Sort by: Order: Results:

Now showing items 1-8 of 8
  • Vihma, Timo; Kilpeläinen, Tiina; Manninen, Miina; Sjöblom, Anna; Jakobson, Erko; Palo, Timo; Jaagus, Jaak; Maturilli, Marion (2011)
  • Valkonen, Teresa; Vihma, Timo; Kirkwood, Sheila; Johansson, Milla M. (2010)
  • Jaars, Kerneels; van Zyl, Pieter G.; Beukes, Johan P.; Hellen, Heidi; Vakkari, Ville; Josipovic, Micky; Venter, Andrew D.; Räsänen, Matti; Knoetze, Leandra; Cilliers, Dirk P.; Siebert, Stefan J.; Kulmala, Markku; Rinne, Janne; Guenther, Alex; Laakso, Lauri; Hakola, Hannele (2016)
    Biogenic volatile organic compounds (BVOCs) play an important role in the chemistry of the troposphere, especially in the formation of tropospheric ozone (O-3) and secondary organic aerosols (SOA). Ecosystems produce and emit a large number of BVOCs. It is estimated on a global scale that approximately 90% of annual BVOC emissions are from terrestrial sources. In this study, measurements of BVOCs were conducted at the Welgegund measurement station (South Africa), which is considered to be a regionally representative background site situated in savannah grasslands. Very few BVOC measurements exist for savannah grasslands and results presented in this study are the most extensive for this type of landscape. Samples were collected twice a week for 2 h during the daytime and 2 h during the night-time through two long-term sampling campaigns from February 2011 to February 2012 and from December 2013 to February 2015, respectively. Individual BVOCs were identified and quantified using a thermal desorption instrument, which was connected to a gas chromatograph and a mass selective detector. The annual median concentrations of isoprene, 2-methyl-3-butene-2-ol (MBO), monoterpene and sesquiterpene (SQT) during the first campaign were 14, 7, 120 and 8 pptv, respectively, and 14, 4, 83 and 4 pptv, respectively, during the second campaign. The sum of the concentrations of the monoterpenes were at least an order of magnitude higher than the concentrations of other BVOC species during both sampling campaigns, with alpha-pinene being the most abundant species. The highest BVOC concentrations were observed during the wet season and elevated soil moisture was associated with increased BVOC concentrations. However, comparisons with measurements conducted at other landscapes in southern Africa and the rest of the world that have more woody vegetation indicated that BVOC concentrations were, in general, significantly lower for savannah grasslands. Furthermore, BVOC concentrations were an order of magnitude lower compared to total aromatic concentrations measured at Welgegund. An analysis of concentrations by wind direction indicated that isoprene concentrations were higher from the western sector that is considered to be a relatively clean regional background region with no large anthropogenic point sources, while wind direction did not indicate any significant differences in the concentrations of the other BVOC species. Statistical analysis indicated that soil moisture had the most significant impact on atmospheric levels of MBO, monoterpene and SQT concentrations, whereas temperature had the greatest influence on isoprene levels. The combined O-3 formation potentials of all the BVOCs measured calculated with maximum incremental reactivity (MIR) coefficients during the first and second campaign were 1162 and 1022 pptv, respectively. alpha-Pinene and limonene had the highest reaction rates with O3, whereas isoprene exhibited relatively small contributions to O3 depletion. Limonene, alpha-pinene and terpinolene had the largest contributions to the OH reactivity of BVOCs measured at Welgegund for all of the months during both sampling campaigns.
  • Zilitinkevich, S. S.; Esau, I.; Kleeorin, N.; Rogachevskii, I.; Kouznetsov, R. D. (2010)
  • Kouznetsov, Rostislav D.; Zilitinkevich, Sergej S. (2010)
  • Vihma, Timo; Uotila, Petteri; Sandven, Stein; Pozdnyakov, Dmitry; Makshtas, Alexander; Pelyasov, Alexander; Pirazzini, Roberta; Danielsen, Finn; Chalov, Sergey; Lappalainen, Hanna K.; Ivanov, Vladimir; Frolov, Ivan; Albin, Anna; Cheng, Bin; Dobrolyubov, Sergey; Arkhipkin, Viktor; Myslenkov, Stanislav; Petäjä, Tuukka; Kulmala, Markku (2019)
    The Arctic marine climate system is changing rapidly, which is seen in the warming of the ocean and atmosphere, decline of sea ice cover, increase in river discharge, acidification of the ocean, and changes in marine ecosystems. Socio-economic activities in the coastal and marine Arctic are simultaneously changing. This calls for the establishment of a marine Arctic component of the Pan-Eurasian Experiment (MA-PEEX). There is a need for more in situ observations on the marine atmosphere, sea ice, and ocean, but increasing the amount of such observations is a pronounced technological and logistical challenge. The SMEAR (Station for Measuring Ecosystem-Atmosphere Relations) concept can be applied in coastal and archipelago stations, but in the Arctic Ocean it will probably be more cost-effective to further develop a strongly distributed marine observation network based on autonomous buoys, moorings, autonomous underwater vehicles (AUVs), and unmanned aerial vehicles (UAVs). These have to be supported by research vessel and aircraft campaigns, as well as various coastal observations, including community-based ones. Major manned drift-ing stations may occasionally be comparable to terrestrial SMEAR flagship stations. To best utilize the observations, atmosphere-ocean reanalyses need to be further developed. To well integrate MA-PEEX with the existing terrestrialatmospheric PEEX, focus is needed on the river discharge and associated fluxes, coastal processes, and atmospheric transports in and out of the marine Arctic. More observations and research are also needed on the specific socioeconomic challenges and opportunities in the marine and coastal Arctic, and on their interaction with changes in the climate and environmental system. MA-PEEX will promote international collaboration; sustainable marine meteorological, sea ice, and oceanographic observations; advanced data management; and multidisciplinary research on the marine Arctic and its interaction with the Eurasian continent.
  • Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L.; Weinheimer, Andrew; Hornbrook, Rebecca S.; Apel, Eric C.; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James; Ortega, John (2018)
    Here we report the measurement results of nitrous acid (HONO) and a suite of relevant parameters on the NCAR C-130 research aircraft in the southeastern US during the NOMADSS 2013 summer field study. The daytime HONO concentration ranged from low parts per trillion by volume (pptv) in the free troposphere (FT) to mostly within 5-15 pptv in the background planetary boundary layer (PBL). There was no discernible vertical HONO gradient above the lower flight altitude of 300m in the PBL, and the transport of ground surface HONO was not found to be a significant contributor to the tropospheric HONO budget. The total in situ HONO source mean (+/- 1 SD) was calculated as 53 (+/- 21) pptv h(-1) during the day. The upper-limit contribution from NOx-related reactions was 10 (+/- 5) pptv h(-1), and the contribution from photolysis of particulate nitrate (pNO(3)) was 38 (+/- 23) pptv h(-1), based on the measured pNO(3) concentrations and the median pNO(3) photolysis rate constant of 2.0 x 10 4 s(-1) determined in the laboratory using ambient aerosol samples. The photolysis of HONO contributed to less than 10% of the primary OH source. However, a recycling NOx source via pNO(3) photolysis was equivalent to similar to 2.3 x 10(-6) molm(-2) h(-1) in the air column within the PBL, a considerable supplementary NOx source in the low-NOx background area. Up to several tens of parts per trillion by volume of HONO were observed in power plant and urban plumes during the day, mostly produced in situ from precursors including NOx and pNO(3). Finally, there was no observable accumulation of HONO in the nocturnal residual layer and the nocturnal FT in the background southeastern US, with an increase in the HONO / NOx ratio of
  • Leino, Katri; Lampilahti, Janne; Poutanen, Pyry; Väänänen, Riikka; Manninen, Antti; Mazon, Stephany Buenrostro; Dada, Lubna; Franck, Anna; Wimmer, Daniela; Aalto, Pasi P.; Ahonen, Lauri R.; Enroth, Joonas; Kangasluoma, Juha; Keronen, Petri; Korhonen, Frans; Laakso, Heikki; Matilainen, Teemu; Siivola, Erkki; Manninen, Hanna E.; Lehtipalo, Katrianne; Kerminen, Veli-Matti; Petäjä, Tuukka; Kulmala, Markku (2019)
    This work presents airborne observations of sub-3 nm particles in the lower troposphere and investigates new particle formation (NPF) within an evolving boundary layer (BL). We studied particle concentrations together with supporting gas and meteorological data inside the planetary BL over a boreal forest site in Hyytiala, southern Finland. The analysed data were collected during three flight measurement campaigns: May-June 2015, August 2015 and April-May 2017, including 27 morning and 26 afternoon vertical profiles. As a platform for the instrumentation, we used a Cessna 172 aircraft. The analysed flight data were collected horizontally within a 30 km distance from SMEAR II in Hyytiala and vertically from 100 m above ground level up to 2700 m. The number concentration of 1.5-3 nm particles was observed to be, on average, the highest near the forest canopy top and to decrease with increasing altitude during the mornings of NPF event days. This indicates that the precursor vapours emitted by the forest play a key role in NPF in Hyytiala. During daytime, newly formed particles were observed to grow in size and the particle population became more homogenous within the well-mixed BL in the afternoon. During undefined days with respect to NPF, we also detected an increase in concentration of 1.5-3 nm particles in the morning but not their growth in size, which indicates an interrupted NPF process during these undefined days. Vertical mixing was typically stronger during the NPF event days than during the undefined or non-event days. The results shed light on the connection between boundary layer dynamics and NPF.