Browsing by Subject "AUDITORY ATTENTION"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Putkinen, Vesa; Saarikivi, Katri; Chan, Tsz Man Vanessa; Tervaniemi, Mari (2021)
    Previous work suggests that musical training in childhood is associated with enhanced executive functions. However, it is unknown whether this advantage extends to selective attention-another central aspect of executive control. We recorded a well-established event-related potential (ERP) marker of distraction, the P3a, during an audio-visual task to investigate the maturation of selective attention in musically trained children and adolescents aged 10-17 years and a control group of untrained peers. The task required categorization of visual stimuli, while a sequence of standard sounds and distracting novel sounds were presented in the background. The music group outperformed the control group in the categorization task and the younger children in the music group showed a smaller P3a to the distracting novel sounds than their peers in the control group. Also, a negative response elicited by the novel sounds in the N1/MMN time range (similar to 150-200 ms) was smaller in the music group. These results indicate that the music group was less easily distracted by the task-irrelevant sound stimulation and gated the neural processing of the novel sounds more efficiently than the control group. Furthermore, we replicated our previous finding that, relative to the control group, the musically trained children and adolescents performed faster in standardized tests for inhibition and set shifting. These results provide novel converging behavioral and electrophysiological evidence from a cross-modal paradigm for accelerated maturation of selective attention in musically trained children and adolescents and corroborate the association between musical training and enhanced inhibition and set shifting.
  • Haapala, Sini; Niemitalo-Haapola, Elina; Raappana, Antti; Kujala, Tiia; Suominen, Kalervo; Jansson-Verkasalo, Eira; Kujala, Teija (2016)
    Background: A large group of young children are exposed to repetitive middle ear infections but the effects of the fluctuating hearing sensations on immature central auditory system are not fully understood. The present study investigated the consequences of early childhood recurrent acute otitis media (RAOM) on involuntary auditory attention switching. Methods: By utilizing auditory event-related potentials, neural mechanisms of involuntary attention were studied in 22-26 month-old children (N = 18) who had had an early childhood RAOM and healthy controls (N = 19). The earlier and later phase of the P3a (eP3a and lP3a) and the late negativity (LN) were measured for embedded novel sounds in the passive multi-feature paradigm with repeating standard and deviant syllable stimuli. The children with RAOM had tympanostomy tubes inserted and all the children in both study groups had to have clinically healthy ears at the time of the measurement assessed by an otolaryngologist. Results: The results showed that lP3a amplitude diminished less from frontal to central and parietal areas in the children with RAOM than the controls. This might reflect an immature control of involuntary attention switch. Furthermore, the LN latency was longer in children with RAOM than in the controls, which suggests delayed reorientation of attention in RAOM. Conclusions: The lP3a and LN responses are affected in toddlers who have had a RAOM even when their ears are healthy. This suggests detrimental long-term effects of RAOM on the neural mechanisms of involuntary attention.
  • Virtala, Paula; Partanen, Eino; Tervaniemi, Mari; Kujala, Teija (2018)
    To process complex stimuli like language, our auditory system must tolerate large acoustic variance, like speaker variability, and still be sensitive enough to discriminate between phonemes and to detect complex sound relationships in, e.g., prosodic cues. Our study determined discrimination of speech sounds in input mimicking natural speech variability, and detection of deviations in regular pitch relationships (rule violations) between speech sounds. We investigated the automaticity and the influence of attention and explicit awareness on these changes by recording the neurophysiological mismatch negativity (MMN) and P3a as well as task performance from 21 adults. The results showed neural discrimination of phonemes and rule violations as indicated by MMN and P3a, regardless of whether the sounds were attended or not, even when participants could not explicitly describe the rule. While small sample size precluded statistical analysis of some outcomes, we still found preliminary associations between the MMN amplitudes, task performance, and emerging explicit awareness of the rule. Our results highlight the automaticity of processing complex aspects of speech as a basis for the emerging conscious perception and explicit awareness of speech properties. While MMN operates at the implicit processing level, P3a appears to work at the borderline of implicit and explicit.
  • Salmi, Juha; Salmela, Viljami; Salo, Emma; Mikkola, Katri; Leppämäki, Sami; Tani, Pekka; Hokkanen, Laura; Laasonen, Marja; Numminen, Jussi; Alho, Kimmo (2018)
    Modern environments are full of information, and place high demands on the attention control mechanisms that allow the selection of information from one (focused attention) or multiple (divided attention) sources, react to changes in a given situation (stimulus-driven attention), and allocate effort according to demands (task-positive and task-negative activity). We aimed to reveal how attention deficit hyperactivity disorder (ADHD) affects the brain functions associated with these attention control processes in constantly demanding tasks. Sixteen adults with ADHD and 17 controls performed adaptive visual and auditory discrimination tasks during functional magnetic resonance imaging (fMRI). Overlapping brain activity in frontoparietal saliency and default-mode networks, as well as in the somato-motor, cerebellar, and striatal areas were observed in all participants. In the ADHD participants, we observed exclusive activity enhancement in the brain areas typically considered to be primarily involved in other attention control functions: During auditory-focused attention, we observed higher activation in the sensory cortical areas of irrelevant modality and the default-mode network (DMN). DMN activity also increased during divided attention in the ADHD group, in turn decreasing during a simple button-press task. Adding irrelevant stimulation resulted in enhanced activity in the salience network. Finally, the irrelevant distractors that capture attention in a stimulus-driven manner activated dorsal attention networks and the cerebellum. Our findings suggest that attention control deficits involve the activation of irrelevant sensory modality, problems in regulating the level of attention on demand, and may encumber top-down processing in cases of irrelevant information. (C) 2018 Elsevier B.V. All rights reserved.