Browsing by Subject "ATMOSPHERIC METHANE"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Sabrekov, A. F.; Glagolev, M. V.; Alekseychik, P. K.; Smolentsev, B. A.; Terentieva, I. E.; Krivenok, L. A.; Maksyutov, S. S. (2016)
    This study combines a literature survey and field observation data in an ad initio attempt to construct a process-based model of methane sink in upland soils including both the biological and physical aspects of the process. Comparison is drawn between the predicted sink rates and chamber measurements in several forest and grassland sites in the southern part of West Siberia. CH4 flux, total respiration, air and soil temperature, soil moisture, pH, organic content, bulk density and solid phase density were measured during a field campaign in summer 2014. Two datasets from literature were also used for model validation. The modeled sink rates were found to be in relatively good correspondence with the values obtained in the field. Introduction of the rhizospheric methanotrophy significantly improves the match between the model and the observations. The Q10 values of methane sink observed in the field were 1.2-1.4, which is in good agreement with the experimental results from the other studies. Based on modeling results, we also conclude that soil oxygen concentration is not a limiting factor for methane sink in upland forest and grassland ecosystems.
  • Halmeenmäki, Elisa; Heinonsalo, Jussi; Putkinen, Anuliina; Santalahti, Minna; Fritze, Hannu; Pihlatie, Mari (2017)
    The contribution of boreal forest plants to the methane (CH4) cycle is still uncertain. We studied the above and belowground CH4 fluxes of common boreal plants, and assessed the possible contribution of CH4 producing and oxidizing microbes (methanogens and methanotrophs, respectively) to the fluxes. We measured the CH4 fluxes and the amounts of methanogens and methanotrophs in the above- and belowground parts of Vaccinium myrtillus, Vaccinium vitis-idaea, Calluna vulgaris and Pinus sylvestris seedlings and in non-planted soil in a microcosm experiment. The shoots of C. vulgaris and P. sylvestris showed on average emissions of CH4, while the shoots of the Vaccinium species indicated small CH4 uptake. All the root-soil-compartments consumed CH4, however, the non-rooted soils showed on average small CH4 emission. We found methanotrophs from all the rooted and non-rooted soils. Methanogens were not detected in the plant or soil materials. The presence of plant roots seem to increase the amount of methanotrophs and thus CH4 uptake in the soil. The CH4 emissions from the shoots of C. vulgaris and P. sylvestris demonstrate that the plants have an important contribution to the CH4 exchange dynamics in the plant-soil systems.
  • Wang, Fenjuan; Maksyutov, Shamil; Janardanan, Rajesh; Tsuruta, Aki; Ito, Akihiko; Morino, Isamu; Yoshida, Yukio; Tohjima, Yasunori; Kaiser, Johannes W.; Janssens-Maenhout, Greet; Lan, Xin; Mammarella, Ivan; Lavric, Jost; Matsunaga, Tsuneo (2021)
    In Asia, much effort is put into reducing methane (CH4) emissions due to the region's contribution to the recent rapid global atmospheric CH4 concentration growth. Accurate quantification of Asia's CH4 budgets is critical for conducting global stocktake and achieving the long-term temperature goal of the Paris Agreement. In this study, we present top-down estimates of CH4 emissions from 2009 to 2018 deduced from atmospheric observations from surface network and GOSAT satellite with the high-resolution global inverse model NIES-TM-FLEXPART-VAR. The optimized average CH4 budgets are 63.40 +/- 10.52 Tg y(-1) from East Asia (EA), 45.20 +/- 6.22 Tg y(-1) from Southeast Asia (SEA), and 64.35 +/- 9.28 Tg y(-1) from South Asia (SA) within the 10 years. We analyzed two 5 years CH4 emission budgets for three subregions and 13 top-emitting countries with an emission budget larger than 1 Tg y(-1), and interannual variabilities for these subregions. Statistically significant increasing trends in emissions are found in EA with a lower emission growth rate during 2014-2018 compared to that during 2009-2013, while trends in SEA are not significant. In contrast to the prior emission, the posterior emission shows a significant decreasing trend in SA. The flux decrease is associated with the transition from strong La Ninna (2010-2011) to strong El Ninno (2015-2016) events, which modulate the surface air temperature and rainfall patterns. The interannual variability in CH4 flux anomalies was larger in SA compared to EA and SEA. The Southern Oscillation Index correlates strongly with interannual CH4 flux anomalies for SA. Our findings suggest that the interannual variability in the total CH4 flux is dominated by climate variability in SA. The contribution of climate variability driving interannual variability in natural and anthropogenic CH4 emissions should be further quantified, especially for tropical countries. Accounting for climate variability may be necessary to improve anthropogenic emission inventories.
  • Tsuruta, Aki; Aalto, Tuula; Backman, Leif; Krol, Maarten C.; Peters, Wouter; Lienert, Sebastian; Joos, Fortunat; Miller, Paul A.; Zhang, Wenxin; Laurila, Tuomas; Hatakka, Juha; Leskinen, Ari; Lehtinen, Kari E. J.; Peltola, Olli; Vesala, Timo; Levula, Janne; Dlugokencky, Ed; Heimann, Martin; Kozlova, Elena; Aurela, Mika; Lohila, Annalea; Kauhaniemi, Mari; Gomez-Pelaez, Angel J. (2019)
    We estimated the CH4 budget in Finland for 2004?2014 using the CTE-CH4 data assimilation system with an extended atmospheric CH4 observation network of seven sites from Finland to surrounding regions (Hyytiälä, Kj?lnes, Kumpula, Pallas, Puijo, Sodankylä, and Utö). The estimated average annual total emission for Finland is 0.6?±?0.5 Tg CH4 yr?1. Sensitivity experiments show that the posterior biospheric emission estimates for Finland are between 0.3 and 0.9 Tg CH4 yr?1, which lies between the LPX-Bern-DYPTOP (0.2 Tg CH4 yr?1) and LPJG-WHyMe (2.2 Tg CH4 yr?1) process-based model estimates. For anthropogenic emissions, we found that the EDGAR v4.2 FT2010 inventory (0.4 Tg CH4 yr?1) is likely to overestimate emissions in southernmost Finland, but the extent of overestimation and possible relocation of emissions are difficult to derive from the current observation network. The posterior emission estimates were especially reliant on prior information in central Finland. However, based on analysis of posterior atmospheric CH4, we found that the anthropogenic emission distribution based on a national inventory is more reliable than the one based on EDGAR v4.2 FT2010. The contribution of total emissions in Finland to global total emissions is only about 0.13%, and the derived total emissions in Finland showed no trend during 2004?2014. The model using optimized emissions was able to reproduce observed atmospheric CH4 at the sites in Finland and surrounding regions fairly well (correlation > 0.75, bias
  • Putkinen, Anuliina; Siljanen, Henri M. P.; Laihonen, Antti; Paasisalo, Inga; Porkka, Kaija; Tiirola, Marja; Haikarainen, Iikka; Tenhovirta, Salla; Pihlatie, Mari (2021)
    Methane (CH4) exchange in tree stems and canopies and the processes involved are among the least understood components of the global CH4 cycle. Recent studies have focused on quantifying tree stems as sources of CH4 and understanding abiotic CH4 emissions in plant canopies, with the role of microbial in situ CH4 formation receiving less attention. Moreover, despite initial reports revealing CH4 consumption, studies have not adequately evaluated the potential of microbial CH4 oxidation within trees. In this paper, we discuss the current level of understanding on these processes. Further, we demonstrate the potential of novel metagenomic tools in revealing the involvement of microbes in the CH4 exchange of plants, and particularly in boreal trees. We detected CH4-producing methanogens and novel monooxygenases, potentially involved in CH4 consumption, in coniferous plants. In addition, our field flux measurements from Norway spruce (Picea abies) canopies demonstrate both net CH4 emissions and uptake, giving further evidence that both production and consumption are relevant to the net CH4 exchange. Our findings, together with the emerging diversity of novel CH4-producing microbial groups, strongly suggest microbial analyses should be integrated in the studies aiming to reveal the processes and drivers behind plant CH4 exchange.
  • Meng, L.; Hess, P. G. M.; Mahowald, N. M.; Yavitt, J. B.; Riley, W. J.; Subin, Z. M.; Lawrence, D. M.; Swenson, S. C.; Jauhiainen, J.; Fuka, D. R. (2012)
  • Korrensalo, Aino; Mannisto, Elisa; Alekseychik, Pavel; Mammarella, Ivan; Rinne, Janne; Vesala, Timo; Tuittila, Eeva-Stiina (2018)
    We measured methane fluxes of a patterned bog situated in Siikaneva in southern Finland from six different plant community types in three growing seasons (2012-2014) using the static chamber method with chamber exposure of 35 min. A mixed-effects model was applied to quantify the effect of the controlling factors on the methane flux. The plant community types differed from each other in their water level, species composition, total leaf area (LAI(TOT)) and leaf area of aerenchymatous plant species (LAI(AER)). Methane emissions ranged from -309 to 1254 mg m(-2) d(-1). Although methane fluxes increased with increasing peat temperature, LAI(TOT) and LAI(AER), they had no correlation with water table or with plant community type. The only exception was higher fluxes from hummocks and high lawns than from high hummocks and bare peat surfaces in 2013 and from bare peat surfaces than from high hummocks in 2014. Chamber fluxes upscaled to ecosystem level for the peak season were of the same magnitude as the fluxes measured with the eddy covariance (EC) technique. In 2012 and in August 2014 there was a good agreement between the two methods; in 2013 and in July 2014, the chamber fluxes were higher than the EC fluxes. Net fluxes to soil, indicating higher methane oxidation than production, were detected every year and in all community types. Our results underline the importance of both LAI(AER) and LAI(TOT) in controlling methane fluxes and indicate the need for automatized chambers to reliably capture localized events to support the more robust EC method.