Browsing by Subject "ATMOSPHERIC CHEMISTRY"

Sort by: Order: Results:

Now showing items 1-20 of 23
  • Oswald, R.; Ermel, M.; Hens, K.; Novelli, A.; Ouwersloot, H. G.; Paasonen, Pauli; Petäjä, Tuukka; Sipilä, Mikko; Keronen, Petri; Bäck, Jaana; Konigstedt, R.; Beygi, Z. Hosaynali; Fischer, H.; Bohn, B.; Kubistin, D.; Harder, H.; Martinez, M.; Williams, J.; Hoffmann, T.; Trebs, I.; Soergel, M. (2015)
  • Karl, Matthias; Gross, Allan; Pirjola, Liisa; Leck, Caroline (2011)
  • Ma, Wei; Liu, Yongchun; Zhang, Yusheng; Feng, Zemin; Zhan, Junlei; Hua, Chenjie; Ma, Li; Guo, Yishuo; Zhang, Ying; Zhou, Wenshuo; Yan, Chao; Chu, Biwu; Chen, Tianzeng; Ma, Qingxin; Liu, Chunshan; Kulmala, Markku; Mu, Yujing; He, Hong (2022)
    Since the 1960s, many indoor and outdoor smog chambers have been developed worldwide. However, most of them are made of Teflon films, which have relatively high background contaminations due to the wall effect. We developed the world's first medium-size quartz chamber (10 m(3)), which is jointed with 32 pieces of 5 mm thick polished quartz glasses and a stainless-steel frame. Characterizations show that this chamber exhibits excellent performance in terms of relative humidity (RH) (2-80%) and temperature (15-30 +/- 1 degrees C) control, mixing efficiency of the reactants (6-8 min), light transmittance (>90% above 290 nm), and wall loss of pollutants. The wall loss rates of the gas-phase pollutants are on the order of 10(-4) min(-1) at 298 K under dry conditions. It is 0.08 h(-1) for 100-500 nm particles, significantly lower than those of Teflon chambers. The photolysis rate of NO2 (J(NO2)) is automatically adjustable to simulate the diurnal variation of solar irradiation from 0 to 0.40 min(-1). The inner surface of the chamber can be repeatedly washed with deionized water, resulting in low background contaminations. Both experiments (toluene-NOx and alpha-pinene-ozone systems) and box model demonstrate that this new quartz chamber can provide high-quality data for investigating SOA and O-3 formation in the atmosphere.
  • Back, J.; Aalto, J.; Hemmilä, Marja S; Hakola, H.; He, Q.; Boy, M. (2012)
  • Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Zotter, Peter; Prevot, Andre S. H.; Xu, Lu; Ng, Nga L.; Herndon, Scott C.; Williams, Leah R.; Franklin, Jonathan P.; Zahniser, Mark S.; Worsnop, Douglas R.; Knighton, W. Berk; Aiken, Allison C.; Gorkowski, Kyle J.; Dubey, Manvendra K.; Allan, James D.; Thornton, Joel A. (2013)
  • Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; Kolb, Charles; Davidovits, Paul; Worsnop, Douglas; Brune, William (2017)
    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O-3) is photolyzed at 254 nm to produce O(D-1) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O-3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(D-1) + N2O -> 2NO, followed by the reaction NO + O-3 -> NO2 + O-2. Laboratory measurements coupled with photochemical model simulations suggest that O(D-1) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3-) reagent ion to detect gas-phase oxidation products of isoprene and alpha-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.
  • Liebmann, Jonathan; Karu, Einar; Sobanski, Nicolas; Schuladen, Jan; Ehn, Mikael; Schallhart, Simon; Quelever, Lauriane; Hellen, Heidi; Hakola, Hannele; Hoffmann, Thorsten; Williams, Jonathan; Fischer, Horst; Lelieveld, Jos; Crowley, John N. (2018)
    We present the first direct measurements of NO3 reactivity (or inverse lifetime, s(-1))in the Finnish boreal forest. The data were obtained during the IBAIRN campaign (Influence of Biosphere-Atmosphere Interactions on the Reactive Nitrogen budget) which took place in Hyytiala, Finland during the summer/autumn transition in September 2016. The NO3 reactivity was generally very high with a maximum value of 0.94 s(-1) and displayed a strong diel variation with a campaign-averaged nighttime mean value of 0.11 s(-1) compared to a daytime value of 0.04 s(-1). The highest nighttime NO3 reactivity was accompanied by major depletion of canopy level ozone and was associated with strong temperature inversions and high levels of monoterpenes. The daytime reactivity was sufficiently large that reactions of NO3 with organic trace gases could compete with photolysis and reaction with NO. There was no significant reduction in the measured NO3 reactivity between the beginning and end of the campaign, indicating that any seasonal reduction in canopy emissions of reactive biogenic trace gases was offset by emissions from the forest floor. Observations of biogenic hydrocarbons (BVOCs) suggested a dominant role for monoterpenes in determining the NO3 reactivity. Reactivity not accounted for by in situ measurement of NO and BVOCs was variable across the diel cycle with, on average, approximate to 30% "missing" during nighttime and approximate to 60% missing during the day. Measurement of the NO3 reactivity at various heights (8.5 to 25 m) both above and below the canopy, revealed a strong nighttime, vertical gradient with maximum values closest to the ground. The gradient disappeared during the daytime due to efficient vertical mixing.
  • Molteni, Ugo; Bianchi, Federico; Klein, Felix; El Haddad, Imad; Frege, Carla; Rossi, Michel J.; Dommen, Josef; Baltensperger, Urs (2018)
    Anthropogenic volatile organic compounds (AV-OCs) often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs), such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs) with an O:C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene) and ethylbenzene), as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl). We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AV-OCs may contribute substantially to new particle formation events that have been detected in urban areas.
  • Lambe, Andrew T.; Krechmer, Jordan E.; Peng, Zhe; Casar, Jason R.; Carrasquillo, Anthony J.; Raff, Jonathan D.; Jimenez, Jose L.; Worsnop, Douglas R. (2019)
    Oxidation flow reactors (OFRs) are an emerging technique for studying the formation and oxidative aging of organic aerosols and other applications. In these flow reactors, hydroxyl radicals (OH), hydroperoxyl radicals (HO2), and nitric oxide (NO) are typically produced in the following ways: photolysis of ozone (O-3) at), = 254 nm, photolysis of H2O at), = 185 nm, and via reactions of O(D-1) with H2O and nitrous oxide (N2O); O(D-1) is formed via photolysis of O-3 at = 254 nm and/or N2O at = 185 nm. Here, we adapt a complementary method that uses alkyl nitrite photolysis as a source of OH via its production of HO2 and NO followed by the reaction NO + HO2 -> NO2 + OH. We present experimental and model characterization of the OH exposure and NO, levels generated via photolysis of C3 alkyl nitrites (isopropyl nitrite, perdeuterated isopropyl nitrite, 1,3-propyl dinitrite) in the Potential Aerosol Mass (PAM) OFR as a function of photolysis wavelength (7, = 254 to 369 nm) and organic nitrite concentration (0.5 to 20 ppm). We also apply this technique in conjunction with chemical ionization mass spectrometer measurements of multifunctional oxidation products generated following the exposure of a-Pinene to HO, and NO, obtained using both isopropyl nitrite and O-3 + H2O + N2O as the radical precursors.
  • Eger, Philipp G.; Vereecken, Luc; Sander, Rolf; Schuladen, Jan; Sobanski, Nicolas; Fischer, Horst; Karu, Einar; Williams, Jonathan; Vakkari, Ville; Petäjä, Tuukka; Lelieveld, Jos; Pozzer, Andrea; Crowley, John N. (2021)
    Based on the first measurements of gas-phase pyruvic acid (CH3C(O)C(O)OH) in the boreal forest, we derive effective emission rates of pyruvic acid and compare them with monoterpene emission rates over the diel cycle. Using a data-constrained box model, we determine the impact of pyruvic acid photolysis on the formation of acetaldehyde (CH3CHO) and the peroxy radicals CH3C(O)O-2 and HO2 during an autumn campaign in the boreal forest. The results are dependent on the quantum yield (phi) and mechanism of the photodissociation of pyruvic acid and the fate of a likely major product, methylhydroxy carbene (CH3COH). With the box model, we investigate two different scenarios in which we follow the present IUPAC (IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, 2021) recommendations with phi = 0.2 (at 1 bar of air), and the main photolysis products (60 %) are acetaldehyde + CO2 with 35 % C-C bond fission to form HOCO and CH3CO (scenario A). In the second scenario (B), the formation of vibrationally hot CH3COH (and CO2) represents the main dissociation pathway at longer wavelengths (similar to 75 %) with a similar to 25 % contribution from C-C bond fission to form HOCO and CH3CO (at shorter wavelengths). In scenario 2 we vary phi between 0.2 and 1 and, based on the results of our theoretical calculations, allow the thermalized CH3COH to react with O-2 (forming peroxy radicals) and to undergo acid-catalysed isomerization to CH3CHO. When constraining the pyruvic acid to measured mixing ratios and independent of the model scenario, we find that the photolysis of pyruvic acid is the dominant source of CH3CHO with a contribution between similar to 70 % and 90 % to the total production rate. We find that the photolysis of pyruvic acid is also a major source of the acetylperoxy radical, with contributions varying between similar to 20 % and 60 % dependent on the choice of phi and the products formed. HO2 production rates are also enhanced, mainly via the formation of CH3O2. The elevated production rates of CH3C(O)O-2 and HO2 and concentration of CH3CHO result in significant increases in the modelled mixing ratios of CH3C(O)OOH, CH3OOH, HCHO, and H2O2.
  • Clifton, O.E.; Paulot, F.; Fiore, A.M.; Horowitz, L.W.; Correa, G.; Baublitz, C.B.; Fares, S.; Goded, I.; Goldstein, A.H.; Gruening, C.; Hogg, A.J.; Loubet, B.; Mammarella, I.; Munger, J.W.; Neil, L.; Stella, P.; Uddling, J.; Vesala, T.; Weng, E. (2020)
    Identifying the contributions of chemistry and transport to observed ozone pollution using regional-to-global models relies on accurate representation of ozone dry deposition. We use a recently developed configuration of the NOAA GFDL chemistry-climate model - in which the atmosphere and land are coupled through dry deposition-to investigate the influence of ozone dry deposition on ozone pollution over northern midlatitudes. In our model, deposition pathways are tied to dynamic terrestrial processes, such as photosynthesis and water cycling through the canopy and soil. Small increases in winter deposition due to more process-based representation of snow and deposition to surfaces reduce hemispheric-scale ozone throughout the lower troposphere by 5-12 ppb, improving agreement with observations relative to a simulation with the standard configuration for ozone dry deposition. Declining snow cover by the end of the 21st-century tempers the previously identified influence of rising methane on winter ozone. Dynamic dry deposition changes summer surface ozone by -4 to +7 ppb. While previous studies emphasize the importance of uptake by plant stomata, new diagnostic tracking of depositional pathways reveals a widespread impact of nonstomatal deposition on ozone pollution. Daily variability in both stomatal and nonstomatal deposition contribute to daily variability in ozone pollution. Twenty-first century changes in summer deposition result from a balance among changes in individual pathways, reflecting differing responses to both high carbon dioxide (through plant physiology versus biomass accumulation) and water availability. Our findings highlight a need for constraints on the processes driving ozone dry deposition to test representation in regional-to-global models.
  • Crowley, John N.; Pouvesle, Nicolas; Phillips, Gavin J.; Axinte, Raoul; Fischer, Horst; Petäjä, Tuukka; Noelscher, Anke; Williams, Jonathan; Hens, Korbinian; Harder, Hartwig; Martinez-Harder, Monica; Novelli, Anna; Kubistin, Dagmar; Bohn, Birger; Lelieveld, Jos (2018)
    Unlike many oxidised atmospheric trace gases, which have numerous production pathways, peroxyacetic acid (PAA) and PAN are formed almost exclusively in gasphase reactions involving the hydroperoxy radical (HO2), the acetyl peroxy radical (CH3C(O)O-2) and NO2 and are not believed to be directly emitted in significant amounts by vegetation. As the self-reaction of HO2 is the main photochemical route to hydrogen peroxide (H2O2), simultaneous observation of PAA, PAN and H2O2 can provide insight into the HO2 budget. We present an analysis of observations taken during a summertime campaign in a boreal forest that, in addition to natural conditions, was temporarily impacted by two biomass-burning plumes. The observations were analysed using an expression based on a steady-state assumption using relative PAA-to-PAN mixing ratios to derive HO2 concentrations. The steady-state approach generated HO2 concentrations that were generally in reasonable agreement with measurements but sometimes overestimated those observed by factors of 2 or more. We also used a chemically simple, constrained box model to analyse the formation and reaction of radicals that define the observed mixing ratios of PAA and H2O2. After nudging the simulation towards observations by adding extra, photochemical sources of HO2 and CH3C(O)O-2, the box model replicated the observations of PAA, H2O2, ROOH and OH throughout the campaign, including the biomass-burning-influenced episodes during which significantly higher levels of many oxidized trace gases were observed. A dominant fraction of CH3O2 radical generation was found to arise via reactions of the CH3C(O)O-2 radical. The model indicates that organic peroxy radicals were present at night in high concentrations that sometimes exceeded those predicted for daytime, and initially divergent measured and modelled HO2 concentrations and daily concentration profiles are reconciled when organic peroxy radicals are detected (as HO2) at an efficiency of 35 %. Organic peroxy radicals are found to play an important role in the recycling of OH radicals subsequent to their loss via reactions with volatile organic compounds.
  • Praplan, Arnaud P.; Tykka, Toni; Chen, Dean; Boy, Michael; Taipale, Ditte; Vakkari, Ville; Zhou, Putian; Petaja, Tuukka; Hellen, Heidi (2019)
    Total hydroxyl radical (OH) reactivity measurements were conducted at the second Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II), a boreal forest site located in Hyytiala, Finland, from April to July 2016. The measured values were compared with OH reactivity calculated from a combination of data from the routine trace gas measurements (station mast) as well as online and offline analysis with a gas chromatographer coupled to a mass spectrometer (GC-MS) and offline liquid chromatography. Up to 104 compounds, mostly volatile organic compounds (VOCs) and oxidized VOCs, but also inorganic compounds, were included in the analysis, even though the data availability for each compound varied with time. The monthly averaged experimental total OH reactivity was found to be higher in April and May (ca. 20 s(-1)) than in June and July (7.6 and 15.4 s(-1), respectively). The measured values varied much more in spring with high reactivity peaks in late afternoon, with values higher than in the summer, in particular when the soil was thawing. Total OH reactivity values generally followed the pattern of mixing ratios due to change of the boundary layer height. The missing reactivity fraction (defined as the difference between measured and calculated OH reactivity) was found to be high. Several reasons that can explain the missing reactivity are discussed in detail such as (1) missing measurements due to technical issues, (2) not measuring oxidation compounds of detected biogenic VOCs, and (3) missing important reactive compounds or classes of compounds with the available measurements. In order to test the second hypothesis, a one-dimensional chemical transport model (SOSAA) has been used to estimate the amount of unmeasured oxidation products and their expected contribution to the reactivity for three different short periods in April, May, and July. However, only a small fraction (<4.5 %) of the missing reactivity can be explained by modelled secondary compounds (mostly oxidized VOCs). These findings indicate that compounds measured but not included in the model as well as unmeasured primary emissions contribute the missing reactivity. In the future, non-hydrocarbon compounds from sources other than vegetation (e.g. soil) should be included in OH reactivity studies.
  • Garmash, Olga; Rissanen, Matti P.; Pullinen, Iida; Schmitt, Sebastian; Kausiala, Oskari; Tillmann, Ralf; Zhao, Defeng; Percival, Carl J.; Bannan, Thomas; Priestley, Michael; Hallquist, Asa M.; Kleist, Einhard; Kiendler-Scharr, A.; Hallquist, Mattias; Berndt, Torsten; McFiggans, Gordon; Wildt, Jürgen; Mentel, Thomas F.; Ehn, Mikael (2020)
    Recent studies have recognised highly oxygenated organic molecules (HOMs) in the atmosphere as important in the formation of secondary organic aerosol (SOA). A large number of studies have focused on HOM formation from oxidation of biogenically emitted monoterpenes. However, HOM formation from anthropogenic vapours has so far received much less attention. Previous studies have identified the importance of aromatic volatile organic compounds (VOCs) for SOA formation. In this study, we investigated several aromatic compounds, benzene (C6H6), toluene (C7H8), and naphthalene (C10H8), for their potential to form HOMs upon reaction with hydroxyl radicals (OH). We performed flow tube experiments with all three VOCs and focused in detail on benzene HOM formation in the Julich Plant Atmosphere Chamber (JPAC). In JPAC, we also investigated the response of HOMs to NOx and seed aerosol. Using a nitrate-based chemical ionisation mass spectrometer (CI-APi-TOF), we observed the formation of HOMs in the flow reactor oxidation of benzene from the first OH attack. However, in the oxidation of toluene and naphthalene, which were injected at lower concentrations, multi-generation OH oxidation seemed to impact the HOM composition. We tested this in more detail for the benzene system in the JPAC, which allowed for studying longer residence times. The results showed that the apparent molar benzene HOM yield under our experimental conditions varied from 4.1% to 14.0%, with a strong dependence on the OH concentration, indicating that the majority of observed HOMs formed through multiple OH-oxidation steps. The composition of the identified HOMs in the mass spectrum also supported this hypothesis. By injecting only phenol into the chamber, we found that phenol oxidation cannot be solely responsible for the observed HOMs in benzene experiments. When NOx was added to the chamber, HOM composition changed and many oxygenated nitrogen-containing products were observed in CI-APi-TOF. Upon seed aerosol injection, the HOM loss rate was higher than predicted by irreversible condensation, suggesting that some undetected oxygenated intermediates also condensed onto seed aerosol, which is in line with the hypothesis that some of the HOMs were formed in multi-generation OH oxidation. Based on our results, we conclude that HOM yield and composition in aromatic systems strongly depend on OH and VOC concentration and more studies are needed to fully understand this effect on the formation of HOMs and, consequently, SOA. We also suggest that the dependence of HOM yield on chamber conditions may explain part of the variability in SOA yields reported in the literature and strongly advise monitoring HOMs in future SOA studies.
  • Isokääntä, Sini; Mikkonen, Santtu; Laurikainen, Maria; Buchholz, Angela; Schobesberger, Siegfried; Blande, James D.; Nieminen, Tuomo; Ylivinkka, Ilona; Bäck, Jaana; Petäjä, Tuukka; Kulmala, Markku; Yli-Juuti, Taina (2022)
    Tropospheric ozone (O-3) concentrations are observed to increase with temperature in urban and rural locations. We investigated the apparent temperature dependency of daytime ozone concentration in the Finnish boreal forest in summertime based on long-term measurements. We used statistical mixed effects models to separate the direct effects of temperature from other factors influencing this dependency, such as weather conditions, long-range transport of precursors, and concentration of various hydrocarbons. The apparent temperature dependency of 1.16 ppb ?(-1) based on a simple linear regression was reduced to 0.87 ppb ?(-1) within the canopy for summer daytime data after considering these factors. In addition, our results indicated that small oxygenated volatile organic compounds may play an important role in the temperature dependence of O-3 concentrations in this dataset from a low-NOx environment. Summertime observations and daytime data were selected for this analysis to focus on an environment that is significantly affected by biogenic emissions. Despite limitations due to selection of the data, these results highlight the importance of considering factors contributing to the apparent temperature dependence of the O-3 concentration. In addition, our results show that a mixed effects model achieves relatively good predictive accuracy for this dataset without explicitly calculating all processes involved in O-3 formation and removal.
  • Rissanen, Matti P. (2018)
    Atmospheric autoxidation of volatile organic compounds (VOC) leads to prompt formation of highly oxidized multifunctional compounds (HOM) that have been found crucial in forming ambient secondary organic aerosol (SOA). As a radical chain reaction mediated by oxidized peroxy (RO2) and alkoxy (RO) radical intermediates, the formation pathways can be intercepted by suitable reaction partners, preventing the production of the highest oxidized reaction products, and thus the formation of the most condensable material. Commonly, NO is expected to have a detrimental effect on RO2 chemistry, and thus on autoxidation, whereas the influence of NO2 is mostly neglected. Here it is shown by dedicated flow tube experiments, how high concentration of NO2 suppresses cyclohexene ozonolysis initiated autoxidation chain reaction. Importantly, the addition of NO2 ceases covalently bound dimer production, indicating their production involving acylperoxy radical (RC(O)OO•) intermediates. In related experiments NO was also shown to strongly suppress the highly oxidized product formation, but due to possibility for chain propagating reactions (as with RO2 and HO2 too), the suppression is not as absolute as with NO2. Furthermore, it is shown how NOx reactions with oxidized peroxy radicals lead into indistinguishable product compositions, complicating mass spectral assignments in any RO2 + NOx system. The present work was conducted with atmospheric pressure chemical ionization mass spectrometry (CIMS) as the detection method for the highly oxidized end-products and peroxy radical intermediates, under ambient conditions and at short few second reaction times. Specifically, the insight was gained by addition of a large amount of NO2 (and NO) to the oxidation system, upon which acylperoxy radicals reacted in RC(O)O2 + NO2 → RC(O)O2NO2 reaction to form peroxyacylnitrates, consequently shutting down the oxidation sequence. Keywords: acylperoxy radicals; Autoxidation; dimers; Highly oxidized multifunctional compounds; Highly oxygenated molecules; HOM; nitrogen oxides; peroxyacylnitrate
  • Kontkanen, Jenni; Paasonen, Pauli; Aalto, Juho; Bäck, Jaana; Rantala, Pekka; Petäjä, Tuukka; Kulmala, Markku (2016)
    The oxidation products of monoterpenes likely have a crucial role in the formation and growth of aerosol particles in boreal forests. However, the continuous measurements of monoterpene concentrations are usually not available on decadal timescales, and the direct measurements of the concentrations of monoterpene oxidation product have so far been scarce. In this study we developed proxies for the concentrations of monoterpenes and their oxidation products at a boreal forest site in Hyytiala, southern Finland. For deriving the proxies we used the monoterpene concentration measured with a proton transfer reaction mass spectrometer (PTR-MS) during 2006-2013. Our proxies for the monoterpene concentration take into account the temperature-controlled emissions from the forest ecosystem, the dilution caused by the mixing within the boundary layer and different oxidation processes. All the versions of our proxies captured the seasonal variation of the monoterpene concentration, the typical proxy-to-measurements ratios being between 0.8 and 1.3 in summer and between 0.6 and 2.6 in winter. In addition, the proxies were able to describe the diurnal variation of the monoterpene concentration rather well, especially in summer months. By utilizing one of the proxies, we calculated the concentration of oxidation products of monoterpenes by considering their production in the oxidation and their loss due to condensation on aerosol particles. The concentration of oxidation products was found to have a clear seasonal cycle, with a maximum in summer and a minimum in winter. The concentration of oxidation products was lowest in the morning or around noon and highest in the evening. In the future, our proxies for the monoterpene concentration and their oxidation products can be used, for example, in the analysis of new particle formation and growth in boreal environments.
  • Kortelainen, Aki; Hao, Liqing; Tiitta, Petri; Jaatinen, Antti; Miettinen, Pasi; Kulmala, Markku; Smith, James N.; Laaksonen, Ari; Worsnop, Douglas R.; Virtanen, Annele (2017)
    Organic nitrates (ON) are known to be present in secondary organic aerosol and act as a reservoir of nitrogen oxides, regulating the local and regional ozone and hydroxyl radical budgets. This work reports observations of particulate ON in Finnish remote boreal forest at a site with dominant emissions from biogenic volatile organic compounds. High Resolution-Aerosol Mass Spectrometer data were analysed in a unique way to characterize the sources of inorganic and organic nitrates. ON were found to be related to local sources with semi-volatile properties. Also they were implying a nocturnal formation mechanism. Occasionally, local sawmill emissions contributed greatly to the organic nitrates. The observations indicated that in the remote boreal forest area the NO 3 radicals are oxidizing biogenic VOCs producing ON. This work demonstrates the significant impact of anthropogenic-biogenic emissions interaction on the atmospheric organic nitrate aerosol mass concentration.
  • Hakola, Hannele; Tarvainen, Virpi; Praplan, Arnaud P.; Jaars, Kerneels; Hemmilä, Marja; Kulmala, Markku; Bäck, Jaana; Hellen, Heidi (2017)
    We present spring and summer volatile organic compound (VOC) emission rate measurements from Norway spruce (Picea abies L. Karst) growing in a boreal forest in southern Finland. The measurements were conducted using in situ gas chromatograph with 1 to 2 h time resolution to reveal quantitative and qualitative short-term and seasonal variability of the emissions. The measurements cover altogether 14 weeks in years 2011, 2014 and 2015. Monoterpene (MT) and sesquiterpene (SQT) emission rates were measured all the time, but isoprene only in 2014 and 2015 and acetone and C-4-C-10 aldehydes only in 2015. The emission rates of all the compounds were low in spring, but MT, acetone, and C-4-C-10 aldehyde emission rates increased as summer proceeded, reaching maximum emission rates in July. Late summer mean values (late July and August) were 29, 17, and 33 ng g(dw)(-1) h(-1) for MTs, acetone, and aldehydes respectively. SQT emission rates increased during the summer and highest emissions were measured in late summer (late summer mean value 84 ng g(dw)(-1) h(-1)) concomitant with highest linalool emissions most likely due to stress effects. The between-tree variability of emission pattern was studied by measuring seven different trees during the same afternoon using adsorbent tubes. Especially the contributions of limonene, terpinolene, and camphene were found to vary between trees, whereas proportions of alpha-pinene (25 +/- 5 %) and beta-pinene (7 +/- 3 %) were more stable. Our results show that it is important to measure emissions at canopy level due to irregular emission pattern, but reliable SQT emission data can be measured only from enclosures. SQT emissions contributed more than 90% of the ozone reactivity most of the time, and about 70% of the OH reactivity during late summer. The contribution of aldehydes to OH reactivity was comparable to that of MT during late summer, 10-30% most of the time.
  • Barreira, Luis M. F.; Ylisirnio, Arttu; Pullinen, Iida; Buchholz, Angela; Li, Zijun; Lipp, Helina; Junninen, Heikki; Horrak, Urmas; Noe, Steffen M.; Krasnova, Alisa; Krasnov, Dmitrii; Kask, Kaia; Talts, Eero; Niinemets, Ulo; Ruiz-Jimenez, Jose; Schobesberger, Siegfried (2021)
    Secondary organic aerosols (SOAs) formed from biogenic volatile organic compounds (BVOCs) constitute a significant fraction of atmospheric particulate matter and have been recognized to significantly affect the climate and air quality. Atmospheric SOA particulate mass yields and chemical composition result from a complex mixture of oxidation products originating from a diversity of BVOCs. Many laboratory and field experiments have studied SOA particle formation and growth in the recent years. However, a large uncertainty still remains regarding the contribution of BVOCs to SOA. In particular, organic compounds formed from sesquiterpenes have not been thoroughly investigated, and their contribution to SOA remains poorly characterized. In this study, a Filter Inlet for Gases and Aerosols (FI-GAERO) combined with a high-resolution time-of-flight chemical ionization mass spectrometer (CIMS), with iodide ionization, was used for the simultaneous measurement of gas-phase and particle-phase oxygenated compounds. The aim of the study was to evaluate the relative contribution of sesquiterpene oxidation products to SOA in a springtime hemiboreal forest environment. Our results revealed that monoterpene and sesquiterpene oxidation products were the main contributors to SOA particles. The chemical composition of SOA particles was compared for times when either monoterpene or sesquiterpene oxidation products were dominant and possible key oxidation products for SOA particle formation were identified for both situations. Surprisingly, sesquiterpene oxidation products were the predominant fraction in the particle phase in some periods, while their gas-phase concentrations remained much lower than those of monoterpene products. This can be explained by favorable and effective partitioning of sesquiterpene products into the particle phase. The SOA particle volatility determined from measured thermograms increased when the concentration of sesquiterpene oxidation products in SOA particles was higher than that of monoterpenes. Overall, this study demonstrates that sesquiterpenes may have an important role in atmospheric SOA formation and oxidation chemistry, in particular during the spring recovery period.