Browsing by Subject "AZACITIDINE"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Dohner, Hartmut; Symeonidis, Argiris; Deeren, Dries; Demeter, Judit; Sanz, Miguel A.; Anagnostopoulos, Achilles; Esteve, Jordi; Fiedler, Walter; Porkka, Kimmo; Kim, Hee-Je; Lee, Je-Hwan; Usuki, Kensuke; D'Ardia, Stefano; Won Jung, Chul; Salamero, Olga; Horst, Heinz-August; Recher, Christian; Rousselot, Philippe; Sandhu, Irwindeep; Theunissen, Koen; Thol, Felicitas; Dohner, Konstanze; Teleanu, Veronica; DeAngelo, Daniel J.; Naoe, Tomoki; Sekeres, Mikkael A.; Belsack, Valerie; Ge, Miaomiao; Taube, Tillmann; Ottmann, Oliver G. (2021)
    In this phase 3 trial, older patients with acute myeloid leukemia ineligible for intensive chemotherapy were randomized 2:1 to receive the polo-like kinase inhibitor, volasertib (V; 350 mg intravenous on days 1 and 15 in 4-wk cycles), combined with low-dose cytarabine (LDAC; 20 mg subcutaneous, twice daily, days 1-10; n = 444), or LDAC plus placebo (P; n = 222). Primary endpoint was objective response rate (ORR); key secondary endpoint was overall survival (OS). Primary ORR analysis at recruitment completion included patients randomized >= 5 months beforehand; ORR was 25.2% for V+LDAC and 16.8% for P+LDAC (n = 371; odds ratio 1.66 [95% confidence interval (CI), 0.95-2.89]; P = 0.071). At final analysis (>= 574 OS events), median OS was 5.6 months for V+LDAC and 6.5 months for P+LDAC (n = 666; hazard ratio 0.97 [95% CI, 0.8-1.2]; P = 0.757). The most common adverse events (AEs) were infections/infestations (grouped term; V+LDAC, 81.3%; P+LDAC, 63.5%) and febrile neutropenia (V+LDAC, 60.4%; P+LDAC, 29.3%). Fatal AEs occurred in 31.2% with V+LDAC versus 18.0% with P+LDAC, most commonly infections/infestations (V+LDAC, 17.1%; P+LDAC, 6.3%). Lack of OS benefit with V+LDAC versus P+LDAC may reflect increased early mortality with V+LDAC from myelosuppression and infections.
  • European Soc Blood Marrow Transpla; HOVON-SAKK (2018)
    Background. Disease recurrence remains the major cause of death in adults with acute myeloid leukaemia (AML) treated using either intensive chemotherapy (IC) or allogenic stem cell transplantation (allo-SCT). Aims. The timely delivery of maintenance drug or cellular therapies represent emerging strategies with the potential to reduce relapse after both treatment modalities, but whilst the determinants of overall relapse risk have been extensively characterized the factors determining the timing of disease recurrence have not been characterized. Materials and Methods. We have therefore examined, using a series of sequential landmark analyses, relapse kinetics in a cohort of 2028 patients who received an allo-SCT for AML in CR1 and separately 570 patients treated with IC alone. Results. In the first 3 months after allo-SCT, the factors associated with an increased risk of relapse included the presence of the FLT3-ITD (P <0.001), patient age (P = 0.012), time interval from CR1 to transplant (P <0.001) and donor type (P = 0.03). Relapse from 3 to 6 months was associated with a higher white cell count at diagnosis (P = 0.001), adverse-risk cytogenetics (P <0.001), presence of FLT3-ITD mutation (P <0.001) and time interval to achieve first complete remission (P = 0.013). Later relapse was associated with adverse cytogenetics, mutated NPM1, absence of chronic graft-versus-host disease (GVHD) and the use of in vivo T-cell depletion. In patients treated with IC alone, the factors associated with relapse in the first 3 months were adverse-risk cytogenetics (P <0.001) and FLT3-ITD status (P = 0.001). The factors predicting later relapse were the time interval from diagnosis to CR1 (P = 0.22) and time interval from CR1 to IC (P = 0.012). Discussion and Conclusion. Taken together, these data provide novel insights into the biology of disease recurrence after both allo-SCT and IC and have the potential to inform the design of novel maintenance strategies in both clinical settings.
  • Giri, Anil K.; Aittokallio, Tero (2019)
    DNA methyltransferase inhibitors (DNMTi) decitabine and azacytidine are approved therapies for myelodysplastic syndrome and acute myeloid leukemia, and their combinations with other anticancer agents are being tested as therapeutic options for multiple solid cancers such as colon, ovarian, and lung cancer. However, the current therapeutic challenges of DNMTis include development of resistance, severe side effects and no or partial treatment responses, as observed in more than half of the patients. Therefore, there is a critical need to better understand the mechanisms of action of these drugs. In order to discover molecular targets of DNMTi therapy, we identified 638 novel CpGs with an increased methylation in response to decitabine treatment in HCT116 cell lines and validated the findings in multiple cancer types (e.g., bladder, ovarian, breast, and lymphoma) cell lines, bone marrow mononuclear cells from primary leukemia patients, as well as peripheral blood mononuclear cells and ascites from platinum resistance epithelial ovarian cancer patients. Azacytidine treatment also increased methylation of these CpGs in colon, ovarian, breast, and lymphoma cancer cell lines. Methylation at 166 identified CpGs strongly correlated (vertical bar r vertical bar >= 0.80) with corresponding gene expression in HCT116 cell line. Differences in methylation at some of the identified CpGs and expression changes of the corresponding genes was observed in TCGA colon cancer tissue as compared to adjacent healthy tissue. Our analysis revealed that hypermethylated CpGs are involved in cancer cell proliferation and apoptosis by P53 and olfactory receptor pathways, hence influencing DNMTi responses. In conclusion, we showed hypermethylation of CpGs as a novel mechanism of action for DNMTi agents and identified 638 hypermethylated molecular targets (CpGs) common to decitabine and azacytidine therapy. These novel results suggest that hypermethylation of CpGs should be considered when predicting the DNMTi responses and side effects in cancer patients.