2016)
    New particle formation (NPF) events are typically observed during daytime when photochemical oxidation takes place. However, nighttime nucleation mode particles have been observed across various locations only sporadically. We present 11 years (2003-2013) of air ion number size distribution data from the SMEAR II station in Hyytiala, Finland, where during a third of the nights a sub-3 nm negative (n = 1324 days) and positive (n = 1174 days) ion events took place. To investigate nocturnal clustering at sizes above the constant small ion pool, we defined cluster events (CE) as a nocturnal event with 2-3 nm ion concentrations reaching 70 cm-3 between 18:00 and 24:00 local time. CE (n = 221 days) were characterized by a rapid, 10-fold increase in the median 2-3 nm ion concentration from the start (similar to 10 cm(-3)) to the event peak (similar to 100 cm(-3)). Furthermore, small and intermediate ions during the CE, NPF events and nonevents were compared: while concentrations of 1.5-2 nm ions were the highest during CE (median 235 cm(-3)), as compared with the NPF events (96 cm(-3)) or the daytime and nighttime nonevents (similar to 20 cm(-3)), 3-7 nm ion concentrations increased notably only during NPF events (median 52 cm(-3)). Specifically, ion concentrations during CE decreased for sizes above-2.4 nm (<10 cm(-3)). In addition, 90% of CE proceeded either a NPF event (55%) or a undefined day (35%), and only 10% of them proceeded a daytime non-event. This study suggests a build-up of 0.9-2.4 nm ion clusters during CE nights (18:00-24:00) that equals or exceeds the ion concentration levels during daytime NPF, but unlike the latter, CE fail to activate and grow clusters > 3 nm in diameter in nighttime Hyytiald.
  • Franchin, Alessandro; Downard, Andy; Kangasluoma, Juha; Nieminen, Tuomo; Lehtipalo, Katrianne; Steiner, Gerhard; Manninen, Hanna E.; Petäjä, Tuukka; Flagan, Richard C.; Kulmala, Markku (2016)
    Reliable and reproducible measurements of atmospheric aerosol particle number size distributions below 10 nm require optimized classification instruments with high particle transmission efficiency. Almost all differential mobility analyzers (DMAs) have an unfavorable potential gradient at the outlet (e.g., long column, Vienna type) or at the inlet (nano-radial DMA), preventing them from achieving a good transmission efficiency for the smallest nanoparticles. We developed a new high-transmission inlet for the Caltech nano-radial DMA (nRDMA) that increases the transmission efficiency to 12% for ions as small as 1.3 nm in Millikan-Fuchs mobility equivalent diameter, D-p (corresponding to 1.2 x 10(-4) m(2) V-1 s(-1) in electrical mobility). We successfully deployed the nRDMA, equipped with the new inlet, in chamber measurements, using a particle size magnifier (PSM) and as a booster a condensation particle counter (CPC). With this setup, we were able to measure size distributions of ions within a mobility range from 1.2 x 10(-4) to 5.8 x 10(-6) m(2) V-1 s(-1). The system was modeled, tested in the laboratory and used to measure negative ions at ambient concentrations in the CLOUD (Cosmics Leaving Outdoor Droplets) 7 measurement campaign at CERN. We achieved a higher size resolution (R = 5.5 at D-p = 1.47 nm) than techniques currently used in field measurements (e.g., Neutral cluster and Air Ion Spectrometer (NAIS), which has a R similar to 2 at largest sizes, and R similar to 1.8 at D-p = 1.5 nm) and maintained a good total transmission efficiency (6.3% at D-p = 1.5 nm) at moderate inlet and sheath airflows (2.5 and 30 L min(-1), respectively). In this paper, by measuring size distributions at high size resolution down to 1.3 nm, we extend the limit of the current technology. The current setup is limited to ion measurements. However, we envision that future research focused on the charging mechanisms could extend the technique to measure neutral aerosol particles as well, so that it will be possible to measure size distributions of ambient aerosols from 1 nm to 1 mu m.
  • Vana, Marko; Komsaare, Kaupo; Horrak, Urmas; Mirme, Sander; Nieminen, Tuomo; Kontkanen, Jenni; Manninen, Hanna E.; Petäjä, Tuukka; Noe, Steffen M.; Kulmala, Markku (2016)
    We analyzed the size distributions of atmospheric aerosol particles measured during 2013-2014 at Varrio (SMEAR I) in northern Finland, Hyytiala (SMEAR II) in southern Finland and Jarvselja (SMEAR-Estonia) in Estonia. The stations are located on a transect spanning from north to south over 1000 km and they represent different environments ranging from subarctic to the hemi-boreal. We calculated the characteristics of new-particle-formation events, such as the frequency of events, growth rate of nucleation mode particles, condensation and coagulation sinks, formation rate of 2 nm and 3 nm particles, and source rate of condensable vapors. We observed 59, 185 and 108 new-particle-formation events at Varrio, Hyytiala and Jarvselja, respectively. The frequency of the observed events showed an annual variation with a maximum in spring. The analysis revealed size dependence of growth rate at all locations. We found that the growth rate and source rate of a condensable vapor were the highest in Jarvselja and the lowest in Varrio. The condensation sink and particle formation rate were of a similar magnitude at Hyytiala and Jarvselja, but several times smaller at Varrio. Tracking the origin of air masses revealed that the number concentration of nucleation mode particles (3-25 nm) varied from north to south, with the highest concentrations at Jarvselja and lowest at Varrio. Trajectory analysis indicated that new-particle-formation events are large-scale phenomena that can take place concurrently at distant stations located even 1000 km apart. We found a total of 26 days with new-particle-formation events occurring simultaneously at all three stations.
  • Zhou, L.; Gierens, R.; Sogachev, A.; Mogensen, D.; Ortega, J.; Smith, J. N.; Harley, P. C.; Prenni, A. J.; Levin, E. J. T.; Turnipseed, A.; Rusanen, A.; Smolander, S.; Guenther, A. B.; Kulmala, Markku; Karl, T.; Boy, M. (2015)
    New particle formation (NPF) is an important atmospheric phenomenon. During an NPF event, particles first form by nucleation and then grow further in size. The growth step is crucial because it controls the number of particles that can become cloud condensation nuclei. Among various physical and chemical processes contributing to particle growth, condensation by organic vapors has been suggested as important. In order to better understand the influence of biogenic emissions on particle growth, we carried out modeling studies of NPF events during the BEACHON-ROCS (Biohydro-atmosphere interactions of Energy, Aerosol, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Organic Carbon Study) campaign at Manitou Experimental Forest Observatory in Colorado, USA. The site is representative of the semi-arid western USA. With the latest Criegee intermediate reaction rates implemented in the chemistry scheme, the model underestimates sulfuric acid concentration by 50 %, suggesting either missing sources of atmospheric sulfuric acid or an overestimated sink term. The results emphasize the contribution from biogenic volatile organic compound emissions to particle growth by demonstrating the effects of the oxidation products of monoterpenes and 2-Methyl-3-buten-2-ol (MBO). Monoterpene oxidation products are shown to influence the nighttime particle loadings significantly, while their concentrations are insufficient to grow the particles during the day. The growth of ultrafine particles in the daytime appears to be closely related to the OH oxidation products of MBO.
  • Neitola, Kimmo; Brus, David; Makkonen, Ulla; Sipila, Mikko; Lihavainen, Heikki; Kulmala, Markku (2014)
  • Rondo, L.; Ehrhart, S.; Kuerten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tome, A.; Trostl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J. (2016)
    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (
  • Duplissy, J.; Merikanto, J.; Franchin, A.; Tsagkogeorgas, G.; Kangasluoma, J.; Wimmer, D.; Vuollekoski, H.; Schobesberger, S.; Lehtipalo, K.; Flagan, R. C.; Brus, D.; Donahue, N. M.; Vehkamäki, H.; Almeida, J.; Amorim, A.; Barmet, P.; Bianchi, F.; Breitenlechner, M.; Dunne, E. M.; Guida, R.; Henschel, H.; Junninen, H.; Kirkby, J.; Kürten, A.; Kupc, A.; Määttänen, A.; Makhmutov, V.; Mathot, S.; Nieminen, T.; Onnela, A.; Praplan, A. P.; Riccobono, F.; Rondo, L.; Steiner, G.; Tome, A.; Walther, H.; Baltensperger, U.; Carslaw, K. S.; Dommen, J.; Hansel, A.; Petäjä, T.; Sipilä, M.; Stratmann, F.; Vrtala, A.; Wagner, P. E.; Worsnop, D. R.; Curtius, J.; Kulmala, M. (2016)
    We report comprehensive, demonstrably contaminant-free measurements of binary particle formation rates by sulfuric acid and water for neutral and ion-induced pathways conducted in the European Organization for Nuclear Research Cosmics Leaving Outdoor Droplets chamber. The recently developed Atmospheric Pressure interface-time of flight-mass spectrometer was used to detect contaminants in charged clusters and to identify runs free of any contaminants. Four parameters were varied to cover ambient conditions: sulfuric acid concentration (10(5) to 10(9)molcm(-3)), relative humidity (11% to 58%), temperature (207K to 299K), and total ion concentration (0 to 6800ionscm(-3)). Formation rates were directly measured with novel instruments at sizes close to the critical cluster size (mobility size of 1.3nm to 3.2nm). We compare our results with predictions from Classical Nucleation Theory normalized by Quantum Chemical calculation (QC-normalized CNT), which is described in a companion paper. The formation rates predicted by the QC-normalized CNT were extended from critical cluster sizes to measured sizes using the UHMA2 sectional particle microphysics model. Our results show, for the first time, good agreement between predicted and measured particle formation rates for the binary (neutral and ion-induced) sulfuric acid-water system. Formation rates increase with RH, sulfuric acid, and ion concentrations and decrease with temperature at fixed RH and sulfuric acid concentration. Under atmospheric conditions, neutral particle formation dominates at low temperatures, while ion-induced particle formation dominates at higher temperatures. The good agreement between the theory and our comprehensive data set gives confidence in using the QC-normalized CNT as a powerful tool to study neutral and ion-induced binary particle formation in atmospheric modeling.
  • Lawler, Michael J.; Rissanen, Matti P.; Ehn, Mikael; Mauldin, R. Lee; Sarnela, Nina; Sipilä, Mikko; Smith, James N. (2018)
    New particle formation (NPF) is an important contributor to particle number in many locations, but the chemical drivers for this process are not well understood. Daytime NPF events occur regularly in the springtime Finnish boreal forest and strongly impact aerosol abundance. In April 2014 size-resolved chemical measurements of ambient nanoparticles were made using the Time-of-Flight Thermal Desorption Chemical ionization Mass Spectrometer and we report results from two NPF events. While growth overall was dominated by terpene oxidation products, newly formed 20-70nm particles showed enhancement in apparent alkanoic acids. The events occurred on days with rapid transport of marine air, which correlated with low background aerosol loading and higher gas phase methanesulfonic acid levels. These results are broadly consistent with previous studies on Nordic NPF but indicate that further attention should be given to the sources and role of non-terpenoid organics and the possible contribution of transported marine compounds in this process. Plain Language Summary Clouds are an enormously important part of the climate system because they control the radiation entering and leaving the Earth. Clouds form as water condenses onto small particles called cloud condensation nuclei. These particles can be directly emitted from the Earth's surface, like sea spray, for example, or they can form in the atmosphere out of precursor gases. We have measured the composition of these atmosphere-formed particles to understand better how this process works in the Nordic boreal forest. We found that a diverse mix of processes and molecules are likely involved, possibly including the transport of materials from the ocean. While these results will ultimately lead to a better understanding of ocean-land-cloud interactions, they currently indicate that more work is needed to learn the processes involved.
  • Kuerten, Andreas; Bianchi, Federico; Almeida, Joao; Kupiainen-Määttä, Oona; Dunne, Eimear M.; Duplissy, Jonathan; Williamson, Christina; Barmet, Peter; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Franchin, Alessandro; Gordon, Hamish; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Ickes, Luisa; Jokinen, Tuija; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Onnela, Antti; Ortega, Ismael K.; Petäjä, Tuukka; Praplan, Arnaud P.; Riccobono, Francesco; Rissanen, Matti P.; Rondo, Linda; Schnitzhofer, Ralf; Schobesberger, Siegfried; Smith, James N.; Steiner, Gerhard; Stozhkov, Yuri; Tome, Antonio; Trostl, Jasmin; Tsagkogeorgas, Georgios; Wagner, Paul E.; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Ken; Kulmala, Markku; Curtius, Joachim (2016)
    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia are thought to be the dominant processes responsible for new particle formation (NPF) in the cold temperatures of the middle and upper troposphere. Ions are also thought to be important for particle nucleation in these regions. However, global models presently lack experimentally measured NPF rates under controlled laboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here with data obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we present the first experimental survey of NPF rates spanning free tropospheric conditions. The conditions during nucleation cover a temperature range from 208 to 298K, sulfuric acid concentrations between 5x10(5) and 1x10(9)cm(-3), and ammonia mixing ratios from zero added ammonia, i.e., nominally pure binary, to a maximum of -1400 parts per trillion by volume (pptv). We performed nucleation studies under pure neutral conditions with zero ions being present in the chamber and at ionization rates of up to 75ion pairs cm(-3)s(-1) to study neutral and ion-induced nucleation. We found that the contribution from ion-induced nucleation is small at temperatures between 208 and 248K when ammonia is present at several pptv or higher. However, the presence of charges significantly enhances the nucleation rates, especially at 248K with zero added ammonia, and for higher temperatures independent of NH3 levels. We compare these experimental data with calculated cluster formation rates from the Atmospheric Cluster Dynamics Code with cluster evaporation rates obtained from quantum chemistry.
  • Mentel, T. F.; Springer, M.; Ehn, M.; Kleist, E.; Pullinen, I.; Kurten, T.; Rissanen, Matti; Wahner, A.; Wildt, J. (2015)
    It has been postulated that secondary organic particulate matter plays a pivotal role in the early growth of newly formed particles in forest areas. The recently detected class of extremely low volatile organic compounds (ELVOC) provides the missing organic vapors and possibly contributes a significant fraction to atmospheric SOA (secondary organic aerosol). The sequential rearrangement of peroxy radicals and subsequent O-2 addition results in ELVOC which are highly oxidized multifunctional molecules (HOM). Key for efficiency of such HOM in early particle growth is that their formation is induced by one attack of the oxidant (here O-3), followed by an autoxidation process involving molecular oxygen. Similar mechanisms were recently observed and predicted by quantum mechanical calculations e.g., for isoprene. To assess the atmospheric importance and therewith the potential generality, it is crucial to understand the formation pathway of HOM. To elucidate the formation path of HOM as well as necessary and sufficient structural prerequisites of their formation we studied homologous series of cycloalkenes in comparison to two monoterpenes. We were able to directly observe highly oxidized multifunctional peroxy radicals with 8 or 10 O atoms by an Atmospheric Pressure interface High Resolution Time of Flight Mass Spectrometer (APi-TOF-MS) equipped with a NO3--chemical ionization (CI) source. In the case of O-3 acting as an oxidant, the starting peroxy radical is formed on the so-called vinylhydroperoxide path. HOM peroxy radicals and their termination reactions with other peroxy radicals, including dimerization, allowed for analyzing the observed mass spectra and narrowing down the likely formation path. As consequence, we propose that HOM are multifunctional percarboxylic acids, with carbonyl, hydroperoxy, or hydroxy groups arising from the termination steps. We figured that aldehyde groups facilitate the initial rearrangement steps. In simple molecules like cycloalkenes, autoxidation was limited to both terminal C atoms and two further C atoms in the respective alpha positions. In more complex molecules containing tertiary H atoms or small, constrained rings, even higher oxidation degrees were possible, either by simple H shift of the tertiary H atom or by initialization of complex ring-opening reactions.
  • Kontkanen, Jenni; Järvinen, Emma; Manninen, Hanna E.; Lehtipalo, Katrianne; Kangasluoma, Juha; Decesari, Stefano; Gobbi, Gian Paolo; Laaksonen, Ari; Petäjä, Tuukka; Kulmala, Markku (2016)
    The concentrations of neutral and charged sub3nm clusters and their connection to new particle formation (NPF) were investigated during the PEGASOS campaign (7 June-9 July 2012) at the San Pietro Capofiume measurement station in the Po Valley, Italy. Continuous high concentrations of sub-3nm clusters were detected during the measurement period, although the condensation sink was relatively high (median value 1.1 x 10(-2) s(-1)). The median cluster concentrations were 2140 and 7980 cm 3 in the size bins of 1.5-1.8 and 1.8-3 nm, and the majority of them were electrically neutral. NPF events were observed during the measurement period frequently, on 86% of the days. The median growth rates of clusters during the events were 4.3, 6.0 and 7.2 nm h(-1) in the size ranges of 1.5-3, 3-7 and 720 nm. The median formation rate of 1.6 nm clusters was high, 45 cm 3 s(-1), and it exceeded the median formation rate of 2 nm clusters by 1 order of magnitude. The ion-induced nucleation fraction was low; the median values were 0.7% at 1.6 nm and 3.0% at 2 nm. On NPF event days the neutral cluster concentration had a maximum around 09: 00 (local winter time), which was absent on a non-event day. The increase in the cluster concentrations in the morning coincided with the increase in the boundary layer height. At the same time radiation, temperature and SO2 concentration increased, and RH and condensation sink decreased. The concentrations of neutral and charged clusters were observed to have a positive correlation with sulfuric acid proxy, indicating the significance of sulfuric acid for the cluster formation in San Pietro Capofiume. The condensation sink had a negative correlation with the concentration of charged clusters but no clear relation to the neutral cluster concentration. This finding, together with back-trajectory analysis, suggests that the precursor vapors of the clusters and background aerosol particles, acting as their sink, have possibly originated from the same sources, including e.g., power plants and industrial areas in the Po Valley.
  • Frege, Carla; Ortega, Ismael K.; Rissanen, Matti P.; Praplan, Arnaud P.; Steiner, Gerhard; Heinritzi, Martin; Ahonen, Lauri; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Brilke, Sophia; Breitenlechner, Martin; Dada, Lubna; Dias, Antonio; Duplissy, Jonathan; Ehrhart, Sebastian; El-Haddad, Imad; Fischer, Lukas; Fuchs, Claudia; Garmash, Olga; Gonin, Marc; Hansel, Armin; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kirkby, Jasper; Kuerten, Andreas; Lehtipalo, Katrianne; Leiminger, Markus; Mauldin, Roy Lee; Molteni, Ugo; Nichman, Leonid; Petäjä, Tuukka; Sarnela, Nina; Schobesberger, Siegfried; Simon, Mario; Sipilä, Mikko; Stolzenburg, Dominik; Tome, Antonio; Vogel, Alexander L.; Wagner, Andrea C.; Wagner, Robert; Xiao, Mao; Yan, Chao; Ye, Penglin; Curtius, Joachim; Donahue, Neil M.; Flagan, Richard C.; Kulmala, Markku; Worsnop, Douglas R.; Winkler, Paul M.; Dommen, Josef; Baltensperger, Urs (2018)
    It was recently shown by the CERN CLOUD experiment that biogenic highly oxygenated molecules (HOMs) form particles under atmospheric conditions in the absence of sulfuric acid, where ions enhance the nucleation rate by 1-2 orders of magnitude. The biogenic HOMs were produced from ozonolysis of alpha-pinene at 5 degrees C. Here we extend this study to compare the molecular composition of positive and negative HOM clusters measured with atmospheric pressure interface time-of-flight mass spectrometers (APi-TOFs), at three different temperatures (25, 5 and -25 degrees C). Most negative HOM clusters include a nitrate (NO3-) ion, and the spectra are similar to those seen in the nighttime boreal forest. On the other hand, most positive HOM clusters include an ammonium (NH4+) 4) ion, and the spectra are characterized by mass bands that differ in their molecular weight by similar to 20 C atoms, corresponding to HOM dimers. At lower temperatures the average oxygen to carbon (O : C) ratio of the HOM clusters decreases for both polarities, reflecting an overall reduction of HOM formation with decreasing temperature. This indicates a decrease in the rate of autoxidation with temperature due to a rather high activation energy as has previously been determined by quantum chemical calculations. Furthermore, at the lowest temperature (-25 degrees C), the presence of C-30 clusters shows that HOM monomers start to contribute to the nucleation of positive clusters. These experimental findings are supported by quantum chemical calculations of the binding energies of representative neutral and charged clusters.
  • Dada, Lubna; Paasonen, Pauli; Nieminen, Tuomo; Mazon, Stephany Buenrostro; Kontkanen, Jenni; Peräkylä, Otso; Lehtipalo, Katrianne; Hussein, Tareq; Petäjä, Tuukka; Kerminen, Veli-Matti; Bäck, Jaana; Kulmala, Markku (2017)
    New particle formation (NPF) events have been observed all around the world and are known to be a major source of atmospheric aerosol particles. Here we combine 20 years of observations in a boreal forest at the SMEAR II station (Station for Measuring Ecosystem-Atmosphere Relations) in Hyytiala, Finland, by building on previously accumulated knowledge and by focusing on clear-sky (non-cloudy) conditions. We first investigated the effect of cloudiness on NPF and then compared the NPF event and nonevent days during clear-sky conditions. In this comparison we considered, for example, the effects of calculated particle formation rates, condensation sink, trace gas concentrations and various meteorological quantities in discriminating NPF events from nonevents. The formation rate of 1.5 nm particles was calculated by using proxies for gaseous sulfuric acid and oxidized products of low volatile organic compounds, together with an empirical nucleation rate coefficient. As expected, our results indicate an increase in the frequency of NPF events under clear-sky conditions in comparison to cloudy ones. Also, focusing on clear-sky conditions enabled us to find a clear separation of many variables related to NPF. For instance, oxidized organic vapors showed a higher concentration during the clear-sky NPF event days, whereas the condensation sink (CS) and some trace gases had higher concentrations during the nonevent days. The calculated formation rate of 3 nm particles showed a notable difference between the NPF event and nonevent days during clear-sky conditions, especially in winter and spring. For springtime, we are able to find a threshold equation for the combined values of ambient temperature and CS, (CS (s(-1)) > -3.091 x 10(-5) x T (in Kelvin) + 0.0120), above which practically no clear-sky NPF event could be observed. Finally, we present a probability distribution for the frequency of NPF events at a specific CS and temperature.
  • Rose, C.; Sellegri, K.; Asmi, E.; Hervo, M.; Freney, E.; Colomb, A.; Junninen, H.; Duplissy, J.; Sipilä, Mikko; Kontkanen, J.; Lehtipalo, K.; Kulmala, Markku (2015)
    The formation of new aerosol particles in the atmosphere is a key process influencing the aerosol number concentration as well as the climate, in particular at high altitude, where the newly formed particles directly influence cloud formation. However, free tropospheric new particle formation (NPF) is poorly documented due to logistic limitations and complex atmospheric dynamics around high-altitude stations that make the observation of this day-time process challenging. Recent improvements in measurement techniques make now possible the detection of neutral clusters down to similar to 1 nm sizes, which opens new horizons in our understanding of the nucleation process. Indeed, only the charged fraction of clusters has been reported in the upper troposphere up to now. Here we report day-time concentrations of charged and neutral clusters (1 to 2.5 nm mobility diameter) recorded at the interface between the boundary layer (BL) and the FT as well as in the FT at the altitude site of Puy de Dome (1465 m a.s.l.), central France, between 10 and 29 February 2012. Our findings demonstrate that in the FT, and especially at the interface between the BL and the FT, the formation of 1.5 nm neutral clusters significantly exceeds the one of ionic clusters during NPF events, clearly indicating that they dominate in the nucleation process. We also observe that the total cluster concentration significantly increases during NPF events compared to the other days, which was not clearly observed for the charged cluster population in the past. During the studied period, the nucleation process does not seem to be sulfuric acid-limited and could be promoted by the transport of pollutants to the upper troposphere, coupled with low temperatures.
  • Kontkanen, Jenni; Lehtipalo, Katrianne; Ahonen, Lauri; Kangasluoma, Juha; Manninen, Hanna E.; Hakala, Jani; Rose, Clemence; Sellegri, Karine; Xiao, Shan; Wang, Lin; Qi, Ximeng; Nie, Wei; Ding, Aijun; Yu, Huan; Lee, Shanhu; Kerminen, Veli-Matti; Petäjä, Tuukka; Kulmala, Markku (2017)
    The measurement of sub-3 nm aerosol particles is technically challenging. Therefore, there is a lack of knowledge about the concentrations of atmospheric sub-3 nm particles and their variation in different environments. In this study, the concentrations of similar to 1-3 nm particles measured with a particle size magnifier (PSM) were investigated at nine sites around the world. Sub-3 nm particle concentrations were highest at the sites with strong anthropogenic influence. In boreal forest, measured particle concentrations were clearly higher in summer than in winter, suggesting the importance of biogenic precursor vapors in this environment. At all sites, sub-3 nm particle concentrations had daytime maxima, which are likely linked to the photochemical production of precursor vapors and the emissions of precursor vapors or particles from different sources. When comparing ion concentrations to the total sub-3 nm particle concentrations, electrically neutral particles were observed to dominate in polluted environments and in boreal forest during spring and summer. Generally, the concentrations of sub-3 nm particles seem to be determined by the availability of precursor vapors rather than the level of the sink caused by preexisting aerosol particles. The results also indicate that the formation of the smallest particles and their subsequent growth to larger sizes are two separate processes, and therefore studying the concentration of sub-3 nm particles separately in different size ranges is essential.
  • Bianchi, F.; Tröstl, J.; Junninen, H.; Frege, C.; Henne, S.; Hoyle, C. R.; Molteni, U.; Herrmann, E.; Adamov, A.; Bukowiecki, N.; Chen, X.; Duplissy, J.; Gysel, M.; Hutterli, M.; Kangasluoma, J.; Kontkanen, J.; Kuerten, A.; Manninen, H. E.; Muench, S.; Peräkylä, O.; Petäjä, T.; Rondo, L.; Williamson, C.; Weingartner, E.; Curtius, J.; Worsnop, D. R.; Kulmala, M.; Dommen, J.; Baltensperger, U. (2016)
    New particle formation (NPF) is the source of over half of the atmosphere's cloud condensation nuclei, thus influencing cloud properties and Earth's energy balance. Unlike in the planetary boundary layer, few observations of NPF in the free troposphere exist. We provide observational evidence that at high altitudes, NPF occurs mainly through condensation of highly oxygenated molecules (HOMs), in addition to taking place through sulfuric acid-ammonia nucleation. Neutral nucleation is more than 10 times faster than ion-induced nucleation, and growth rates are size-dependent. NPF is restricted to a time window of 1 to 2 days after contact of the air masses with the planetary boundary layer; this is related to the time needed for oxidation of organic compounds to form HOMs. These findings require improved NPF parameterization in atmospheric models.
  • Kulmala, Markku; Petaja, Tuukka; Kerminen, Veli-Matti; Kujansuu, Joni; Ruuskanen, Taina; Ding, Aijun; Nie, Wei; Hu, Min; Wang, Zhibin; Wu, Zhijun; Wang, Lin; Worsnop, Douglas R. (2016)
    Formation of new atmospheric aerosol particles is a global phenomenon that has been observed to take place in even heavily-polluted environments. However, in all environments there appears to be a threshold value of the condensation sink (due to pre-existing aerosol particles) after which the formation rate of 3 nm particles is no longer detected. In China, new particle production has been observed at very high pollution levels (condensation sink about 0.1 s(-1)) in several megacities, including Beijing, Shanghai and Nanjing as well as in Pearl River Delta (PRD). Here we summarize the recent findings obtained from these studies and discuss the various implications these findings will have on future research and policy. (C) Higher Education Press and Springer-Verlag Berlin Heidelberg 2016
  • Wagner, Robert; Manninen, Hanna E.; Franchin, Alessandro; Lehtipalo, Katrianne; Mirme, Sander; Steiner, Gerhard; Petäjä, Tuukka; Kulmala, Markku (2016)
    Here, we present a calibration of the Neutral cluster and Air Ion Spectrometer (NAIS, Airel Ltd.) for the size and concentration of ions in the mobility-diameter size-range 0.98-29.1 nm. Previous studies raised accuracy issues in size and concentration determination and highlighted the importance of used data inversion algorithm. Therefore, we investigated the performance of the NAIS by using five inversion methods. The presented results illustrate that the size information given by the NAIS is very accurate, regardless of the version of the data inversion. The number concentrations determined by the NAIS were 15%-30% too low especially at the lower end of the measurement size range (<5 nm), whereas concentrations at diameters 19.6 nm and larger were overestimated by up to 8%. With the correction presented in this study, the uncertainty of the ion concentration measurement of the NAIS can be reduced to less than 10%, allowing the NAIS to be used in quantitative ion cluster studies and more accurate determination of formation and growth rates.
  • Kangasluoma, J.; Kontkanen, J. (2017)
    The number of experiments characterizing sub-3 nm aerosol particle dynamics has increased significantly over the recent years. In these experiments, it is essential to know/determine size resolved particle number concentrations accurately. Despite particle concentration measurement being relatively simple experiment, it can contain large uncertainties from various sources in the sub-3 nm size range. In this study we aim to identify and examine some of these sources. We simulated four different condensation particle counters (CPCs) (TSI 3777, ADI vWCPC, Airmodus A11 and an ideal CPC with d50 (lowest detection threshold) of 1.5 nm) and one differential mobility analyzer (DMA) (TSI nano DMA) and study the resulting uncertainties when using them to measure three different particle size distributions. First, we show that Poisson counting uncertainty root N represents the standard deviation, sigma, of the number of counted particles in all CPC and DMPS counting experiments. Second, the state-of-the-art DMA-CPC particle sizing system is examined with respect to counting statistics. Third, the performance of the instruments is assumed to be well-known, and instrumental non-idealities and the inversion routine are assessed. Fourth,+/- 0.5 nm offset is inserted to the CPC d50, and its effect on the measured particle concentration is examined. Our results highlight the importance of knowing the CPC d50 accurately to narrow down the particle concentration uncertainty. Furthermore, the results show that the current DMA-CPC measurements are subject to considerable counting uncertainty in low particle concentration environments. Based on the analysis we summarize suggestions for further research and instrumental development for more accurate sub-3 nm particle concentration measurements in the future.
  • Kangasluoma, Juha; Franchin, Alessandro; Duplissy, Jonathan; Ahonen, Lauri; Korhonen, Frans; Attoui, Michel; Mikkilä, Jyri; Lehtipalo, Katrianne; Vanhanen, Joonas; Kulmala, Markku; Petäjä, Tuukka (2016)
    Measuring sub-3 nm particles outside of controlled laboratory conditions is a challenging task, as many of the instruments are operated at their limits and are subject to changing ambient conditions. In this study, we advance the current understanding of the operation of the Airmodus A11 nano Condensation Nucleus Counter (nCNC), which consists of an A10 Particle Size Magnifier (PSM) and an A20 Condensation Particle Counter (CPC). The effect of the inlet line pressure on the measured particle concentration was measured, and two separate regions inside the A10, where supersaturation of working fluid can take place, were identified. The possibility of varying the lower cut-off diameter of the nCNC was investigated; by scanning the growth tube temperature, the range of the lower cut-off was extended from 1-2.5 to 1-6 nm. Here we present a new inlet system, which allows automated measurement of the background concentration of homogeneously nucleated droplets, minimizes the diffusion losses in the sampling line and is equipped with an electrostatic filter to remove ions smaller than approximately 4.5 nm. Finally, our view of the guidelines for the optimal use of the Airmodus nCNC is provided.